Research and Communications in Mathematics and Mathematical Sciences
Vol. 15, Issue 2, 2023, Pages 153-193
ISSN 2319-6939
Published Online on January 19, 2024
© 2023 Jyoti Academic Press
http://jyotiacademicpress.org

# CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8}$ 

## QIANXUE LIU and SHOUFENG WANG*

School of Mathematics
Yunnan Normal University
Kunming, Yunnan, 650500
P. R. China
e-mail: wsf1004@163.com


#### Abstract

Rota-Baxter operators on Lie groups were introduced recently as integrals of Rota-Baxter operators on Lie algebras with applications to integrable systems In [5], Das and Rathee listed Rota-Baxter operators on the dihedral group $D_{8}$ which are extension of some homomorphism on the unique cyclic subgroup with order 4 of $D_{8}$. The aim of this paper is to classify Rota-Baxter operators on $D_{8}$. With the aid of Matlab procedures, it is proved that there exist 56 Rota-Baxter operators on $D_{8}$ including 18 splitting Rota-Baxter operators and 28 Rota-Baxter operators that are group endomorphisms. The Rota-Baxter endomorphisms form a semigroup with respect to composition.


[^0]
## 1. Introduction

In 1960, Rota-Baxter operators for commutative algebras was first considered in [3] by Baxter. Subsequently, various authors have contributed to the development of the theory of Rota-Baxter operators; see [9] for further details. In 2021, Guo et al. [10] introduced the notion of Rota-Baxter operators on groups and Lie groups and gave some basic examples and properties of these operators. A group $G$ with a RotaBaxter operator is called a Rota-Baxter group.

Soon after the intial breakthrough in [8], quite a few studies were carried out in this direction (see [1, 2, 4, 5, 6, 7, 11, 12]). More specifically, Bardakov and Gubarev [1] have investigated the relationship between skew left braces and Rota-Baxter groups, and shown that every RotaBaxter group gives rise to a skew left brace and every left brace can be embedded into a Rota-Baxter group. In 2023, Bardakov and Gubarev [2] have given different constructions of Rota-Baxter operators on a group. In particular, they have proved that all Rota-Baxter operators on all sporadic simple groups are splitting. In the same year, Catino et al. [4] defined Rota-Baxter operators for Clifford semigroups and extended some results in [1] to Clifford semigroups. In [5], Das and Rathee investigated the extensions and automorphisms of Rota-Baxter groups, and in particular, in [5, Example 6.7], they listed Rota-Baxter operators on the dihedral group $D_{8}$ which are extension of some homomorphism on the unique cyclic subgroup with order 4 of $D_{8}$. On the other hand, Gao, Guo, Liu and Zhu [6] constructed free Rota-Baxter groups and Goncharov [7] investigated Rota-Baxter operators on cocommutative Hopf algebras, respectively. More recently, Li and Wang introduced Rota-Baxter systems and studied the relationship between Rota-Baxter systems and RotaBaxter groups in [11]. Now the theory of Rota-Baxter groups has become a very active topic.

As mentioned earlier, Bardakov and Gubarev proved that all RotaBaxter operators on 26 sporadic simple groups are splitting. A natural question is the following: what is the structure of Rota-Baxter operators on other groups? This problem seems very difficult in general case. In this paper, by using some key facts on Rota-Baxter operators on groups
given in the texts [2] and [10], we have determined and classified all the Rota-Baxter operators on the dihedral group $D_{8}$ with the help of Matlab procedures. In particular, we have proved that there exist 56 Rota-Baxter operators on $D_{8}$ including 18 splitting Rota-Baxter operators and 28 Rota-Baxter endomorphisms. Moreover, the Rota-Baxter endomorphisms on $D_{8}$ form a semigroup with respect to the composition of mappings. The results of this paper show that the structure of Rota-Baxter operators on general groups is very complicated.

The paper is organized as follows. In Section 2, we first recall some necessary results on Rota-Baxter operators on groups and some basic properties of the dihedral group $D_{8}$. In particular, it is showed that the size of the image of a Rota-Baxter operator on $D_{8}$ may be $8,4,2$ or 1 (see Lemmas 2.1 and 2.4 (1)). Then we have determined the Rota-Baxter operators on $D_{8}$ by considering the sizes of the images of these operators in Sections 3-5. More specifically, Section 3 explores the Rota-Baxter operators on $D_{8}$ whose images have 8 elements and shows that there are 12 candidates of this kind of operators. In Section 4, Rota-Baxter operators on $D_{8}$ whose images have 4 elements are considered and 28 candidates of this class of operators are described. Section 5 is devoted to Rota-Baxter operators on $D_{8}$ whose images contain at most 2 elements and 16 candidates of Rota-Baxter operators on $D_{8}$ are obtained. In the final section, among other things we prove that the above mentioned 56 candidates are all really Rota-Baxter operators, where there are 28 Rota-Baxter endomorphisms and 18 splitting Rota-Baxter operators.

## 2. Preliminaries

In this section, we shall recall some necessary results on Rota-Baxter operators on groups and some basic properties of the dihedral group $D_{8}$. Let $(G, \cdot)$ be a group with the identity $e$. From [10], a map $B: G \rightarrow G$ is called a Rota-Baxter operator of weight of 1 on $G$ if

$$
\begin{equation*}
B(g) B(h)=B\left(g B(g) h B(g)^{-1}\right), \tag{2.1}
\end{equation*}
$$

for all $g, h \in G$. In this case,

$$
\text { ker } B=\{x \in G \mid B(x)=e\} \text { and } \operatorname{Im} B=\{B(x) \mid x \in G\}
$$

are called the kernel and image of $B$, respectively. In the sequel, we shall call Rota-Baxter operators of weight of 1 Rota-Baxter operators for simplicity. Now let us recall some properties of Rota-Baxter operators on groups.

Lemma 2.1 (Lemmas 5 and 6 in [2], also see [10]). Let $B$ be a RotaBaxter operator on a group $G$ with identity $e$. Then $B(e)=e$. Moreover, ker $B$ and $\operatorname{Im} B$ are subgroups of $G$.

Lemma 2.2 (Proposition 2.6 in [1]). Let B be a Rota-Baxter operator on a finite group G. Define a new multiplication ${ }_{\circ}{ }_{B}$ on $G$ as follows:

$$
g{ }^{\circ} B h=g B(g) h B(g)^{-1} \text { for all } g, h \in G .
$$

Then $\left(G,{ }^{\circ}{ }_{B}\right)$ is also a group and $B$ is a group homomorphism from $\left(G,{ }^{\circ}{ }_{B}\right)$ to $(G, \cdot)$. As a consequence, we have $\left(G,{ }^{\circ} B\right) / \operatorname{ker} B \cong(\operatorname{Im} B, \cdot)$ and so $|\operatorname{ker} B|=\frac{|G|}{|\operatorname{Im} B|}$.

Lemma 2.3 (Lemma 7 in [2]). Let $B$ be a Rota-Baxter operator on a finite group $G$ with identity $e$ and $g \in G$. If $B(g)=e$, then $B(h)=B(g h)$ for any $h \in G$. In particular, if

$$
G=\coprod_{i \in I}(\operatorname{ker} B) g_{i}
$$

is the decomposition of $G$ into the disjoint union of right cosets with respect to the subgroup ker $B$, then $B(x)=B(y)$ if $x$ and $y$ lie in the same coset.

Now, we shall give some known results and properties of the dihedral group:

$$
D_{8}=\left\langle a, b \mid a^{4}=b^{2}=e, b a b^{-1}=a^{-1}\right\rangle=\left\{e, a, a^{2}, a^{3}, b, b a, b a^{2}, b a^{3}\right\}
$$

We use $e$ to denote the identity of $D_{8}$ throughout the remaining part of the paper.

Lemma 2.4. With the above notation, we have the following well known facts:
(1) The subgroups of $D_{8}$ are

$$
\begin{aligned}
& H_{0}=\{e, b\}, H_{1}=\{e, b a\}, H_{2}=\left\{e, b a^{2}\right\}, H_{3}=\left\{e, b a^{3}\right\}, N_{0}=\{e\}, \\
& N_{1}=\left\{e, a^{2}\right\}, N_{2}=\left\{e, a, a^{2}, a^{3}\right\}, N_{3}=\left\{e, a^{2}, b, a^{2} b\right\}, \\
& N_{4}=\left\{e, a^{2}, b a, b a^{3}\right\}, N_{5}=D_{8},
\end{aligned}
$$

and the normal subgroups of $D_{8}$ are $N_{0}, N_{1}, N_{2}, N_{3}, N_{4}$, and $N_{5}$.
(2) The center of $D_{8}$ is $\left\{e, a^{2}\right\}$ and $b a=a^{3} b, a^{2} b=b a^{2}, b a^{3}=a b$.
(3) The conjugacy classes of $D_{8}$ are $\{e\},\left\{a^{2}\right\},\left\{a, a^{3}\right\},\left\{b, b a^{2}\right\}$, and $\left\{b a, b a^{3}\right\}$.

Lemma 2.5. Let $B$ be a Rota-Baxter operator on $D_{8}$.
(1) If $x, y \in D_{8}$ and $B(x) y=y B(x)$, then $B(x) B(y)=B(x y)$. In particular, $B(x) B\left(a^{2}\right)=B\left(x a^{2}\right)$ for all $x \in D_{8}$.
(2) $B(x)^{2} \in\left(\left\{B\left(a^{2}\right), e\right\} \cap\left\{a^{2}, e\right\}\right)$ for all $x \in D_{8}$.
(3) If $\operatorname{Im} B \cap\left\{a, a^{3}\right\} \neq \emptyset$, then $B\left(a^{2}\right)=a^{2}$.

Proof. (1) Let $x, y \in D_{8}$. Then by (2.1), we have

$$
B(x) B(y)=B\left(x B(x) y B(x)^{-1}\right)=B\left(x y B(x) B(x)^{-1}\right)=B(x y)
$$

Since $a^{2}$ lies in the center of $D_{8}$ by Lemma 2.4 (2), it follows that $B(x) a^{2}=a^{2} B(x)$ and so $B(x) B\left(a^{2}\right)=B\left(x a^{2}\right)$ for all $x \in D_{8}$.
(2) Let $x \in D_{8}$. we have $B(x)^{2}=B(x) B(x)=B\left(x B(x) x B(x)^{-1}\right)$. Observe that $B(e)=e$ by Lemma 2.1, it follows that $B(e)^{2}=e$. Since $B(a) a B(a)^{-1} \in\left\{a, a^{3}\right\}$ by Lemma 2.4 (3), we have

$$
B(a)^{2} \in B\left(a\left\{a, a^{3}\right\}\right)=\left\{B\left(a^{2}\right), B\left(a^{4}\right)\right\}=\left\{B\left(a^{2}\right), B(e)\right\}=\left\{B\left(a^{2}\right), e\right\} .
$$

By similar arguments, we can see that $B(x)^{2} \in\left\{B\left(a^{2}\right), e\right\}$ for all $x \in D_{8}$. Moreover, it is easy to check that $g^{2} \in\left\{a^{2}, e\right\}$ for all $g \in D_{8}$. Thus (2) follows.
(3) If $\operatorname{Im} B \cap\left\{a, a^{3}\right\} \neq \emptyset$, then $B\left(x_{0}\right) \in\left\{a, a^{3}\right\}$ for some $x_{0} \in D_{8}$. This implies that $B\left(x_{0}\right)^{2}=\left(a^{3}\right)^{2}=a^{2} \in\left\{B\left(a^{2}\right), e\right\}$ by item (2) above. This implies that $B\left(a^{2}\right)=a^{2}$.

## 3. Rota-Baxter Operators $B$ on $D_{8}$ with $|\operatorname{Im} B|=8$

In view of Lemma 2.1, the kernel and image of a Rota-Baxter operator on a group $G$ are always subgroups of $G$. So by Lemma 2.4 (1) the images of Rota-Baxter operators on $D_{8}$ may be $H_{i}$ and $N_{j}$, where $i=0,1,2,3$ and $j=0,1,2,3,4,5$. We shall determine all the Rota-Baxter operators on $D_{8}$ by considering their images. In this section, we study the RotaBaxter operators $B$ on $D_{8}$ with $|\operatorname{Im} B|=8$ (i.e., $\operatorname{Im} B=N_{5}=D_{8}$ ).

Proposition 3.1. Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=D_{8}$. Then $B$ is one of the following permutations on $D_{8}$ :

$$
\begin{aligned}
& B_{1}=\left(b a, b a^{3}\right), B_{2}=\left(b, b a^{2}\right), B_{3}=\left(a, a^{3}\right), \\
& B_{4}=\left(a, a^{3}\right)\left(b, b a^{2}\right)\left(b a, b a^{3}\right), B_{5}=(a, b)\left(a^{3}, b a^{2}\right)\left(b a, b a^{3}\right), \\
& B_{6}=\left(a, b, a^{3}, b a^{2}\right), B_{7}=\left(a, b a^{2}, a^{3}, b\right), \\
& B_{8}=\left(a, b a^{2}\right)\left(a^{3}, b\right)\left(b a, b a^{3}\right), B_{9}=\left(a, b a, a^{3}, b a^{3}\right), \\
& B_{10}=(a, b a)\left(a^{3}, b a^{3}\right)\left(b, b a^{2}\right), B_{11}=\left(a, b a^{3}, a^{3}, b a\right), \\
& B_{12}=\left(a, b a^{3}\right)\left(a^{3}, b a\right)\left(b, b a^{2}\right) .
\end{aligned}
$$

Moreover, $B_{6}^{-1}=B_{7}$ and $B_{9}^{-1}=B_{11}$.
Proof. Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=D_{8}$. Then $B$ is bijective, and we have

$$
B(e)=e, B\left(a^{2}\right)=a^{2}
$$

by Lemmas 2.1 and 2.5 (3), respectively. This implies that $B(a) \in\left\{a, a^{3}\right.$, $\left.b, b a, b a^{2}, b a^{3}\right\}$. We consider the following cases:

Case 1. $B(a) \in\left\{a, a^{3}\right\}$. In this case, we have $B(a) B(b)=B(a B(a)$ $\left.b B(a)^{-1}\right)=B(b a)$ by (2.1), Lemma 2.4 (2) and simple calculations. If $B(b) \in\left\{a, a^{3}\right\}$, then

$$
B(b a)=B(a) B(b) \in\left\{a, a^{3}\right\}\left\{a, a^{3}\right\}=\left\{a^{2}, e\right\} .
$$

This is impossible as $B$ is bijective and $B(e)=e, B\left(a^{2}\right)=a^{2}$. So $B(b) \in\left\{b, b a, b a^{2}, b a^{3}\right\}$. If $B(b) \in\left\{b a, b a^{3}\right\}$, then

$$
e=B(b)^{2}=B(b) B(b)=B\left(b B(b) b B(b)^{-1}\right)=B(a)^{2}
$$

a contradiction. This implies that $B(b) \in\left\{b, b a^{2}\right\}$, and so $B(b) B(a)=B\left(b a^{3}\right)$ by (2.1), Lemma 2.4 (2) and simple calculations. From the above statements, we have

$$
\begin{equation*}
B(a) \in\left\{a, a^{3}\right\}, B(b) \in\left\{b, b a^{2}\right\}, B(a) B(b)=B(b a), B(b) B(a)=B\left(b a^{3}\right) \tag{3.1}
\end{equation*}
$$

If $B(a)=a, B(b)=b$, then we have

$$
B\left(b a^{2}\right)=B(b) B\left(a^{3}\right)=b a^{2} \text { and } B\left(a^{3}\right)=B(a) B\left(a^{2}\right)=a^{3}
$$

by Lemma 2.5 (1), and $B(b a)=a b=b a^{3}$ and $B\left(b a^{3}\right)=b a$ by (3.1), respectively. In this situation, we have

$$
\begin{gathered}
B(e)=e, B(a)=a, B\left(a^{2}\right)=a^{2}, B\left(a^{3}\right)=a^{3} \\
B(b)=b, B(b a)=b a^{3}, B\left(b a^{2}\right)=b a^{2}, B\left(b a^{3}\right)=b a
\end{gathered}
$$

That is to say, $B=\left(b a, b a^{3}\right)$. Similarly, we can obtain the following facts: If $B(a)=a, B(b)=b a^{2}$, then $B=\left(b, b a^{2}\right)$, if $B(a)=a^{3}, B(b)=b$, then $B=\left(a, a^{3}\right)$, if $B(a)=a^{3}, B(b)=b a^{2}$, then $B=\left(a, a^{3}\right)\left(b, b a^{2}\right)\left(b a, b a^{3}\right)$.

Case 2. $B(a) \in\left\{b, b a^{2}\right\}$. In this case, by (2.1) and Lemma 2.4(2) we have $B(a) B(b)=B(a b)=B\left(b a^{3}\right)$. In view of Lemma 2.5 (1) and the fact $B\left(a^{2}\right)=a^{2}$, we obtain that

$$
B\left(a^{3}\right)=B(a) B\left(a^{2}\right)=B(a) a^{2} \in\left\{b a^{2}, b\right\} .
$$

This implies that $B(b) \notin\left\{b a^{2}, b\right\}$ as $B$ is bijective. If $B(b) \in\left\{b a, b a^{3}\right\}$, then we can see that $B(b) B(a)=B\left(b a^{3}\right)$ by (2.1) again. This shows that $B(a) B(b)=B(b) B(a)$. However, it is easy to check that $x y \neq y x$ for all $x \in\left\{b, b a^{2}\right\}$ and $y \in\left\{b a, b a^{3}\right\}$. A contradiction. Observe that
$B(e)=e, B\left(a^{2}\right)=a^{2}$ and the fact that $B$ is bijective, it follows that $B(b) \in\left\{a, a^{3}\right\}$. This yields that $B(b) B(a)=B(b a)$ by (2.1). From the above discussions, we have

$$
\begin{equation*}
B(a) \in\left\{b, b a^{2}\right\}, B(b) \in\left\{a, a^{3}\right\}, B(a) B(b)=B\left(b a^{3}\right), B(b) B(a)=B(b a) . \tag{3.2}
\end{equation*}
$$

If $B(a)=b$ and $B(b)=a$, then by (3.2), we have $B(b a)=a b=b a^{3}$ and $B\left(b a^{3}\right)=b a$. In view of Lemma $2.5(1)$, we obtain that $B\left(b a^{2}\right)=B(b)$ $B\left(a^{2}\right)=a a^{2}=a^{3}$ and $B\left(a^{3}\right)=B(a) B\left(a^{2}\right)=b a^{2}$. In this situation, $B=(a, b)\left(a^{3}, b a^{2}\right)\left(b a, b a^{3}\right)$. Similarly, we can obtain the following facts: If $B(a)=b, B(b)=a^{3}$, then $B=\left(a, b, a^{3}, b a^{2}\right)$, if $B(a)=b a^{2}, B(b)=a$, then $B=\left(a, b a^{2}, a^{3}, b\right)$, if $B(a)=b a^{2}, B(b)=a^{3}$, then $B=\left(a, b a^{2}\right)\left(a^{3}, b\right)$ $\left(b a, b a^{3}\right)$.

Case 3. $B(a) \in\left\{b a, b a^{3}\right\}$. By similar arguments used in Case 2, we can show that

$$
B(a) \in\left\{b a, b a^{3}\right\}, B(b) \in\left\{b a^{2}, b\right\}, B(a) B(b)=B(b a), B(b) B(a)=B\left(b a^{3}\right) .
$$

In this situation, we have

$$
B=(a, b a)\left(a^{3}, b a^{3}\right)\left(b, b a^{2}\right), B=\left(a, b a, a^{3}, b a^{3}\right),
$$

$$
B=\left(a, b a^{3}\right)\left(a^{3}, b a\right)\left(b, b a^{2}\right),
$$

or $B=\left(a, b a^{3}, a^{3}, b a\right)$.

## 4. Rota-Baxter Operators $B$ on $D_{8}$ with $|\operatorname{Im} B|=4$

In this section, we study the Rota-Baxter operators $B$ on $D_{8}$ with $|\operatorname{Im} B|=4$. In this case, $\operatorname{Im} B$ may be $N_{2}, N_{3}$ or $N_{4}$ by Lemma 2.4 (1).

### 4.1. Rota-Baxter operators $B$ on $D_{8}$ with $\operatorname{Im} B=\left\{e, a, a^{2}, a^{3}\right\}$

Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=N_{2}=\langle a\rangle=$ $\left\{e, a, a^{2}, a^{3}\right\}$. Then $B(a), B(b) \in\left\{e, a, a^{2}, a^{3}\right\}$, and so

$$
\begin{equation*}
B(e)=e, B\left(a^{i}\right)=B(a)^{i}, B\left(b a^{i}\right)=B(b) B(a)^{i}, B\left(a^{2}\right)=a^{2} \tag{4.1}
\end{equation*}
$$

for all positive integer $i$ by Lemmas 2.1 and 2.5 (1), (3). In view of Lemma 2.2, we have $|\operatorname{ker} B|=\frac{8}{4}=2$. Since $B\left(a^{2}\right)=a^{2} \neq e$, we have $a^{2} \notin \operatorname{ker} B$. By Lemma 2.4 (1) and the fact that the kernel of $B$ is a subgroup of $D_{8}$ (see Lemma 2.1), we have the following cases:

Case 1: ker $B=\{e, b\}$. The right cosets of $G$ with respect to the subgroup $\{e, b\}$ are

$$
\{e, b\},\{a, b a\},\left\{a^{2}, b a^{2}\right\},\left\{a^{3}, b a^{3}\right\}
$$

In view of Lemma 2.3 and (4.1), we have

$$
B(e)=B(b)=e, B(a)=B(b a), B\left(b a^{2}\right)=B\left(a^{2}\right)=a^{2}
$$

$$
B\left(b a^{3}\right)=B\left(a^{3}\right)=B(a)^{3}
$$

which implies that $B(a) \notin\left\{e, a^{2}\right\}$ as $\operatorname{Im} B=\langle a\rangle=\left\{e, a, a^{2}, a^{3}\right\}$. If $B(a)=a$, then $B$ is

$$
B_{13}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & e & a & a^{2} & a^{3}
\end{array}\right)
$$

If $B(a)=a^{3}$, then $B$ is

$$
B_{14}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & e & a^{3} & a^{2} & a
\end{array}\right)
$$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8}$

Case 2: $\operatorname{ker} B=\{e, b a\}$. By similar arguments in Case 2, $B$ is one of the followings:

$$
\begin{aligned}
B_{15} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & a^{3} & e & a & a^{2}
\end{array}\right), \\
B_{16} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & a & e & a^{3} & a^{2}
\end{array}\right) .
\end{aligned}
$$

Case 3: $\operatorname{ker} B=\left\{e, b a^{2}\right\}$. In this case, $B$ is one of the followings:

$$
\begin{aligned}
B_{17} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & a^{2} & a^{3} & e & a
\end{array}\right), \\
B_{18} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & a^{2} & a & e & a^{3}
\end{array}\right) .
\end{aligned}
$$

Case 4: $\operatorname{ker} B=\left\{e, b a^{3}\right\}$. In this case, $B$ is one of the followings:

$$
\begin{aligned}
B_{19} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & a & a^{2} & a^{3} & e
\end{array}\right), \\
B_{20} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & a^{3} & a^{2} & a & e
\end{array}\right) .
\end{aligned}
$$

4.2. Rota-Baxter operators $B$ on $D_{8}$ with $\operatorname{Im} B=\left\{e, a^{2}, b, a^{2} b\right\}$

Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=N_{3}=\left\langle a^{2}, b\right\rangle=$ $\left\{e, a^{2}, b, a^{2} b\right\}$. Then $B(x) \in\left\{e, a^{2}, b, a^{2} b\right\}$, and so

$$
\begin{equation*}
B(e)=e, B\left(x a^{2}\right)=B(x) B\left(a^{2}\right), B(x b)=B(x) B(b) \tag{4.2}
\end{equation*}
$$

by Lemmas 2.1 and 2.5 (1) for all $x \in D_{8}$. This implies that

$$
B\left(a^{3}\right)=B(a) B\left(a^{2}\right), B(b a)=B\left(a^{3} b\right)=B\left(a^{3}\right) B(b)=B(a) B\left(a^{2}\right) B(b)
$$

$$
\begin{equation*}
B\left(b a^{2}\right)=B\left(a^{2} b\right)=B\left(a^{2}\right) B(b), B\left(b a^{3}\right)=B(a b)=B(a) B(b) \tag{4.4}
\end{equation*}
$$

In view of Lemma 2.2, $|\operatorname{ker} B|=\frac{8}{4}=2$. By Lemma 2.4 (1), we have the following cases:

Case 1: $\operatorname{ker} B=\left\{e, a^{2}\right\}$. The right cosets of $G$ with respect to $\left\{e, a^{2}\right\}$ are:

$$
\left\{e, a^{2}\right\},\left\{a, a^{3}\right\},\left\{b, b a^{2}\right\},\left\{b a^{3}, b a\right\}
$$

In view of Lemma 2.3 and (4.3)-(4.4), we have

$$
B(e)=B\left(a^{2}\right)=e, B(a)=B\left(a^{3}\right), B(b)=B\left(b a^{2}\right)
$$

$$
B\left(b a^{3}\right)=B(b a)=B(a) B(b)
$$

Since $\operatorname{Im} B=\left\{e, a^{2}, b, a^{2} b\right\}$ and ker $B=\left\{e, a^{2}\right\}$, we have $B(a), B(b)$ $\in\left\{a^{2}, b, a^{2} b\right\}$ and $B(a) \neq B(b)$. Thus $B$ is one of the followings:

$$
\begin{aligned}
B_{21} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b & b a^{2} & b & b a^{2}
\end{array}\right), \\
B_{22} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b a^{2} & b & b a^{2} & b
\end{array}\right), \\
B_{23} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & e & b & a^{2} & b a^{2} & a^{2} & b a^{2}
\end{array}\right), \\
B_{24} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & e & b & b a^{2} & a^{2} & b a^{2} & a^{2}
\end{array}\right), \\
B_{25} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & e & b a^{2} & a^{2} & b & a^{2} & b
\end{array}\right), \\
B_{26} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & e & b a^{2} & b & a^{2} & b & a^{2}
\end{array}\right) .
\end{aligned}
$$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 165$

Case 2: ker $B=\{e, b\}$. The right cosets of $G$ with respect to $\{e, b\}$ are:

$$
\{e, b\},\{a, b a\},\left\{a^{2}, b a^{2}\right\},\left\{a^{3}, b a^{3}\right\}
$$

In view of Lemma 2.3 and (4.3)-(4.4), we have $B(b)=B(e)=e$ and

$$
B(a) B\left(a^{2}\right)=B\left(a^{3}\right)=B\left(b a^{3}\right)=B(a) B(b)=B(a) .
$$

This gives $B\left(a^{2}\right)=e$ and so $a^{2} \in \operatorname{ker} B$. A contradiction.
Case 3: $\operatorname{ker} B=\{e, b a\}$. The right cosets of $G$ with respect to $\{e, b a\}$ are:

$$
\begin{equation*}
\{e, b a\},\left\{a, b a^{2}\right\},\left\{a^{2}, b a^{3}\right\},\left\{a^{3}, b\right\} \tag{4.5}
\end{equation*}
$$

By Lemma 2.3, we have $B\left(a^{2}\right)=B\left(b a^{3}\right)$. As $\operatorname{ker} B=\{e, b a\}$, we have $B\left(a^{2}\right) \neq e$. Assume that $B\left(a^{2}\right)=B\left(b a^{3}\right) \in\left\{b, b a^{2}\right\}$. Since $b a^{3}\left(b b a^{3} b^{-1}\right)$ $=b a^{3} a^{3} b=b a^{2} b=a^{2}$ and

$$
b a^{3}\left(b a^{2} b a^{3}\left(b a^{2}\right)^{-1}\right)=b a^{3} b a^{2} b a^{3} b a^{2}=b a a b=a^{2},
$$

we have

$$
B\left(a^{2}\right)=B\left(b a^{3} B\left(b a^{3}\right) b a^{3} B\left(b a^{3}\right)^{-1}\right)=B\left(b a^{3}\right) B\left(b a^{3}\right)=e,
$$

and so $a^{2} \in \operatorname{ker} B$. A contradiction. Thus $B\left(a^{2}\right)=B\left(b a^{3}\right)=a^{2}$ as $\operatorname{Im} B=\left\{e, a^{2}, b, b a^{2}\right\}$. Since $|\operatorname{Im} B|=4$, we have $B(a), B(b) \notin\left\{e, a^{2}\right\}$ by Lemma 2.3 and (4.5), and so $B(a), B(b) \in\left\{b, b a^{2}\right\}$ and $B(a) \neq B(b)$. In view of (4.3)-(4.4), $B$ is one of the followings:

$$
\begin{aligned}
B_{27} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & a^{2} & b a^{2} & b a^{2} & e & b & a^{2}
\end{array}\right), \\
B_{28} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & a^{2} & b & b & e & b a^{2} & a^{2}
\end{array}\right) .
\end{aligned}
$$

Case 4: $\operatorname{ker} B=\left\{e, b a^{2}\right\}$. The right cosets of $G$ with respect to $\left\{e, b a^{2}\right\}$ are:

$$
\left\{e, b a^{2}\right\},\left\{a, b a^{3}\right\},\left\{a^{2}, b\right\},\left\{a^{3}, b a\right\}
$$

In view of (4.3)-(4.4) and Lemma 2.3, we have $B(a) B(b)=B\left(b a^{3}\right)=B(a)$, and so $B(b)=e$. This gives that $b \in \operatorname{ker} B$. A contradiction.

Case 5: ker $B=\left\{e, b a^{3}\right\}$. Exchange the roles of $a^{3}$ and $a$ in Case 4, we can obtain that $B$ is one of the followings:

$$
\begin{gathered}
B_{29}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & a^{2} & b a^{2} & b & a^{2} & b a^{2} & e
\end{array}\right), \\
B_{30}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & a^{2} & b & b a^{2} & a^{2} & b & e
\end{array}\right) .
\end{gathered}
$$

4.3. Rota-Baxter operators $B$ on $D_{8}$ with $\operatorname{Im} B=\left\{e, a^{2}, b a, b a^{3}\right\}$

Denote $c=a^{3}$ and $d=b a$. Observe that

$$
D_{8}=\langle c, d\rangle=\left\{e, c, c^{2}, c^{3}, d, d c, d c^{2}, d c^{3}\right\}
$$

it follows that $\left\{e, c^{2}, d, d c^{2}\right\}=\left\{e, a^{2}, b a, b a^{3}\right\}$. Replacing $a$ and $b$ by $c$ and $d$ in Subsection 4.2, respectively, we have the following candidate Rota-Baxter operators on $D_{8}$ whose images are $\left\{e, a^{2}, b a, b a^{3}\right\}$ :

$$
\begin{aligned}
B_{31} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b a & b a^{3} & b a & b a^{3}
\end{array}\right), \\
B_{32} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b a^{3} & b a & b a^{3} & b a
\end{array}\right), \\
B_{33} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & e & b a & a^{2} & b a^{3} & a^{2} & b a^{3}
\end{array}\right),
\end{aligned}
$$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 167$

$$
\begin{aligned}
B_{34} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & e & b a & b a^{3} & a^{2} & b a^{3} & a^{2}
\end{array}\right), \\
B_{35} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & e & b a^{3} & a^{2} & b a & a^{2} & b a
\end{array}\right), \\
B_{36} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & e & b a^{3} & b a & a^{2} & b a & a^{2}
\end{array}\right), \\
B_{37} & =\left(\begin{array}{ccccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & a^{2} & b a^{3} & e & b a & a^{2} & b a^{3}
\end{array}\right), \\
B_{38} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & a^{2} & b a & e & b a^{3} & a^{2} & b a
\end{array}\right), \\
B_{39} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & a^{2} & b a^{3} & a^{2} & b a^{3} & e & b a
\end{array}\right), \\
B_{40} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & a^{2} & b a & a^{2} & b a & e & b a^{3}
\end{array}\right) .
\end{aligned}
$$

5. Rota-Baxter Operators $B$ on $D_{8}$ with $|\operatorname{Im} B| \leq 2$

In this section, we study the Rota-Baxter operators $B$ on $D_{8}$ with $|\operatorname{Im} B| \leq 2$. In this case, $\operatorname{Im} B$ may be $N_{0}, N_{1}$ or $H_{0}, H_{1}, H_{2}, H_{3}$ by Lemma 2.4 (1).

Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=N_{1}=\left\langle a^{2}\right\rangle=$ $\left\{e, a^{2}\right\}$. In view of Lemma 2.2, we have $|\operatorname{ker} B|=\frac{8}{2}=4$. By Lemma 2.4(1), we have the following cases:

Case 1: $\operatorname{ker} B=\left\{e, a, a^{2}, a^{3}\right\}$. In this case, since $\operatorname{Im} B=\left\{e, a^{2}\right\}$, it follows that $B$ is

$$
B_{41}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & a^{2} & a^{2} & a^{2} & a^{2}
\end{array}\right)
$$

Case 2: $\operatorname{ker} B=\left\{e, a^{2}, b, b a^{2}\right\}$. In this case, $B$ is

$$
B_{42}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & e & a^{2} & e & a^{2}
\end{array}\right)
$$

Case 3: $\operatorname{ker} B=\left\{e, a^{2}, b a, b a^{3}\right\}$. In this case, $B$ is

$$
B_{43}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & a^{2} & e & a^{2} & e
\end{array}\right) .
$$

Let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=\left\langle b a^{i}\right\rangle=\left\{e, b a^{i}\right\}=H_{i}$, $i=0,1,2,3$. Then by similar arguments as above, we obtain that $B$ is one of the followings:

$$
\begin{aligned}
B_{44} & =\left(\begin{array}{llllllcc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & b & b & b & b
\end{array}\right), \\
B_{45} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & e & b & e & b & e & b
\end{array}\right), \\
B_{46} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b & e & b & b & e & b & e
\end{array}\right), \\
B_{47} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & b a & b a & b a & b a
\end{array}\right), \\
B_{48} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & e & b a & e & b a & e & b a
\end{array}\right), \\
B_{49} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a & e & b a & b a & e & b a & e
\end{array}\right), \\
B_{50} & =\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & b a^{2} & b a^{2} & b a^{2} & b a^{2}
\end{array}\right),
\end{aligned}
$$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 169$

$$
\begin{aligned}
B_{51} & =\left(\begin{array}{ccccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & e & b a^{2} & e & b a^{2} & e & b a^{2}
\end{array}\right), \\
B_{52} & =\left(\begin{array}{ccccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{2} & e & b a^{2} & b a^{2} & e & b a^{2} & e
\end{array}\right), \\
B_{53} & =\left(\begin{array}{ccccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & b a^{3} & b a^{3} & b a^{3} & b a^{3}
\end{array}\right), \\
B_{54} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & e & b a^{3} & e & b a^{3} & e & b a^{3}
\end{array}\right), \\
B_{55} & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & b a^{3} & e & b a^{3} & b a^{3} & e & b a^{3} & e
\end{array}\right) .
\end{aligned}
$$

Finally, let $B$ be a Rota-Baxter operator on $D_{8}$ with $\operatorname{Im} B=\{e\}=N_{0}$.
Then $B$ is

$$
B_{56}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & e & e & e & e & e & e & e
\end{array}\right)
$$

## 6. The Classification of Rota-Baxter Operators on $D_{8}$

By the statements in the previous sections, $D_{8}$ has no more than 56 Rota-Baxter operators, namely $B_{i}, i=1,2, \ldots, 56$. In this section, among other things we shall show that these 56 candidates are all really Rota-Baxter operators.

Let $G$ be a group and denote the set of all maps from $G$ to $G$ by $\mathcal{T}(G)$. For each $B \in \mathcal{T}(G)$, define $\widetilde{B} \in \mathcal{T}(G)$ as follows: $\widetilde{B}(g)=g^{-1} B\left(g^{-1}\right)$ for all $g \in G$. Then $\widetilde{\widetilde{B}}=B$. In fact, for $g \in G$, we have

$$
\widetilde{B}(g)=g^{-1} \widetilde{B}\left(g^{-1}\right)=g^{-1} g B(g)=B(g)
$$

Now, define a binary relation $\rho$ on $\mathcal{T}(G)$ as follows: for all $B, C \in \mathcal{T}(G)$,

$$
B \rho C \text { if and only if } C=\widetilde{B} \text { or } C=B .
$$

Obviously, $\rho$ is an equivalence on $\mathcal{T}(G)$. Furthermore, we have the following lemma by direct calculations. Observe that on $D_{8}, B_{j}=\widetilde{B_{i}}$ if and only if

$$
B_{j}(a)=a^{3} B_{i}\left(a^{3}\right), B_{j}\left(a^{3}\right)=a B_{i}(a) \text { and } B_{j}(x)=x B_{i}(x)
$$

for all $x \in D_{8} \backslash\left\{a, a^{3}\right\}$.
Lemma 6.1. The 56 candidate Rota-Baxter operators $B_{1}-B_{56}$ can be divided into the following $28 \rho$-classes:

$$
\begin{align*}
& \left\{B_{1}, B_{42}\right\},\left\{B_{2}, B_{43}\right\},\left\{B_{3}, B_{56}\right\},\left\{B_{4}, B_{41}\right\},\left\{B_{5}, B_{36}\right\},\left\{B_{6}, B_{55}\right\}, \\
& \\
& \left\{B_{7}, B_{49}\right\},\left\{B_{8}, B_{34}\right\},\left\{B_{9}, B_{45}\right\},\left\{B_{10}, B_{23}\right\},\left\{B_{11}, B_{51}\right\},\left\{B_{12}, B_{25}\right\}, \\
& \\
& \left\{B_{13}, B_{21}\right\},\left\{B_{14}, B_{44}\right\},\left\{B_{15}, B_{32}\right\},\left\{B_{16}, B_{47}\right\},\left\{B_{17}, B_{22}\right\},\left\{B_{18}, B_{50}\right\}, \\
& \\
& \left\{B_{19}, B_{31}\right\},\left\{B_{20}, B_{53}\right\},\left\{B_{24}, B_{39}\right\},\left\{B_{26}, B_{38}\right\},\left\{B_{27}, B_{35}\right\},\left\{B_{28}, B_{48}\right\}, \\
& \\
& \left\{B_{29}, B_{54}\right\},\left\{B_{30}, B_{33}\right\},\left\{B_{37}, B_{46}\right\},\left\{B_{40}, B_{52}\right\} .  \tag{6.1}\\
& \quad \text { Define another binary relation } \sigma \text { on } \mathcal{T}(G) \text { as follows: for all } \\
& B, C \in \mathcal{T}(G), \\
& B \sigma C \text { if and only if there exists an automorphism } \varphi \text { on } G \text { such that } \\
& \varphi C=B \varphi \text {. }
\end{align*}
$$

Then $\sigma$ is also an equivalence on $\mathcal{T}(G)$. The following lemma lists the automorphisms of $D_{8}$, which is well-known and can be proved easily.

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8}$

Lemma 6.2. The automorphisms of $D_{8}$ are listed as follows:

$$
\begin{aligned}
& \phi_{1}=\left(\begin{array}{llllllll}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{2} & b & b a & b a^{2} & b a^{3}
\end{array}\right), \\
& \phi_{2}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & b a & b a^{2} & b a^{3} & b
\end{array}\right), \\
& \phi_{3}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & b a^{2} & b a^{3} & b & b a
\end{array}\right), \\
& \phi_{4}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & b a^{3} & b & b a & b a^{2}
\end{array}\right), \\
& \phi_{5}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & b & b a^{3} & b a^{2} & b a
\end{array}\right), \\
& \phi_{6}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & b a & b & b a^{3} & b a^{2}
\end{array}\right), \\
& \phi_{7}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & b a^{2} & b a & b & b a^{3}
\end{array}\right), \\
& \phi_{8}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & b a^{3} & b a^{2} & b a & b
\end{array}\right) .
\end{aligned}
$$

By Lemma 6.2 and routine calculations, we have the following result. Observe that
$\phi^{-1} B \phi=\left(\begin{array}{cccccccc}e \phi & a \phi & a^{2} \phi & a^{3} \phi & b \phi & (b a) \phi & \left(b a^{2}\right) \phi & \left(b a^{3}\right) \phi \\ e(B \phi) & a(B \phi) & a^{2}(B \phi) & a^{3}(B \phi) & b(B \phi) & (b a)(B \phi) & \left(b a^{2}\right)(B \phi) & \left(b a^{3}\right)(B \phi)\end{array}\right)$,
for any bijective transformation $\phi$ on $D_{8}$ and $B \in \mathcal{T}\left(D_{8}\right)$.

Lemma 6.3. The 56 candidate Rota-Baxter operators $B_{1}-B_{56}$ on $D_{8}$ can be divided into the following $18 \sigma$-classes:

$$
\begin{aligned}
& \left\{B_{1}, B_{2}\right\},\left\{B_{3}\right\},\left\{B_{4}\right\},\left\{B_{5}, B_{8}, B_{10}, B_{12}\right\},\left\{B_{6}, B_{7}, B_{9}, B_{11}\right\}, \\
& \left\{B_{13}, B_{15}, B_{17}, B_{19}\right\},\left\{B_{14}, B_{16}, B_{18}, B_{20}\right\},\left\{B_{21}, B_{22}, B_{31}, B_{32}\right\}, \\
& \left\{B_{23}, B_{25}, B_{34}, B_{36}\right\},\left\{B_{24}, B_{26}, B_{33}, B_{35}\right\},\left\{B_{27}, B_{30}, B_{38}, B_{39}\right\}, \\
& \left\{B_{28}, B_{29}, B_{37}, B_{40}\right\},\left\{B_{41}\right\},\left\{B_{42}, B_{43}\right\},\left\{B_{44}, B_{47}, B_{50}, B_{53}\right\}, \\
& \left\{B_{45}, B_{49}, B_{51}, B_{55}\right\},\left\{B_{46}, B_{48}, B_{52}, B_{54}\right\},\left\{B_{56}\right\} .
\end{aligned}
$$

Remark 6.4. We can obtain Lemma 6.3 by using Matlab. To this aim, we need the matrix representation of $D_{8}$. In fact, if we let

$$
a=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), b=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right),
$$

then the subgroup of $\operatorname{GL}(4, \mathbb{R})$ generated by $a$ and $b$ is isomorphic to $D_{8}$. By using this representation and corresponding procedures (see A. 1 in Appendix), We can check whether any two candidate Rota-Baxter operators are $\sigma$-equivalent. For example, if we check

$$
\begin{aligned}
B & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b & b a^{2} & b & b a^{2}
\end{array}\right), \\
R & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b a^{2} & b & b a^{2} & b
\end{array}\right),
\end{aligned}
$$

we only need to enter
$\left[e, a, a^{\wedge} 2, a^{\wedge} 3, b, b * a, b * a^{\wedge} 2, b * a^{\wedge} 3 ; e, a^{\wedge} 2, e, a^{\wedge} 2, b, b * a^{\wedge} 2, b, b * a^{\wedge} 2\right]$
$\left[e, a, a^{\wedge} 2, a^{\wedge} 3, b, b * a, b * a^{\wedge} 2, b * a^{\wedge} 3 ; e, a^{\wedge} 2, e, a^{\wedge} 2, b * a^{\wedge} 2, b, b * a^{\wedge} 2, b\right]$
after the cursor in Matlab. When you have entered this line, the sentence " $B$ is equivalent to $R$ " is displayed.

Denote the least equivalence of $\mathcal{T}(G)$ containing $\rho$ and $\sigma$ by $\delta$. That is, $\delta=\rho \vee \sigma$ in the lattice of the equivalences in $\mathcal{T}(G)$. In view of Lemmas 6.1 and 6.3, we have the following result:

Lemma 6.5. The 56 candidate Rota-Baxter operators on $D_{8}$ can be divided into the following 9 -classes:

$$
\begin{aligned}
& \left\{B_{1}, B_{2}, B_{42}, B_{43}\right\},\left\{B_{3}, B_{56}\right\},\left\{B_{4}, B_{41}\right\}, \\
& \left\{B_{5}, B_{8}, B_{10}, B_{12}, B_{23}, B_{25}, B_{34}, B_{36}\right\}, \\
& \left\{B_{6}, B_{7}, B_{9}, B_{11}, B_{45}, B_{49}, B_{51}, B_{55}\right\}, \\
& \left\{B_{13}, B_{15}, B_{17}, B_{19}, B_{21}, B_{22}, B_{31}, B_{32}\right\}, \\
& \left\{B_{14}, B_{16}, B_{18}, B_{20}, B_{44}, B_{47}, B_{50}, B_{53}\right\}, \\
& \left\{B_{24}, B_{26}, B_{27}, B_{30}, B_{33}, B_{35}, B_{38}, B_{39}\right\}, \\
& \left\{B_{28}, B_{29}, B_{37}, B_{40}, B_{46}, B_{48}, B_{52}, B_{54}\right\},
\end{aligned}
$$

In order to achieve our purpose, we also need to state some known results.

Lemma 6.6 (Lemma 8 in [2], also see [10]). Let B be a Rota-Baxter operator on a group $G$. Then the operator on $G$ defined by the rule that

$$
\widetilde{B}(g)=g^{-1} B\left(g^{-1}\right) \text { for all } g \in G
$$

is also a Rota-Baxter operator on $G$.
Lemma 6.7 (Lemma 9 in [2]). Let $B$ be a Rota-Baxter operator on a group $G$ and $\varphi$ be an automorphism of $G$. Then $\varphi^{-1} B \varphi$ is also a Rota-Baxter operator on $G$.

Let $G$ be a group. According to [2], if $H$ and $L$ are two subgroups of $G$ such that $G=H L$ and $H \cap L=\{e\}$, then we call $(H, L)$ an exact pair of $G$. In this case, we can define $B_{H, L}$ in $\mathcal{T}(G)$ as follows: $B_{H, L}: G \rightarrow G, h l \mapsto l^{-1}$. Moreover, we say an element $B$ in $\mathcal{T}(G)$ splitting if $B=B_{H, L}$ for some exact pair $(H, L)$ of $G$.

Lemma 6.8 (Example 15 in [2], also see [10]). Let (H,L) be an exact pair of a group G. Then $B_{H, L}$ is a Rota-Baxter operator on $G$. In this case, $\operatorname{ker} B=H$ and $\operatorname{Im} B=L$.

In view of Lemmas 2.4 (1) and 6.8, we have the following lemma by direct calculations.

Lemma 6.9. The exact pairs of $D_{8}$ can be listed as follows:

$$
\begin{array}{r}
\left(N_{0}, D_{8}\right),\left(H_{0}, N_{2}\right),\left(H_{1}, N_{2}\right),\left(H_{2}, N_{2}\right),\left(H_{3}, N_{2}\right),\left(H_{1}, N_{3}\right) \\
\left(H_{3}, N_{3}\right),\left(H_{0}, N_{4}\right),\left(H_{2}, N_{4}\right) ; \\
\left(N_{2}, H_{0}\right),\left(N_{4}, H_{0}\right),\left(N_{2}, H_{1}\right),\left(N_{3}, H_{1}\right),\left(N_{2}, H_{2}\right),\left(N_{4}, H_{2}\right), \\
\left(N_{2}, H_{3}\right),\left(N_{3}, H_{3}\right),\left(D_{8}, N_{0}\right) .
\end{array}
$$

The corresponding splitting Rota-Baxter operators are:

$$
\begin{gathered}
B_{3}, B_{14}, B_{16}, B_{18}, B_{20}, B_{28}, B_{29}, B_{37}, B_{40} \\
B_{44}, B_{46}, B_{47}, B_{48}, B_{50}, B_{52}, B_{53}, B_{54}, B_{56}
\end{gathered}
$$

Proposition 6.10. The transformations $B_{1}-B_{56}$ mentioned above are all Rota-Baxter operators on $D_{8}$.

Proof. By Lemmas 6.5-6.9, to check the 56 candidate Rota-Baxter operators, we only need to check the following 6 candidates:

$$
\begin{equation*}
B_{1}, B_{4}, B_{5}, B_{6}, B_{13}, B_{24} \tag{6.2}
\end{equation*}
$$

We can check these 6 candidates one by one certainly. But to avoid lengthy calculations, we can realize this verification process by using Matlab. By using the representation given in Remark 6.4 and corresponding procedures (see A. 2 in Appendix), we can obtain that each item in (6.2) is a Rota-Baxter operator on $D_{8}$, and so all 56 candidates are really Rota-Baxter operators on $D_{8}$. For example, if we check that

$$
B_{1}=\left(b a, b a^{3}\right)=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & b & b a^{3} & b a^{2} & b a
\end{array}\right)
$$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 175$

is a Rota-Baxter operator, we only need to enter the second line

$$
\left[e ; a ; a^{\wedge} 2 ; a^{\wedge} 3 ; b ; b * a^{\wedge} 3 ; b * a^{\wedge} 2 ; b * a\right],
$$

of $B_{1}$ after the cursor in Matlab. When you have entered this line, the sentence "The mapping is a Rota-Baxter operator" is displayed.

Remark 6.11. In [2, Theorem 53], it has been shown that all Rota-Baxter operators on 26 sporadic simple groups are necessarily splitting. However, by Lemma 6.9 and Proposition 6.10, there exist nonsplitting Rota-Baxter operators in $D_{8}$.

Now, we consider another equivalence on the set of Rota-Baxter operators in $D_{8}$. To this aim, we need the notion of skew left braces from [8].

Definition 6.12. A skew left brace is a triple ( $G, \cdot, \circ$ ) such that ( $G, \cdot)$ and $(G, \circ)$ are groups and

$$
a \circ(b \cdot c)=(a \circ b) \cdot a^{-1} \cdot(a \circ c)
$$

holds for all $a, b, c \in G$, where $a^{-1}$ denotes the inverse of $a$ in the group $(G, \cdot)$.

Bardakov and Gubarev [1] have obtained the relationship between skew left braces and Rota-Baxter groups. In particular, they have proved that Rota-Baxter groups give rise to skew left braces.

Lemma 6.13 (Proposition 3.1 in [1]). Let ( $G, \cdot$ ) be a group and $B$ be a Rota-Baxter operator on $G$. For all $x, y \in G$, define $x \circ_{B} y=x B(x)$ $y B(x)^{-1}$. Then $\left(G, \cdot,{ }^{\circ} B\right)$ forms a skew left brace. In this case, $\left(G, \cdot,{ }_{B}\right)$ is called the skew left brace induced by the group (G,.) and the Rota-Baxter operator $B$.

Let $R$ and $B$ be two Rota-Baxter operators on a group $(G, \cdot)$. If we define $R \sim B$ if the skew left brace $\left(G, \cdot,{ }_{R}\right)$ is isomorphic to the skew left brace $\left(G, \cdot,{ }_{B}\right)$, then $\sim$ forms an equivalence relation on the set of Rota-Baxter operators in ( $G, \cdot$ ). For this equivalence, we have the following result.

Lemma 6.14 (Corollary 3.12 in [12]). Let $R$ and $B$ be two Rota-Baxter operators on a group $(G, \cdot)$. Then $R \sim B$ if and only if there exists an automorphism on $(G, \cdot)$ such that, for all $g \in G, \varphi(R(g))^{-1} B(\varphi(g))$ lies in the center of $(G, \cdot)$.

By (6.1) and Lemma 6.14, one can obtain the following corollary:
Corollary 6.15. Let $R$ and $B$ be two Rota-Baxter operators on a group $(G, \cdot)$. If $R \sigma B$, then $R \sim B$. In particular, if the center of $G$ is trivial, then $R \sigma B$ if and only if $R \sim B$.

Since the center of $D_{8}$ is $\left\{e, a^{2}\right\}$, by using Lemmas 6.2, 6.3, 6.14 and Corollary 6.15 , we can obtain the following result by routine calculations:

Lemma 6.16. The 56 Rota-Baxter operators $B_{1}-B_{56}$ on $D_{8}$ can be divided into the following $7 \sim-c l a s s e s: ~$

$$
\begin{gathered}
\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}, \\
\left\{B_{5}, B_{8}, B_{10}, B_{12}, B_{6}, B_{7}, B_{9}, B_{11}\right\}, \\
\left\{B_{13}, B_{15}, B_{17}, B_{19}, B_{14}, B_{16}, B_{18}, B_{20}\right\} \\
\left\{B_{21}, B_{22}, B_{31}, B_{32}, B_{44}, B_{47}, B_{50}, B_{53}\right\}, \\
\left\{B_{23}, B_{25}, B_{34}, B_{36}, B_{45}, B_{49}, B_{51}, B_{55}\right\}, \\
\left\{B_{24}, B_{26}, B_{33}, B_{35}, B_{27}, B_{30}, B_{38}, B_{39}, B_{28}, B_{29}, B_{37}, B_{40}, B_{46}, B_{48}, B_{52}, B_{54}\right\}, \\
\left\{B_{41}, B_{42}, B_{43}, B_{56}\right\} .
\end{gathered}
$$

Remark 6.17. We can also obtain Lemma 6.16 by using Matlab. In fact, by using the representation given in Remark 6.4 and Matlab procedures (see A. 3 in Appendix), we can check whether any two Rota-Baxter operators are $\sim$-equivalent. For example, if we check

$$
\begin{aligned}
B & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a & a^{2} & a^{3} & b & b a^{3} & b a^{2} & b a
\end{array}\right), \\
R & =\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{3} & a^{2} & a & b & b a & b a^{2} & b a^{3}
\end{array}\right),
\end{aligned}
$$

we only need to enter

$$
\begin{aligned}
& {\left[e, a, a^{\wedge} 2, a^{\wedge} 3, b, b * a, b * a^{\wedge} 2, b * a^{\wedge} 3 ;\right.} \\
& \left.e, a, a^{\wedge} 2, a^{\wedge} 3, b, b * a^{\wedge} 3, b * a^{\wedge} 2, b * a\right], \\
& {\left[e, a, a^{\wedge} 2, a^{\wedge} 3, b, b * a, b * a^{\wedge} 2, b * a^{\wedge} 3 ;\right.} \\
& \left.e, a^{\wedge} 3, a^{\wedge} 2, a, b, b * a, b * a^{\wedge} 2, b * a^{\wedge} 3\right]
\end{aligned}
$$

after the cursor in Matlab. When you have entered this line, the sentence " $B$ and $R$ satisfy the relation $\sim$." is displayed.

In the following statements, we shall list the skew left braces induced by $D_{8}$ and its Rota-Baxter operators

$$
B_{1}, B_{5}, B_{13}, B_{44}, B_{45}, B_{46}, B_{56}
$$

respectively. By Lemmas 6.13 and 6.16, up to isomorphism, these skew left braces are the only skew left braces which can be induced by $D_{8}$ and its Rota-Baxter operators.

Case 1. The skew left brace $\left(D_{8}, \cdot,{ }^{\circ} B_{1}\right)$ induced by $D_{8}$ and $B_{1}$, where

$$
x{ }^{\circ}{ }_{B_{1}} y=x B_{1}(x) y B_{1}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{1}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ |
| $b$ | $b$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $e$ | $a^{3}$ | $a^{2}$ | $a$ |
| $b a$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ |
| $b a^{2}$ | $b a^{2}$ | $b a$ | $b$ | $b a^{3}$ | $a^{2}$ | $a$ | $e$ | $a^{3}$ |
| $b a^{3}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ |

In this case, $\left(D_{8},{ }^{\circ} B_{1}\right) \cong\left(D_{8}, \cdot\right)$.

Case 2. The skew left brace $\left(D_{8}, \cdot,{ }^{\circ} B_{5}\right)$ induced by $D_{8}$ and $B_{5}$, where

$$
x{ }_{\circ_{5}} y=x B_{5}(x) y B_{5}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{5}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ |
| $b$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ |
| $b a$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ |
| $b a^{2}$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| $b a^{3}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ |

In this case, $\left(D_{8},{ }^{\circ} B_{5}\right) \cong\left(D_{8}, \cdot\right)$.

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 179$

Case 3. The skew left brace ( $D_{8}, \cdot,{ }^{\circ} B_{13}$ ) induced by $D_{8}$ and $B_{13}$, where

$$
x \circ_{B_{13}} y=x B_{13}(x) y B_{13}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{13}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ |
| $b$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| $b a$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ |
| $b a^{2}$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ |
| $b a^{3}$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ |

In this case, $\left(D_{8},{ }^{\circ} B_{13}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
Case 4. The skew left brace ( $\left.D_{8}, \cdot,{ }^{\circ} B_{44}\right)$ induced by $D_{8}$ and $B_{44}$, where

$$
x{ }_{B_{44}} y=x B_{44}(x) y B_{44}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{44}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ |
| $b$ | $b$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $e$ | $a^{3}$ | $a^{2}$ | $a$ |
| $b a$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ |
| $b a^{2}$ | $b a^{2}$ | $b a$ | $b$ | $b a^{3}$ | $a^{2}$ | $a$ | $e$ | $a^{3}$ |
| $b a^{3}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ |

In this case, $\left(D_{8},{ }^{\circ} B_{44}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

Case 5. The skew left brace ( $D_{8}, \cdot,{ }^{\circ} B_{45}$ ) induced by $D_{8}$ and $B_{45}$, where

$$
x{ }^{\circ} B_{45} y=x B_{45}(x) y B_{45}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{45}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ |
| $b$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| $b a$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ |
| $b a^{2}$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ |
| $b a^{3}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ |

In this case, $\left(D_{8},{ }^{\circ} B_{45}\right) \cong\left(D_{8}, \cdot\right)$.
Case 6. The skew left brace $\left(D_{8}, \cdot,{ }^{\circ} B_{46}\right)$ induced by $D_{8}$ and $B_{46}$, where

$$
x{ }^{\circ}{ }_{B_{46}} y=x B_{46}(x) y B_{46}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{46}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $e$ | $a^{3}$ | $a^{2}$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $b$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $a^{2}$ | $a$ | $e$ | $b a$ | $b$ | $b a^{3}$ | $b a^{2}$ |
| $b$ | $b$ | $b a^{3}$ | $b a^{2}$ | $b a$ | $e$ | $a^{3}$ | $a^{2}$ | $a$ |
| $b a$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ |
| $b a^{2}$ | $b a^{2}$ | $b a$ | $b$ | $b a^{3}$ | $a^{2}$ | $a$ | $e$ | $a^{3}$ |
| $b a^{3}$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ |

In this case, $\left(D_{8},{ }^{\circ} B_{46}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8}$

Case 7. The skew left brace ( $D_{8}, \cdot{ }^{\circ}{ }^{B_{56}}$ ) induced by $D_{8}$ and $B_{56}$, where

$$
x \circ_{B_{56}} y=x B_{13}(x) y B_{56}(x)^{-1},
$$

for all $x, y \in D_{8}$ :

| ${ }^{\circ} B_{56}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $e$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ |
| $a$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ |
| $a^{2}$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ |
| $a^{3}$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ |
| $b$ | $b$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $e$ | $a$ | $a^{2}$ | $a^{3}$ |
| $b a$ | $b a$ | $b a^{2}$ | $b a^{3}$ | $b$ | $a^{3}$ | $e$ | $a$ | $a^{2}$ |
| $b a^{2}$ | $b a^{2}$ | $b a^{3}$ | $b$ | $b a$ | $a^{2}$ | $a^{3}$ | $e$ | $a$ |
| $b a^{3}$ | $b a^{3}$ | $b$ | $b a$ | $b a^{2}$ | $a$ | $a^{2}$ | $a^{3}$ | $e$ |

In this case, $\left(D_{8},{ }^{\circ}{ }_{56}\right) \cong\left(D_{8}, \cdot\right)$.
In the end of this paper, we determine so-called Rota-Baxter endomorphisms on $D_{8}$. Recall that a Rota-Baxter endomorphism (respectively, automorphism) on a group is a Rota-Baxter operator which is also an endomorphism (respectively, automorphism). In the sequel, we consider Rota-Baxter endomorphisms on $D_{8}$. The following result is useful.

Lemma 6.18 (Proposition 21 in [2]). Let $G$ be a group. If $G$ has a Rota-Baxter automorphism, then $G$ is abelian. On the other hand, if $B$ is an endomorphism on $G$ such that $\operatorname{Im} B$ is an abelian subgroup of $G$, then $B$ is a Rota-Baxter endomorphism.

In view of the first part of Lemma 6.18 and the fact that $D_{8}$ is nonableian, there is no Rota-Baxter automorphism on $D_{8}$. On the other hand, the kernel of a Rota-Baxter endomorphism on $D_{8}$ is certainly a
normal subgroup of $D_{8}$. By Lemma 2.4 (1) and the discussions in Sections 3-5, the candidates for Rota-Baxter endomorphisms on $D_{8}$ are $B_{21}-B_{26}, B_{31}-B_{36}$, and $B_{41}-B_{56}$. Again by using the representation given in Remark 6.4 and Matlab procedures (see A. 4 in Appendix), we can show these candidates are really Rota-Baxter endomorphisms on $D_{8}$. For example, if we check

$$
B_{21}=\left(\begin{array}{cccccccc}
e & a & a^{2} & a^{3} & b & b a & b a^{2} & b a^{3} \\
e & a^{2} & e & a^{2} & b & b a^{2} & b & b a^{2}
\end{array}\right)
$$

is an endomorphism, we only need to enter the second line

$$
\left[e ; a^{\wedge} 2 ; e ; a^{\wedge} 2 ; b ; b * a^{\wedge} 2 ; b ; b * a^{\wedge} 2\right]
$$

of $B_{21}$ after the cursor in Matlab. When you have entered this line, the sentence "The mapping is a Rota-Baxter endomorphism" is displayed.

Let $B$ be an endomorphism on $D_{8}$ which is not an automorphism. Then $\operatorname{Im} B$ is a subgroup of $D_{8}$ and $\operatorname{Im} B \neq D_{8}$, and so $\operatorname{Im} B$ is abelian by Lemma 2.4 (1). By the second part of Lemma 6.18, $B$ is a Rota-Baxter endomorphism on $D_{8}$. Thus non-automorphism endomorphisms are exactly Rota-Baxter endomorphisms on $D_{8}$. It is obvious that the composition of any two non-automorphism endomorphisms is again a non-automorphism endomorphism on $D_{8}$. In view of the statements in the previous paragraph and Lemma 6.2, we have the following corollary:

Corollary 6.19. The semigroup of endomorphisms on $D_{8}$ is

$$
\operatorname{End} D_{8}=\left\{\phi_{1}, \ldots, \phi_{6} ; B_{21}, \ldots, B_{26} ; B_{31}, \ldots, B_{36} ; B_{41}, \ldots, B_{56}\right\}
$$

which contains 34 elements, and the set of Rota-Baxter endomorphisms on $D_{8}$ forms a 28-element subsemigroup of $\operatorname{End} D_{8}$.

Remark 6.20. We observe that the set of bijective Rota-Baxter operators

$$
U=\left\{B_{1}, B_{2}, \ldots, B_{12}\right\}
$$

does not form a subgroup of the symmetric group $\operatorname{Sym}\left(D_{8}\right)$ on $D_{8}$. In fact, $U$ does not contain the identity permutation on $D_{8}$.

Now we summarize our results as a theorem.
Theorem 6.21. The set of Rota-Baxter operators on $D_{8}$ is $\left\{B_{1}, B_{2}, \ldots, B_{56}\right\}$ in which

$$
B_{21}, \ldots, B_{26} ; B_{31}, \ldots, B_{36} ; B_{41}, \ldots, B_{56}
$$

are 28 Rota-Baxter endomorphisms and

$$
\begin{aligned}
& B_{3}, B_{14}, B_{16}, B_{18}, B_{20}, B_{28}, B_{29}, B_{37}, B_{40} \\
& B_{44}, B_{46}, B_{47}, B_{48}, B_{50}, B_{52}, B_{53}, B_{54}, B_{56},
\end{aligned}
$$

are 18 splitting Rota-Baxter operators.
We end the paper with some perspective and outstanding questions. In this paper, we have determined and classified all the Rota-Baxter operators on $D_{8}$ by some known facts on Rota-Baxter operators of groups in [2] and [10] together with necessary Matlab procedures. From the results obtained in this paper, we can recognize that the construction of Rota-Baxter operators on a group is complicated even if the construction of the corresponding group is relative simple. In the present paper, we have only considered the group $D_{8}$. This suggests the following problem naturally.

Problem 6.22. How to generalize the results in this paper to all dihedral groups $D_{2 n}$ ?

By the comments before Corollary 6.19, any non-automorphism endomorphism on $D_{8}$ is a Rota-Baxter operator. In fact, all finite inner abelian groups (Recall that a group is called inner abelian if any proper subgroup of this group is abelian) have this property by Lemmas 2.1 and 6.18. This suggests the following problem.

Problem 6.23. How to characterize those groups in which every nonautomorphism endomorphism is a Rota-Baxter operator?

In the statements following Remark 6.17, up to isomorphism we have determined all 7 skew left braces which can be induced by $D_{8}$ and its Rota-Baxter operators. By using GAP ([13]), one can know that there are 12 skew left brace structures over $D_{8}$ up to isomorphism. Hence, there are now 5 skew left brace structures on $D_{8}$ that cannot be obtained from Rota-Baxter operators. So the following problem seems meaningful.

Problem 6.24. Determine all 5 skew left brace structures on $D_{8}$ that cannot be obtained from Rota-Baxter operators.

## Acknowledgements

The authors express their profound gratitude to Professor Li Guo at Rutgers University, who has put forward extremely valuable comments and suggestions on the writing of this manuscript. The authors are deeply grateful to the referees for their valuable comments and suggestions. The paper is supported jointly by the Nature Science Foundations of China (12271442, 11661082), the Nature Science Foundation of Shandong Province of China (ZR2020MA002) and the Nature Science Foundation of Yunnan Province of China (202301AT070070).

## References

[1] V. G. Bardakov and V. Gubarev, Rota-Baxter groups, skew left braces, and the Yang-Baxter equation, Journal of Algebra 596 (2022), 328-351.

DOI: https://doi.org/10.1016/j.jalgebra.2021.12.036
[2] V. G. Bardakov and V. Gubarev, Rota-Baxter operators on groups, Proceedings of the Indian Academy of Sciences: Mathematical Sciences 133(1) (2023); Article 4.

> DOI: https://doi.org/10.1007/s12044-023-00723-9
[3] G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific Journal of Mathematics 10(3) (1960), 731-742.
[4] F. Catino, M. Mazzotta and P. Stefanelli, Rota-Baxter operators on Clifford semigroups and the Yang-Baxter equation, Journal of Algebra 622 (2023), 587-613.

DOI: https://doi.org/10.1016/j.jalgebra.2023.02.013
[5] A. Das and N. Rathee, Extensions and automorphisms of Rota-Baxter groups, Journal of Algebra 636 (2023), 626-665.

> DOI: https://doi.org/10.1016/j.jalgebra.2023.09.006
[6] X. Gao, L. Guo, Y. Liu and Z. Zhu, Operated groups, differential groups and RotaBaxter groups with an emphasis on the free objects, Communications in Algebra 51(11) (2023), 4481-4500.

DOI: https://doi.org/10.1080/00927872.2023.2212775
[7] M. Goncharov, Rota-Baxter operators on cocommutative Hopf algebras, Journal of Algebra 582 (2021), 39-56.

DOI: https://doi.org/10.1016/j.jalgebra.2021.04.024
[8] L. Guarnieri and L. Vendramin, Skew braces and the Yang-Baxter equation, Mathematics of Computation 86(307) (2017), 2519-2534.
[9] L. Guo, An Introduction to Rota-Baxter Algebra, Surveys of Modern Mathematics, Vol. 4, International Press/Higher Education Press, Somerville (MA, USA)/Beijing, 2012.
[10] L. Guo, H. Lang and Y. Sheng, Integration and geometrization of Rota-Baxter Lie algebras, Advances in Mathematics 387 (2021); Article 107834.
DOI: https://doi.org/10.1016/j.aim.2021.107834
[11] Z. Li and S. Wang, Rota-Baxter systems and skew trusses, Journal of Algebra 623 (2023), 447-480.

## DOI: https://doi.org/10.1016/j.jalgebra.2023.02.022

[12] N. Rathee and M. Singh, Relative Rota-Baxter Groups and Skew Left Braces, (2023), arXiv:2305.00922.
[13] The GAP Group, Groups Algorithms and Programming, Version 4.11.0 (2020).

## A. Appendix

A.1. The codes to check whether two candidate Rota-Baxter operators are $\sigma$-equivalent

```
e=[11000;001 0 0;0}00110;00001]
a=[0}0001;10000;01100;00010]
```



```
A=[e,a,a^2,a^3,b,b*a,b*}\mp@subsup{\textrm{a}}{}{\wedge}2,\mp@subsup{b}{}{*}\mp@subsup{\textrm{a}}{}{\wedge}3]
T=[e,a,a^2,a^3,b,b*a,b*a^2,b*a^3;
e,a,a^2,a^3,\mp@subsup{b}{}{*}a,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3,b;
e,a,a^2,a^3,b*a^2,b*a^3,b,b*a;
e,a,a^2,a^3,b*a^3,b,b*a,b*a^2;
e,a^3,a^2,a,b,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}a;
e,a^3,a^2,a,b*a,b,b*a^3,b*a^2;
e,a^3,a^2,a,b*a^2,b*a,b,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3;
e,\mp@subsup{a}{}{\wedge}3,\mp@subsup{a}{}{\wedge}2,a,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}
B=input ('Please enter operator B.');
R=input ('Please enter operator R.');
c=[1;5;9;13;17;21;25;29];
u=0;
Z=zeros (4,32);
G= [A;Z];
H= [A;Z];
for }\textrm{i}=1:
F= [A;T(c(i,:):c(i,:)+3,1:32)];
for }\textrm{j}=1:
```

```
    CLASSIFICATION OF ROTA-BAXTER OPERATORS ON D D }18
for }\textrm{k}=1:
if F(5:8,c(j,:):c(j,:)+3)==A(:,c(k,:):c(k,:)+3)
G(5:8,c(j,:):c(j,:)+3)=B(5:8,c(k,:):c(k,:)+3);
else
end
end
end
for b=1:8
for d=1:8
if R(5:8,c(b,:):c(b,:)+3)==A(:,c(d,:):c(d,:)+3)
H(5:8,c(b,:):c(b,:)+3)=F(5:8,c(d,:):c(d,:)+3);
else
end
end
end
if G==H
u=u+1;
else
end
end
if u>0
disp('B and R are equivalent.')
else
disp ('B and R are not equivalent.')
end
```


## A.2. The codes to check that a mapping is a Rota-Baxter operator

$\mathrm{e}=\left[\begin{array}{llllllllllll}1 & 0 & 0 & 0 ; & 0 & 1 & 0 & 0 ; & 0 & 1 & 1 & 0 ;\end{array} 0\right.$


$A=\left[e ; a ; a^{\wedge} 2 ; a^{\wedge} 3 ; b ; b^{*} a ; b^{*} a^{\wedge} 2 ; b^{*} a^{\wedge} 3\right] ;$
$\mathrm{B}=$ input ('Please enter the matrix composed by the images of each element corresponding to matrix A.');
c=[1;5;9;13;17;21;25;29];
$\mathrm{O}=$ zeros $(8,8)$;
$\mathrm{R}=$ ones $(8,8)$;
for $\mathrm{i}=1: 8$
for $\mathrm{j}=1: 8$
$\mathrm{A}\left(\mathrm{c}(\mathrm{i}, \mathrm{s}): \mathrm{c}(\mathrm{i},:)^{2}+3,:\right)^{*} \mathrm{~B}\left(\mathrm{c}(\mathrm{i},:): \mathrm{c}(\mathrm{i},: \mathrm{)}+3,:)^{*} \mathrm{~A}(\mathrm{c}(\mathrm{j},: \mathrm{)}: \mathrm{c}(\mathrm{j},: \mathrm{)}+3,:)\right.$
*inv(B(c(i,:):c(i,:)+3,:));
for $\mathrm{k}=1: 8$
if $\mathrm{A}\left(\mathrm{c}(\mathrm{i}, \mathrm{s}): \mathrm{c}(\mathrm{i},:)^{2} 3,:\right)^{*} \mathrm{~B}\left(\mathrm{c}(\mathrm{i},:): \mathrm{c}(\mathrm{i},: \mathrm{)}+3,:)^{*} \mathrm{~A}(\mathrm{c}(\mathrm{j},:): \mathrm{c}(\mathrm{j},:)+3,:)\right.$
*inv(B(c(i,:):c(i,:)+3,:))==A(c(k,:):c(k,:)+3,:)
$\mathrm{s}=\mathrm{k}$;
else
end
end
if $\mathrm{B}(\mathrm{c}(\mathrm{i}, \mathrm{s}): \mathrm{c}(\mathrm{i},:)+3,:)^{*} \mathrm{~B}(\mathrm{c}(\mathrm{j},:): \mathrm{c}(\mathrm{j},:)+3,: \mathrm{)}==\mathrm{B}(\mathrm{c}(\mathrm{s}, \mathrm{s}): \mathrm{c}(\mathrm{s},:)+3,:)$
$\mathrm{O}(\mathrm{i}, \mathrm{j})=1$;
else
end
end
end

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 189$

if $\mathrm{O}=\mathrm{=} \mathrm{R}$
disp('The mapping is a Rota-Baxter operator.')
else
disp('The mapping is not a Rota-Baxter operator.')
end

## A.3. The codes to check whether two Rota-Baxter operators are ~-equivalent

```
e=[110 0 0;0}01000;0;0110;00001]
a=[0}00011;10000;0;1000;00010]
b}=[\begin{array}{llllllllllllllllllll}{0}&{0}&{1;0}&{1}&{0;0}&{1}&{0}&{0;1}&{0}&{0}&{0}\end{array}]
A=[e,a,a^2,a^3,b,\mp@subsup{b}{}{*}a,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3];
T=[e,a,\mp@subsup{a}{}{\wedge}2,\mp@subsup{a}{}{\wedge}3,b,b*a,b*\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3;
e,a,a^2,a^3,b*a,b*a^2,b*a^3,b;
e,a,a^2,a^3,b*a^2,b*a^3,b,b*a;
e,a,a^2,a^3,b*a^3,b,\mp@subsup{b}{}{*}
e,a^3,a^2,a,b,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}a;
e,a^3,a^2,a,b*a,b,b*a^3,b*a^2;
e,a^3,a^2,a,b*a^2,b*a,b,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3;
e,\mp@subsup{a}{}{\wedge}3,\mp@subsup{a}{}{\wedge}2,a,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}3,\mp@subsup{b}{}{*}\mp@subsup{a}{}{\wedge}2,\mp@subsup{b}{}{*}
B=input ('Please enter operator B.');
R=input ('Please enter operator R.');
c=[1;5;9;13;17;21;25;29];
u= zeros(8);
p=0;
q= zeros (1,8);
```

$\mathrm{Z}=\mathrm{zeros}(4,32)$;
$\mathrm{E}=\operatorname{zeros}(1,8)$;
$\mathrm{I}=$ ones $(1,8)$;
$\mathrm{G}=[\mathrm{A} ; \mathrm{Z}]$;
$\mathrm{H}=[\mathrm{A} ; \mathrm{Z}]$;
for $\mathrm{r}=1: 8$
$\mathrm{F}=[\mathrm{A} ; \mathrm{T}(\mathrm{c}(\mathrm{r}, \mathrm{s}) \mathrm{c}(\mathrm{r}, \mathrm{s})+3,1: 32)]$;
for $\mathrm{i}=1: 8$
for $\mathrm{j}=1: 8$
if $\mathrm{R}(5: 8, \mathrm{c}(\mathrm{i},:): \mathrm{c}(\mathrm{i},:)+3)==\mathrm{A}\left(:, \mathrm{c}(\mathrm{j},:): \mathrm{c}(\mathrm{j},:)^{+}+3\right)$
$\mathrm{H}(5: 8, \mathrm{c}(\mathrm{i}, \mathrm{s}): \mathrm{c}(\mathrm{i},: \mathrm{)}+3)=\mathrm{F}(5: 8, \mathrm{c}(\mathrm{j},:) \mathrm{c}(\mathrm{j},:)+3)$;
else
end
end
end
for $\mathrm{k}=1: 8$
for $\mathrm{s}=1: 8$
if $\mathrm{F}(5: 8, \mathrm{c}(\mathrm{k},: \mathrm{)}: \mathrm{c}(\mathrm{k},:)+3)=\mathrm{A}(:, \mathrm{c}(\mathrm{s},:): \mathrm{c}(\mathrm{s},:)+3)$
$\mathrm{G}(5: 8, \mathrm{c}(\mathrm{k}, \mathrm{s}): \mathrm{c}(\mathrm{k},:)+3)=\mathrm{B}(5: 8, \mathrm{c}(\mathrm{s}, \mathrm{s}): \mathrm{c}(\mathrm{s},:)+3) ;$
else
end
end
end
for $\mathrm{t}=1: 8$
$\mathrm{P}=\operatorname{inv}(\mathrm{G}(5: 8, \mathrm{c}(\mathrm{t},:): \mathrm{c}(\mathrm{t},:)+3))^{*} \mathrm{H}(5: 8, \mathrm{c}(\mathrm{t},:): \mathrm{c}(\mathrm{t},: \mathrm{)}+3) ;$
if $\mathrm{P}==\mathrm{e}$

## CLASSIFICATION OF ROTA-BAXTER OPERATORS ON $D_{8} 191$

$\mathrm{u}(\mathrm{r}, \mathrm{t})=1$;
else
end
if $\mathrm{P}==\mathrm{a}^{\wedge} 2$
$\mathrm{u}(\mathrm{r}, \mathrm{t})=1$;
else
end
end
if $u(r, 1: 8)==I$
$\mathrm{q}(:, \mathrm{r})=\mathrm{r}$;
$\mathrm{p}=\mathrm{p}+1$;
else
end
end
if $\mathrm{p}>=1$
disp ('B and $R$ satisfy the relation $\sim$.')
else
disp ('B and R do not satisfy the relation $\sim$. ')
end
A.4. The codes to check that a Rota-Baxter operator is an endomorphism
$\mathrm{e}=\left[\begin{array}{lllllllllllll}1 & 0 & 0 & 0 ; & 0 & 1 & 0 & 0 ; 0 & 0 & 1 & 0 ; & 0 & 0\end{array}\right.$ 1];
$\mathrm{a}=\left[\begin{array}{llllllllllll}0 & 0 & 0 & 1 ; 1 & 0 & 0 & 0 ; 0 & 1 & 0 & 0 ; & 0 & 1\end{array} 0\right]$;
$\mathrm{b}=\left[\begin{array}{lllllllllllll}0 & 0 & 0 & 1 ; 0 & 0 & 1 & 0 ; & 1 & 1 & 0 & 0 ; 1 & 0 & 0\end{array} 0\right.$ ];
$A=\left[e ; a ; a^{\wedge} 2 ; a^{\wedge} 3 ; b ; b^{*} a ; b^{*} a^{\wedge} 2 ; b^{*} a^{\wedge} 3\right] ;$
$\mathrm{B}=$ input ('Please enter the matrix composed by the images of each element corresponding to matrix A.');
$\mathrm{c}=[1 ; 5 ; 9 ; 13 ; 17 ; 21 ; 25 ; 29]$;
$\mathrm{O}=$ zeros $(8,8)$;
$\mathrm{R}=$ ones $(8,8)$;
for $\mathrm{i}=1: 8$
for $\mathrm{j}=1: 8$
$\mathrm{C}=\mathrm{A}\left(\mathrm{c}(\mathrm{i},: \mathrm{)}: \mathrm{c}(\mathrm{i},: \mathrm{i})+3,:)^{*} \mathrm{~A}(\mathrm{c}(\mathrm{j},: \mathrm{)}: \mathrm{c}(\mathrm{j},: \mathrm{)}+3,:) ;\right.$
$\mathrm{D}=\mathrm{B}\left(\mathrm{c}(\mathrm{i},: \mathrm{)}: \mathrm{c}(\mathrm{i},: \mathrm{i})+3,:)^{*} \mathrm{~B}(\mathrm{c}(\mathrm{j},: \mathrm{)}: \mathrm{c}(\mathrm{j},: \mathrm{i})+3,:) ;\right.$
for $\mathrm{k}=1: 8$
if $\mathrm{C}==\mathrm{A}(\mathrm{c}(\mathrm{k},:): \mathrm{c}(\mathrm{k},:)+3,:)$
$\mathrm{t}=\mathrm{k}$;
else
end
end
if $\mathrm{D}=\mathrm{=}(\mathrm{c}(\mathrm{t},:): \mathrm{c}(\mathrm{t},:)+3,:)$
$\mathrm{O}(\mathrm{i}, \mathrm{j})=1$;
else
end

```
    CLASSIFICATION OF ROTA-BAXTER OPERATORS ON D8 }19
    end
    end
    if O==R
    disp ('The mapping is a Rota--Baxter endomorphism.')
    else
    disp ('The mapping is not a Rota--Baxter endomorphism.')
    end
```


[^0]:    2020 Mathematics Subject Classification: 17B38, 20M20
    Keywords and phrases: Rota-Baxter operator, dihedral group, Rota-Baxter endomorphism.
    Communicated by Suayip Yuzbasi.
    *Corresponding author.
    Received October 19, 2023; Revised December 27, 2023

