
Transnational Journal of Mathematical Analysis and Applications 
Vol. 12, Issue 1, 2024, Pages 1-22 
ISSN 2347-9086 
Published Online on February 20, 2024 
 2024 Jyoti Academic Press 
http://jyotiacademicpress.org 

2020 Mathematics Subject Classification: 60E05, 62H05. 

Keywords and phrases: Hazard function, reverse Hazard function, conditional expectation, 

univariate continuous distributions, characterizations. 

Communicated by Francisco Bulnes. 

Received February 2, 2024; Revised February 5, 2024 

CHARACTERIZATIONS OF CERTAIN EIGHT 

GENERAL UNIVARIATE CONTINUOUS 

DISTRIBUTIONS INTRODUCED BY  

CHESNEAU RECENTLY  

G. G. HAMEDANI 

Department of Mathematical and Statistical Sciences 

Marquette University 

Milwaukee, WI 53201-1881 

USA 

e-mail: gholamhoss.hamedani@marquette.edu 

Abstract 

This paper deals with various characterizations of eight general univariate 

continuous distributions proposed by Chesneau [1]. These characterizations are 

based on: (i) a simple relationship between two truncated moments; (ii) the 

hazard function; (iii) reverse hazard function. It should be mentioned that for 

the characterization (i) the cumulative distribution function need not have a 

closed form and depends on the solution of a first order differential equation, 

which provides a bridge between probability and differential equation. 
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1. Introduction 

In designing a stochastic model for a particular modeling problem, an 
investigator will be vitally interested to know if their model fits the 
requirements of a specific underlying probability distribution. To this 
end, the investigator will rely on the characterizations of the selected 
distribution. Generally speaking, the problem of characterizing a 
distribution is an important problem in various fields and has recently 
attracted the attention of many researchers. Consequently, various 
characterization results have been reported in the literature. These 
characterizations have been established in many different directions. The 
present work deals with certain characterizations of eight general 
univariate continuous distributions proposed by Chesneau [1]: (1) 
Variable Power Parametric of the First Kind (VPP1stK); (2) Variable 
Power Parametric of the Second Kind (VPP3rdK); (3) Variable Power 
Parametric of the Third Kind (VPP3rdK); (4) Variable Power Parametric 
of the Fourth Kind (VPP4thK); (5) Variable Power Parametric of the Fifth 
Kind (VPP5thK); (6) Variable Power Parametric of the Sixth Kind 
(VPP6thK); (7) Variable Power Parametric of the Seventh Kind 
(VPP7thK); (8) Variable Power Parametric of the Eighth Kind (VPP8thK). 
Certain interesting examples as well as further complements of these 
distributions are given in Chesneau [1] for interested readers. 

We list below the cumulative distribution function (cdf) and 
probability density function (pdf) of each one of these distributions in the 
same order as listed above. We will be employing the same notation for 
the parameters as chosen by the original author (Chesneau). 

(1) The cdf and pdf of (VPP1stK) are given, respectively, by 
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(2) The cdf and pdf of (VPP2ndK) are given, respectively, by 

       ,10,,,; lnln   xecbaxF xcxbxax   (2.1) 

and 

    ,10,,,; 1   xxPxcbaxf   (2.2) 

where     baacb c   01,0,1,0,0  are parameters and   xP  

            .lnln2 lnln2 xcxbxaxexcxxxcbbxa   

(3) The cdf and pdf of (VPP3rdK) are given, respectively, by 

        ,10,1,; 11ln   xxebaxF
bxxa   (3.1) 

and 

      ,10,1,; 1   xxPxbaxf b   (3.2) 

where   1,1,0  ba  are parameters and     ln1[1 1 baxxP b    

      .]1 11ln bxxaex   

(4) The cdf and pdf of (VPP4thK) are given, respectively, by 

          ,10,1,; lnln1ln   xee
a

baxF xxxbxaxx   (4.1) 

and 

    ,10,1,; 1   xxPx
a

baxf   (4.2) 

where bab  1,0  are parameters and        xbxaxxP ln1  

              .ln1lnln lnln1ln xxxbxaxx exxexbbaxx    
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(5) The cdf and pdf of (VPP5thK) are given, respectively, by 

   
   

,10,1,,,;
lnln1ln

 



  

xeadcbaxF x
xcxxbadx

  (5.1) 

and 

      ,10,1,,,; 1   xxPxadcbaxf d   (5.2) 
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(6) The cdf and pdf of (VPP6thK) are given, respectively, by 

       ,10,1,,,;
1lnln 
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and 

    ,10,,,,; 2   xxPxdcbaxf d   (6.2) 
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(7) The cdf and pdf of (VPP7thK) are given, respectively, by 
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bxaxx   (7.1) 
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and 

        ,10,ln,; 11   xxPxxxbaxf
bxab   (7.2) 

where 0,0  ba  are parameters and      
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(8) The cdf and pdf of (VPP8thK) are given, respectively, by 
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2. Characterization of Distributions 

As mentioned in the Introduction, characterizations of distributions is 

an important area of research which has recently attracted the attention 

of many researchers. This section deals with various characterizations of 

the distributions listed in the Introduction. These characterizations are 

based on: (i) a simple relationship between two truncated moments; (ii) 

the hazard function; and (iii) the reverse hazard function. It should be 

mentioned that for the characterization (i) the cdf need not have a closed 

form and depends on the solution of a first order differential equation, 

which provides a bridge between probability and differential equation. 
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2.1. Characterizations based on two truncated moments 

In this subsection we present characterizations of 8 distributions 

mentioned in the Introduction, in details, in terms of a simple 

relationship between two truncated moments. Our first characterization 

result employs a theorem due to (Glänzel [2]), see Theorem 2.1.1 below. 

Note that the result holds also when the interval H is not closed. 

Moreover, as mentioned above, it could be also applied when the cdf F 

does not have a closed form. As shown in (Glänzel [3]), this 

characterization is stable in the sense of weak convergence. 

Theorem 2.1.1. Let  P,,   be a given probability space and let 

 edH ,  be an interval for some   eded ,  might as well be 

allowed). Let HX :  be a continuous random variable with the 

distribution function F  and let 1q  and 2q  be two real functions defined 

on H  such that  

        ,,12 HxxxXXqxXXq  EE  

is defined with some real function .  Assume that  ,, 1
21 HCqq   

 HC2  and F  is twice continuously differentiable and strictly 

monotone function on the set .H  Finally, assume that the equation 

21 qq   has no real solution in the interior of .H  Then F  is uniquely 

determined by the functions 21 , qq  and ,  particularly 

   
         ,exp

21
duus

uququ
u

CxF
x

a





   

where the function s is a solution of the differential equation 
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Here is our first characterization. 



CHARACTERIZATIONS OF CERTAIN EIGHT GENERAL … 7 

Proposition 2.1.1. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and       xxqxq ln12   for 

.10  x  The random variable X  has pdf (1.2) if and only if the 

function   defined in Theorem 2.1.1 has the form 
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Conversely, if   is given as above, then 
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       .10,lnln1  xxbxs  

Now, in view of Theorem 2.1.1, X  has density (1.2). 
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Corollary 2.1.1. Let  1,0: X  be a continuous random variable 

and let  xq1  be as in Proposition 2.1.1. The pdf of X is (1.2) if and only if 

there exist functions 2q  and   defined in Theorem 2.1.1 satisfying the 

differential equation 
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Corollary 2.1.2. The general solution of the differential equation in 

Corollary 2.1.1 is  

                 ,ln1ln 2
1

1
11 Ddxxqxqxxbxx bb     

where D  is a constant. 

Proof. If X  has pdf (1.2), then clearly the differential equation holds. 

Now, if the differential equation holds, then 
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Note that a set of functions satisfying the differential equation in 

Corollary 2.1.1, is given in Proposition 2.1.1 with .0D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 

Proposition 2.1.2. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPq x  and       xxqxq ln12   for .10  x  

The random variable X  has pdf (2.2) if and only if the function   defined 

in Theorem 2.1.1 has the form 

     .10,ln
2
1  xxx  

Proof. Let X be a random variable with pdf (2.2), then 
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1
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Conversely, if   is given as above, then 
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Now, in view of Theorem 2.1.1, X has density (2.2). 
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Corollary 2.1.3. Let  1,0: X  be a continuous random variable 

and let  xq1  be as in Proposition 2.1.2. The pdf of X  is (2.2) if and only 

if there exist functions 2q  and   defined in Theorem 2.1.1 satisfying the 

differential equation 
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Corollary 2.1.4. The general solution of the differential equation in 

Corollary 2.1.3 is 

          ,ln 2
1

1
11 Ddxxqxqxxx     

where D  is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.3, is given in Proposition 2.1.2 with .0D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 

Proposition 2.1.3. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and      bxxqxq  112  for .10  x  

The random variable X has pdf (3.2) if and only if the function   defined 

in Theorem 2.1.1 has the form 

    .10,1
2
1  xxx b  

Proof. Let X  be a random variable with pdf (3.2), then 
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and finally 

          01
2

1
21  bx

xq
xqxqx  for .10  x  

Conversely, if   is given as above, then 

     
        ,10,1 1
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xqx

xs  

and hence 

    .10,1ln  xxbxs  

Now, in view of Theorem 2.1.1, X  has density (3.2). 

Corollary 2.1.5. Let  1,0: X  be a continuous random variable 

and let  xq1  be as in Proposition 2.1.3. The pdf of X  is (3.2) if and only 

if there exist functions 2q  and   defined in Theorem 2.1.1 satisfying the 

differential equation 
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21

1 


  xxb
xqxqx
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Corollary 2.1.6. The general solution of the differential equation in 

Corollary 2.1.5 is 

            ,11 2
1

1
1 Ddxxqxqxbxx bb     

where D  is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.5, is given in Proposition 2.1.3 with .0D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 
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Proposition 2.1.4. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and      xexqxq ln
12   for .10  x  

The random variable X  has pdf (4.2) if and only if the function   defined 

in Theorem 2.1.1 has the form 

     .10,1
2
1 ln  xex x  

Proof. Let X be a random variable with pdf (4.2), then 
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Conversely, if   is given as above, then 
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Now, in view of Theorem 2.1.1, X  has density (4.2). 
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Corollary 2.1.7. Let  1,0: X  be a continuous random variable 

and let  xq1  be as in Proposition 2.1.4. The pdf of X is (4.2) if and only if 

there exist functions 2q  and   defined in Theorem 2.1.1 satisfying the 

differential equation 
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Corollary 2.1.8. The general solution of the differential equation in 

Corollary 2.1.7 is 

            ,1 2
1

1
ln11ln Ddxxqxqexex xx  

  

where D  is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.7, is given in Proposition 2.1.4 with .
2
1D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1.  

Proposition 2.1.5. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and     dxxqxq  12  for .10  x  

The random variable X  has pdf (5.2) if and only if the function   defined 

in Theorem 2.1.1 has the form 

    .10,1
2
1   xxx d  

Proof. Let X  be a random variable with pdf (5.2), then 

        duuaxXXqExF d
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and 

        duuaxXXqExF d

x

12
1

2 11    

  ,10,1
2

1 2   xx
d

a d  

and finally 
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2

1
21  dx

xq
xqxqx  for .10  x  

Conversely, if   is given as above, then 
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and hence 

    .10,1ln   xxxs d  

Now, in view of Theorem 2.1.1, X  has density (5.2). 

Corollary 2.1.9. Let  1,0: X  be a continuous random variable 

and let  xq1  be as in Proposition 2.1.5. The pdf of X  is (5.2) if and only 

if there exist functions 2q  and   defined in Theorem 2.1.1 satisfying the 

differential equation 
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Corollary 2.1.10. The general solution of the differential equation in 

Corollary 2.1.9 is 

         ,1 2
1

1
11 Ddxxqxqdxxx dd     

where D  is a constant. 
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Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.9, is given in Proposition 2.1.5 with .
2
1D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 

Proposition 2.1.6. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and      1
12

 dxxqxq  for .10  x  

The random variable X  has pdf (6.2) if and only if the function   defined 

in Theorem 2.1.1 has the form 
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2
1 1   xxx d  

Proof. Let X  be a random variable with pdf (6.2), then 
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and hence 

     .10,1ln 1   xxxs d  

Now, in view of Theorem 2.1.1, X  has density (6.2). 

Corollary 2.1.11. Let  1,0: X  be a continuous random 

variable and let  xq1  be as in Proposition 2.1.6. The pdf of X is (6.2) if 

and only if there exist functions 2q  and   defined in Theorem 2.1.1 

satisfying the differential equation 
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Corollary 2.1.12. The general solution of the differential equation in 

Corollary 2.1.11 is 

            ,11 2
1

1
211 Ddxxqxqxdxx dd     

where D  is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.11, is given in Proposition 2.1.6 with .
2
1D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 

Proposition 2.1.7. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and      bxaxxqxq  1
12  for 

.10  x  The random variable X has pdf (7.2) if and only if the function 

  defined in Theorem 2.1.1 has the form 

    .10,1
2
1 1 





   xxx

bxa  
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Proof. Let X be a random variable with pdf (7.2), then 
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Conversely, if   is given as above, then 
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and hence 

    .10,1ln 1 
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Now, in view of Theorem 2.1.1, X has density (7.2). 

Corollary 2.1.13. Let  1,0: X  be a continuous random 

variable and let  xq1  be as in Proposition 2.1.7. The pdf of X is (7.2) if 

and only if there exist functions 2q  and   defined in Theorem 2.1.1 

satisfying the differential equation 
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Corollary 2.1.14. The general solution of the differential equation in 
Corollary 2.1.13 is 

             ,ln1 2
1

1
11

1
1





 





  


  Ddxxqxqxxabxxx

bb xabxa  

where D is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.13, is given in Proposition 2.1.7 with .
2
1D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1. 

Proposition 2.1.8. Let  1,0: X  be a continuous random 

variable and let      1
1

 xPxq  and       bxxqxq ln12   for 

.10  x  The random variable X has pdf (8.2) if and only if the function 

  defined in Theorem 2.1.1 has the form 

     .10,ln
2
1  xxx b  

Proof. Let X be a random variable with pdf (8.2), then 

         duuuxXXqExF b

x

11
1

1 ln1     

     ,10,ln1  xx
b

b  

and 

         duuuxXXqExF b

x

121
1

2 ln1     

     ,10,ln
2
1 2  xx
b

b  

and finally 
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Conversely, if   is given as above, then 

     
         ,10,

ln21

1 






 x

xx
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xqxqx
xqx

xs  

and hence 

      .10,lnln  xxxs b  

Now, in view of Theorem 2.1.1, X has density (8.2). 

Corollary 2.1.15. Let  1,0: X  be a continuous random 

variable and let  xq1  be as in Proposition 2.1.8. The pdf of X is (8.2) if 

and only if there exist functions 2q  and   defined in Theorem 2.1.1 

satisfying the differential equation: 
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ln21
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x

xx
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xqxqx
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Corollary 2.1.16. The general solution of the differential equation in 

Corollary 2.1.15 is 

             ,lnln 2
1

1
11 Ddxxqxqxbxxx bb     

where D is a constant. 

Proof. It is similar to that of Corollary 2.1.2. 

Note that a set of functions satisfying the differential equation in 

Corollary 2.1.15, is given in Proposition 2.1.8 with .0D  However, it 

should also be noted that there are other triplets  ,, 21 qq  satisfying 

the conditions of Theorem 2.1.1.  
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2.2. Characterization in terms of hazard function 

The hazard function, ,Fh  of a twice differentiable distribution 

function, ,F  satisfies the following first order differential equation: 

 
 

 
   .xh
xh
xh

xf
xf

F
F
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It should be mentioned that for many univariate continuous 

distributions, the above equation is the only differential equation 

available in terms of the hazard function. In this subsection, we present 

non-trivial characterizations of some of the new distributions in terms of 

the hazard function, which are not of the above trivial form. 

Proposition 2.2.1. Let  1,0: X  be a continuous random 

variable. The random variable X has pdf (8.2) if and only if its hazard 

function  xhF  satisfies the following differential equation: 
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Proof. It is straightforward and hence omitted. 

2.3. Characterization in terms of the reverse (or reversed) hazard 

function 

The reverse hazard function, ,Fr  of a twice differentiable distribution 

function, ,F  is defined as 

   
  F.x
xF
xf

xrF ofportsup,   

In this subsection, we present characterizations of some of the new 

distributions in terms of the reverse hazard function. 

Proposition 2.3.1. Let  1,0: X  be a continuous random 

variable. The random variable X has pdf (1.2) if and only if its reverse 

hazard function  xrF  satisfies the following differential equation: 
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             ,ln1ln1 121 bxabxxxrxaxr ba
FF    

.10  x  

with boundary condition   .0lim 1  xrFx  

Proposition 2.3.2. Let  1,0: X  be a continuous random 

variable. The random variable X has pdf (2.2) if and only if its reverse 

hazard function  xrF  satisfies the following differential equation: 

              ,10,lnln42 211   xxcxcbcbxxrxxr FF  

with boundary condition   .lim 1 baxrFx   

Proposition 2.3.3. Let  1,0: X  be a continuous random 

variable. The random variable X has pdf (3.2) if and only if its reverse 

hazard function  xrF  satisfies the following differential equation: 

           
  ,10,111 1 
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dx
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with boundary condition   .0lim 1  xrFx  

Proposition 2.3.4. Let  1,0: X  be a continuous random 

variable. The random variable X has pdf (7.2) if and only if its reverse 

hazard function  xrF  satisfies the following differential equation: 
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with boundary condition   .0lim 0  xrFx  
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3. Conclusion 

The problem of characterizing a distribution is an important problem 

in many different applied fields and has attracted the attention of a good 

number of researchers. Consequently, various characterization results 
have been reported in the literature. These characterizations have been 

established in many different directions. The present work deals with the 

characterizations of certain univariate continuous distribution based on a 
simple relationship between two truncated moments; in terms of the 

hazard and reverse hazard functions. We hope that the results of this 

work will be helpful to the researchers in the applied fields who are 
interested to know if their chosen underlying distributions are suitable 

for their data sets. 
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