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Abstract 

Due to the widespread use of differential equations, numerical methods are 

being developed in order to solve numerous difficult initial value problems 

(IVPs) when an analytical solution would seem to be impractical. The goal of 

this study was to employ Taylor series expansion to construct a 2-point fully 

implicit block backward differentiation formula (2IBBDF), examine its stability 

characteristics and then apply the suggested approach to one of the models for 

tumor-immune interaction that are already in existence. Regarding the 

resolution of the tumor-immune interaction model, the research has compared 

the numerical outcomes of the suggested method with some of the current 
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methodologies. The proposed technique outperforms the Ode15s and 2-point 

block backward differentiation formula (BBDF) in relation to accuracy in the 

scale error and in most of computational time. 

1. Introduction 

The majority of real-world issues we face, particularly in the physical, 

social, and life sciences, may be described by using differential equations. 

Most of differential equations can be used to describe issues involving 

kinetics, chemical reactions, electrical circuits, vibrations, and population 

growth, for instance. Such differential equations come in two kinds: non-

stiff and stiff. In order to create numerical schemes that are 

advantageous in terms of accuracy, scale error, and computation time, 

researchers developed a variety of numerical methods. Some of these 

include the early work of (Curtiss & Hirschfelder [11]), the extended BDF 

(Cash [9]), and the modified extended BDF (Cash [10]). With the work of 

(Ibrahim et al. [12]), a new 5th order IBM for 1st order stiff ODEs (Musa 

et al. [20]), a new superclass of BBDF for stiff ODEs (Suleiman et al. 

[35]), and numerical treatment of the block method for the solution of 

ODEs (Sagir [29]), the block method was given priority. The tumor-

immune interaction model was resolved by (Nasir et al. [22]) using the 

block technique. Numerous studies by (Ibrahim et al. [13]; Aksah et al. 

[7]; Ibrahim & Zawawi [14]; Nasir et al. [23]; Majid et al. [16]; Rani et al. 

[27]; Zawawi et al. [38]; Nasarudin et al. [21]; Ibrahim et al. [13]; 

Muangchoo [17]; Saudi & Sulaiman [32]; Shafiq et al. [33]; Abd Rasid et 

al. [5]; Musa et al. [19]; Abdullahi & Musa [1]; Abdullahi et al. [3]; 

Abdullahi et al. [2]; Abdullahi et al. [4]; Sagir [30]; Yahaya & Sagir [37]; 

Sagir [28]; Sagir & Abdullahi [31]; Rahim et al. [26]; Rahim et al. [25]; 

Yaacob et al. [36]; Sujatono [34]) have at one point or another established 

numerical algorithms with excellent stability qualities. 

This study uses a technique known as implicit BBD for solving a set 

of first-order IVPs involving ODEs of the type 

     , , , ,y f x Y Y a a x b       (1) 

where     1 2 3 1 2 3, , , , and , , , , .n nY y y y y         
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The suggested strategy will be used to solve the model of tumor-

immune interaction using ordinary differential equations (Kirschner & 

Panetta [15]). 

2. Method Formulation 

Consider 

  .2,1,1,1,
3

0
  iffhy nnijnijj

kkkk   (2) 

Definition 2.1. 

 The linear difference operator L  connected with the linear multi-

step method is defined as 

       ,][,
0

jhxyhjhxyhxyL jjj
  

k
  (3) 

where  xy  is considered as test function and it is repeatedly 

differentiable on the interval  ., ba  Expanding  jhxy   as well as 

 jhxy   by the Taylor series about ,x  and similarly expanding the 

conventional conditions produces: 

           ., 2
210   n

qq
qnnn xyhcxyhcxyhcxychxyL  

The implicit method of Equation (2) is constructed by using a linear 

operator .iL  To obtain the first and second points, define the linear 

operator 1L  and 2L  associated with (2) as 

    2,31,2,11,01 :,   ninininin yyyyhxyL   

  ,01,   kkk nni ffh   (4) 

    2,31,2,11,02 :,   ninininin yyyyhxyL   

  .01,   kkk nni ffh   (5) 
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The formula that is found when 1 ik  relates to the 1st point, 

whereas 2 ik  relates to the 2nd point. Apply the Taylor’s series to 

expand (4) and (5) results in an equation set that can be handled at once. 

The coefficient 1,2  is standardized to 1 for the 1st point, while 2,3  is 

standardized to 1 for the 2nd. Inferred the proposed method (2IBBDF) is 

as follows: 

,
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2

3
2

9
1

9
1

1211 nnnnnn hfhfyyyy     (6) 
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13
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13
3

13
1

12212   nnnnnn hfhfyyyy   (7) 

3. Stability Analysis of the Method 

Definition 3.1. 

The linear multi-step technique is considered to be zero-stable if no 

root of the first characteristic polynomial has a modulus greater than one 

and all roots with a modulus of one are simple. 

The stability of the method (6)-(7) can be obtains utilizing the 

standard test equation of the form: 

  ,0Re,  yy   (8) 

where   is a complex number. 

The matrix form of the previous Equations (6)-(7) is 

 ,110110 mmmm FBFBhYAYA     (9) 
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(10) can be written as 

,

13
3

13
1

3
21

9
1

13
61

13
6

13
15

9
1

3
21

1

2

1


























































n

n

n

n

y

yh

y

y

hh

h
  (11) 

where 
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To find the first characteristic polynomial for (6)-(7), we use 

  .0det  BAt  

To get the polynomial as follows: 

     thhtthttthR
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4 2  hht   (13) 

Put hh   implies, the first characteristic polynomial will emerge 

  hthtthttthR
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44, 2222    

 .
39
2

13
4

39
4 2 hht    (14) 

Put 0h  and get the stability polynomial as 

  ,
39
40

39
4

39
44,0 2 tttR    (15) 

.
11
1,1  tt   (16) 

As a result, the technique (6)-(7) is zero stable according to Definition 3.1 

above. 
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Definition 3.2. 

A linear multistep approach is referred to as A-stable if its stability 

region fully encloses the negative half-plane. 

The region for the stability of the proposed method is drawn, by 

considering the stability polynomial in (14). The boundary of the stability 

region is described by the cluster of points as .20,  iet  The 

following stability region was the complex plot of the suggested approach 

using the Maple software. The suggested approach (2IBBDF) is, by 

Definition 3.2, an A-stable method. 

 

Figure 3.1. A-stability region of the proposed method according to 

Definition 3.2. 

4. Tumor-Immune Interaction Model 

Many scientists are putting a lot of effort into creating models of the 

tumor-immune interaction, some of which include: mathematical 

simulation of the immune-tumor relationship (Qamar Din & Jameel [24]), 
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concerning tumor evolution and the immune system’s interaction, 

modelling and mathematical issues (Bellamo & Preziosi [8]), and a review 

of tumor-immune system dynamics models (Adam & Bellamo [6]). This 

paper examines a model of tumor-immune interaction created (Kirschner 

& Panetta [15]) that takes the form of 

,1
1

1
2 s

Ig
EIP

EucT
dt
dE

L

L 


   (17) 

  ,
2

2 Tg
aETTTr

dt
dT


   (18) 

,23
3

2 sLu
Tg

ETP
dt

dIL 


   (19) 

with initial conditions as 

      ,000
000 LL IITTEE    (20) 

where  tE  is the effector cells,  tT  is the tumor cell and cytokine  .tIL  

5. Numerical Results and Discussions 

In this section, the tumor-immune interaction model (17)-(20) will be 

solved by using the developed schemes in (6)-(7). The error and parameter 

ideas from (Nasir et al. [22]) were retained. 

Table 5.1. Notation and descriptions used in the paper 

Acronyms Descriptions 

2IBBDF 2-point implicit block backward differentiation formula 

Ode15s A variable order solver base on numerical differentiation formula 

BBDF Block backward differentiation formula with fixed step size 

c The tumor’s antigenicity in the model 

h Step size 

t Computing time in microseconds 
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Table 5.2. Approximated numerical solutions for the model (17)-(20) with 

the proposed method (6)-(7) considering the antigenicity value as 0 

 000.0.,i.e c  

Antigenicity h Method Error Comp-time 

Ode15s 9.75492e-4 125000 

BBDF 9.27010e-5 7526 310  

2IBBDF 9.16321e-6 59217 

Ode15s 7.97585e-5 218750 

BBDF 4.68400e-6 48667 410  

2IBBDF 4.42161e-6 46103 

Ode15s 5.12100e-6 4484375 

BBDF 970000e-7 464695 

000.0c  

510  

2IBBDF 9.13064e-7 458864 

 

Table 5.3. Approximated numerical solutions for the model (17)-(20) with 

the proposed method (6)-(7) considering the antigenicity value as 0.025 

 025.0.,i.e c  

Antigenicity h Method Error Comp-time 

Ode15s 9.82605e-4 29690 

BBDF 9.30660e-5 7798 310  

2IBBDF 9.26732e-5 6963 

Ode15s 982372e-5 234375 

BBDF 3.87500e-6 49331 410  

2IBBDF 3.63366e-6 32392 

Ode15s 7.75505e-6 4046875 

BBDF 970000e-7 467225 

025.0c  

510  

2IBBDF 9.60006e-7 499721 
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Table 5.4. Approximated numerical solutions for the model (17)-(20) with 

the proposed method (6)-(7) considering the antigenicity value as 0.050 

 050.0.,i.e c  

Antigenicity h Method Error Comp-time 

Ode15s 1.01073e-3 15625 

BBDF 1.01065e-4 7438 310  

2IBBDF 9.90432e-5 8446 

Ode15s 6.32461e-4 250000 

BBDF 1.48890e -5 49016 410  

2IBBDF 1.13901e-6 48178 

Ode15s 4.22429e-6 4656250 

BBDF 9.85000e-7 470719 

050.0c  

510  

2IBBDF 8.90020e-7 459641 

The figures of  errorLog10  vs the step size h for the modelled 

problem are produced to be able to provide a stronger visual influence on 

the effectiveness of the 2IBBDF technique in comparison to the Ode15s 

and BBDF methods. 

 

Figure 5.1. Graph of  errorLog10  against h for Table 5.2. 
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Figure 5.2. Graph of  errorLog10  against h for Table 5.3. 

 

Figure 5.3. Graph of  errorLog10  vs h for Table 5.4. 

From Tables 5.2, 5.3, and 5.4 demonstrate that the scaled errors for 
the suggested technique, 2IBBDF, are lower when compared to those of 
the Ode15s and BBDF methods based on the problem under consideration, 
the tumor-immune interaction model. The BBDF, as compared to the 
Ode15s, is more accurate. The scale error of the suggested technique is 
reduced in comparison to the other two ways, as shown more clearly by 
the plot of the  errorLog10  against the step size h. The outcomes have 

demonstrated that the initial value problem of the proposed model of 
ordinary differential equations could well be solved by using the 2IBBDF. 
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6. Conclusion 

The established method can roughly estimate the values of two 

solutions, 1ny  and ,2ny  at spot point, respectively. It is determined 

that the proposed technique (2IBBDF), which can solve both stiff and 

non-stiff IVPs, has zero and A-stable stability qualities. The findings that 
were tabulated and the graphs that were displayed show how well the 

proposed technique performed in relation to accuracy of the scale error 

when compared to the other methods that were taken into consideration 
for the study. In terms of executional time, the 2IBBDF scheme requires 

minimum executional time as compared to Ode15s and BBDF. While, 

BBDF has more of error and produced minimum execution time 
compared to Ode15s. The newly proposed block scheme, 2IBBDF generate 

more solution values then the MATLAB solver Ode15s, obtained two 

solution values simultaneously at each iteration while Ode15s obtained 
one solution value at a spot point. As a result, the suggested approaches 

can be used to handle a model of tumor-immune interaction of first-order 

initial value problems of ODEs. 
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Appendix A 

Used parameters and their descriptions 

Parameters Descriptions 

dt
dE  The population of effector-cells’ rate of change 

dt
dT  The tumor cell's rate of change 

dt
dIL  The rate of IL-2 concentration change 

c  Measurement of the tumor's antigenicity 

2u  An effector cells' normal life span 

1P  Every day, IL-2 stimulates effector cells 

1g  The stimulated effector cell’s concentration 

1s  Effector cells' exterior source (treatment) 

 Tr2  The model of logistic growth 

a  The effectiveness of the immunological reaction 

2g  The tumor cells’ loss of volume 

3u  The rate of degraded of the IL-2 

2s  The IL-2 (treatment) as an external input 

2P  The tumor's interaction with the activated effector cells 

3g  The amount of activated effector cells by contact with tumor 

Appendix B 

Values of the parameters 

05.00  c  03.02 u  1245.01 P  7
1 102 g  

5
2 101 g  18.02 r  9101 b  1a  

103 u  52 P  3
3 101 g   

 


