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Abstract

In this paper, we consider the Diophantine equation XP —1 = BZ9
which generalize the Catalan equation and which has not been studied
so far. For the first time, we prove that this equation has no non-trivial

solution under certain simple conditions on p, ¢ and B.

1. Introduction

Let p and ¢ be distinct odd prime numbers and B be a non-zero

integer. In this paper, we consider the Diophantine equation

XP -1=Bz9, (1)
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where X and Z are the unknown integers. A solution (X; Z) of this

equation with |X| <1 is called trivial solution. A such equation

generalize the Catalan equation X? -1 = Z? and has not been studied
so far. In this paper, we prove, for the first time, that this Diophantine
equation has no non trivial solution under some conditions on p, ¢ and B.

The Catalan equation has been successfully solved by Mihailescu (see
[1]). In his work (see [1] or [7]), Mihailescu proved that if Catalan’s

equation has a non-trivial solution then g hy, (so, by symmetry, | hq ),

where A, is the p-th relative class number. A quite natural question is to
know if this class number criterion can be extended to the Diophantine
equation (1). In other words, can we claim that if q{h; then the

Diophantine equation (1) has no non-trivial solution ? There exists no
paper where this question is studied. In this article, we propose to prove
that this claim holds under certain simple conditions on p, ¢ and B.

From now, we assume, once and for all, that if ¢/ is a prime
number dividing B, then ¢ # 1 mod p. In this paper, we first prove the

following beautiful theorem which is a simple consequence of the
principal result of [3]:

Theorem 1. Assume that p > 3, p|B and qth,. Thus, the only
solution of the Diophantine equation (1)is X =1, Z = 0.

Then, by using methods which go back to [5], [7] and by using a new
method based on the use of a recent result on a circulant matrix (see [4]),
we prove the following beautiful theorem:

Theorem 2. Assume that 7 < p <gq,qth, and that the g-adic

valuation of B is equal to 1. Furthermore, we assume that p = 3mod 4 if
p <191. Thus, the only solution of the Diophantine equation (1) is
X=1,Z=0.

Example 1. Assume that p =3mod4,7 < p <31 and that the
g-adic valuation of B is equal to 1. If p < g, then the only solution of the
Diophantine equation (1) is X =1, Z = 0. Namely, for such p, h; has no
prime factor g such that g > p.



A NOTE ON THE DIOPHANTINE EQUATION ... 147

2. The Stickelberger Ideal

In this section, we give some useful results on the Stickelberger ideal.
We refer the reader to [1], [2], [7] or [9] for more details.

2.1. Prerequisites and notations

2im

We put { = e7 and P ={1;2;---; p—1}. For c e P, we denote by

o, the Q-automorphism of Q({) defined by (° = (‘. The extension
Q(£)/Q is a Galois extension whose Galois group G 1is given by
G={o,:ce P}. If ne Z is congruent to ¢ e P modulo p, we put

G, = 6.. Particularly, 6_; is the complex conjugation.

Definition 1. (1) The Stickelberger element 6 € Q[G] is defined by

0= %chsgl.

ceP

(2) The Stickelberger ideal 7 g is the ideal of Z[G] defined by
Is = Z[G]N eZIG].

In other words, Z g is the set of Z[G]- multiples of 8 which have integral

coefficients.

An element ZCG p O of 7T is said to be positive if and only if
Vee P,n, > 0.

In this paper, the set of positive elements of Z g is denoted by Z5. In

other words

iy ={chcce Ig:Vce P, n, 20}.
ceP
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2.2. Particular elements of Z g
Let n be an integer such that (n, p) =1. Recall that o, is the

element of G defined by {°» = {". By abuse of notation, the element

no; is denoted by n. Using this notation, we put
®, =(n-o0,)0 e 0Z[G].

For a real number x, we denote by [x] the integer part of x : [x] = max

{a € Z : a < x}. We have (see [1], Proposition 7.2)

ozl

ceP
So, ®,, € Z%. In particular

p-1
© = Y ol ek

p+1

c=——

2
From the above, we can deduce that

(]. + 0_1)®2 = NQ(C)/Q’ (2)

where N(¢)/q is the norm relative to the extension Q({)/Q. Namely,

p-1 p-1 p-l
(1+0_4)0y = Z (1+0_1)0;! = z ot + Z 6_j0.t
_p+l _p+l _p+l
= == =2
p-1 p-1 p-1
_ -1 -1 _ -1
SDIESE I 2
_p+l _p+l c=1
c-—2 c-—2
p-1
= 20 = Ngp)/o
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2.3. A property of @, for p = 3mod 4

In this subsection, we assume that p = 3mod 4. Let F,, be the field

of p elements. We fix, once and for all, a primitive element of Iij7 which

2
is denoted by g. Let 6 € G defined by (® = (% .-1 is not a square

modulo p since p = 3mod 4. Consequently, for all ke {0;---; pT—S}
there exist integers a;, b, € {0; 1}, such that
p=3 p=3
2 2 L L
@2 = ]; angQk + ka_ng = ; Q0" + ka_lﬁ . (3)

We have the following lemma:

Lemma 1. There exists at least an integer ke {0;---; pT_?)} such that

ap — bk = x1.
Proof. There exists at least an integer k e {0; ---; pT_:—}} such that
aj; — b, = 1. Otherwise

3

N‘l

since Vk e {0; e p }, ay, by, € {0; 1}. Consequently, we obtain

7
w
w

p

L
I
NS

2
akck + bkc_lck = Z akck + bkcs_lcsk
k=0

Bl
Il
()

[SV)

IS

a6t +064),

Nl

T
o
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so that
b3
2
(1-0.1)0y = Z ac’1-04)1+0)
k=0
b3
2
= Z aka(l — 0%1 ),
k=0
that is
®y —G_105 = 0. (4)
Equality (2) implies that
03 - (Ng)/o —9®2) =0, 6)
that is
20, = No)/q- ©)

Finally, we obtain

E
L

20;" = Ng)/0- )

I

|“°M
0|+
At

which is false. U
2.4. The Stickelberger theorem

In the following, by (fractional) ideal we mean (fractional) ideal of
Z[g].

From Stickelberger’s theorem, we know that Stickelberger’s ideal Z g
annihilates the class group of Q({). In other words, if a is a fractional
ideal and if ® € Z 5, then a® is principal. We can have a more precise

result (see [7], page 4):
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Theorem 3. Let a be an ideal. Suppose that Nq)/q(a) = t, where t
is a product of powers of prime numbers ¢, { =1mod p. Then, for all

© € T4, there exists a Jacobi integer j € Z[(] such that
a® = (j). ®)
3. The Mihailescu Ideal

3.1. The augmented part of an ideal of Z[G]
The weight homomorphism w : Z[G] — Z is defined by

IDTAES S

ce P ceP

By definition, its kernel consists of elements of weight 0. It is called the
augmentation ideal of Z[G]. If Z is an ideal of Z[G], then the augmented

part of T is the ideal of Z[G] defined by
7% ={®@ e T : w(®) = 0}.
3.2. The r-ball of an ideal of Z[G]

The size function || - | is defined from Z[G] — N by

chcc = Zlncl

ce P ce P

Let Z be an ideal of Z|[G]. The r-ball of 7 is defined by
Ir)={®@e T :||O| <1}

3.3. A theorem on Mihailescu’s ideal

In this subsection, we fix a non-zero integer x. Recall that ¢ is an

odd prime number distinct from p. Mihailescu’s ideal 7 j; is the ideal of

Z[G] consisting of © e Z[G] such that (x — {)® e (Q({)*)?. We have the
following result (see Theorem 8.5 of [1]):
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Theorem 4. Assume that p < q. If |x| > 8¢, then T9/%(2) = {0}.
4. A Circulant Matrix

Recall that g is a primitive element of IF; and that o € G 1s defined

2
by (° =% . We put Z = J—C—ﬁ We denote by M the circulant
matrix whose first line is given by
p3
77°..7°°

This matrix plays an important role in the proof of the Theorem 2. We

have the following lemma:

Lemma 2. The coefficients of the matrix M are elements of the ring

Z[@,ﬁ.

Proof. Let € {0; ...; 253} It s not difficult to see that

k k
B_14C°  1-C 1+¢°

ZG
1_§Gk 1_§Gk ]'_C.)

-C
-
1-¢°

The algebraic number is a unit of Z[{] (called cyclotomic or

circular unit). Consequently,

e e




A NOTE ON THE DIOPHANTINE EQUATION ... 153

Furthermore, if p = 3mod 4 then the determinant of M does not
depend on the choice of the value of g and it is given by (see [4])

p-3 p-7
2

xpTxhljx\/—p.

p-3
det(M) =(-1)4 x2

5. Some Useful Lemmas to Prove the Theorems 1 and 2

Lemma 3 (see [8], P1.2 page 11). Let x # 0 and y # 0 be distinct

co-prime integers. We have the following results:

P _ P
(1) The quotient X =Y s a non-zero positive integer. Furthermore,
xP —yP : :
we have ———— =1 ifand only if x =1 and y=-1 or x = -1 and
y =1.

P _ P
(2) p divides % if and only if p divides x — y. Furthermore, the

. . xP —yP .
p-adic valuation of ———— is equal to 0 or 1.

xP — yP
(3) We have oy Y =(x -y, p).

Lemma 4. Let x and y be distinct co-prime integers. We assume that

there exist integers n > 2 and z > 1 such that

p_ P
Y )
x =y

We have the following results:

(1) The ideals (x-C°y),ce P={1,2,---, p—1} are pairwise

co-prime.

(2) There exists an ideal a such that (x — {y) = a”.
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(38) For all prime number ( dividing z, we have (¢ =1mod p.

Particularly, N@(g)/@(a) = z is a product of powers of prime numbers (

such that ¢ =1 mod p.

Proof. (1) The ideals (x-(°y),ce P are pairwise co-prime.
Otherwise, there exist a, b € P distinct integers and a prime ideal p

such that

x—C“yepandx—bee b, (10)
sothat (L% —€%) = x — %y — (x - (®y) € p, thatis, ye p or £® — (% e p.

Suppose that yep. In this case, x=x-{% +(%yep in
contradiction with the fact that x and y are co-prime integers.

Suppose that Cb - (% € p. Recall that p is totally ramified in the
extension Q(()/Q and that {® — {? is a generator of the only prime ideal
of Z[(] above p since @ # bmod p. The ideal ({® — {?) is even a maximal
ideal of Z[{] since Z[(] is a Dedekind ring. From {® — (% e p, we deduce

that p = ({® — %), so that x — (% e ((® — (%) since x —{%y e p. The
Equation (9) can be rewritten as
[T-cn=2" (11)
ce P
Since x -{% e ((® -¢%), we have p|z". Particularly, the p-adic

P _ P
valuation of 2 —2" g greater than or equal to n > 1, in contradiction

with the second assertion of Lemma 3.

(2) The ideals (x —(°y), c € P, being pairwise co-prime, we deduce

from (11) that there exists an ideal a such that (x — {y) = a™.
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(3) Let £ be a prime ideal above ¢. From the equality (11), we deduce
that there exists ke P such that L|(x- ¢*y). The ideals
(x =C%y), c e P, being pairwise co-prime, we can claim that the prime

ideals £°, 6 € G are pairwise distinct, so that the ideal £ is totally split
in the extension Q({)/Q. So, the decomposition group of ¢ in this
extension is trivial. This group being generated by ¢ mod p, so we have

¢ = 1mod p. The last assertion is clear since

No@/e@" = Ng)/ela”) = Noe)/ok - &)

[T-t»

ce P

O

Lemma 5 (see [2], Lemma 3.5.19). Let o e Q({) be such that

€ Z[C]. Then % is a root of unity of Z[(], that is a 2p-th root of unity.

|l

Lemma 6. Suppose p < q and there exists integers x +1 and z > 1

such that

Z*.
x -1

If qth,, then |x| < 8q9.

Proof. From the second assertion of Lemma 4, there exists an ideal a

such that

(x—C) = a9. (12)
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As gth,, the class of a belongs to the real part of the class group of
Q(§). In other words, we have a = b(y) where ye Q({)* and b is a “real”

fractional ideal of Z[{] (that is, b = b). Furthermore, b? is a principal

real ideal; in other words, b9 = (B) where B e Q({) and b7 = b7 that is

(l_S) = (B). Particularly, there exists a unit u of Z[¢] such that B = Bu. In

=| |

fact, by Lemma 5 u is a 2p-th root of unity since u = & € Z[{]. From the

equality (12), we deduce that
x = C = BYqﬂ,
where 1 is a unit of Z[{]. Particularly

=514

We have % € Z[(] since M is a unit of Z[{]. By lemma 5, % asuisa

2p-th root of unity. Particularly, %u is the g-th power of a 2p-th root of

unity since (2p, ¢) = 1. From (13), we deduce that there exists u e Q({)*

X —
X —

such that S u?, that is

[T

(x = §)°1 7 e (@) (14)
We have w(o_;-1)=0 and |o_; -1 =2. (14) implies that
6_; —1e I98(2). Particularly, 7%;%(2) # {0}. From Theorem 4 of the

Subsection 3.3, we deduce that |x| < 8¢7. O
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Lemma 7 (See [7], Lemma 1). Let o e Z[{] such that o -« € Z.
Suppose there exists a Jacobi integer j such that the ideal (o) is generated
by j. Then

o=x{"j, ne Z

Lemma 8 (See [5], Lemma 1). Let q be a prime ideal of the ring of
integers Ok of a number field K. Let q be the prime number below q. If
o, B e Og with o = B2 mod g, then ad = pY mod g°.

The following lemma is a nice application of the Theorem 1 of [4]:

Lemma 9. Recall that p and q are distinct odd prime numbers. We

assume that p = 3mod 4 and that there exists integers x, y and z such

that
p p
XY e >1 =1 —y) =
oy —2h 2L (o, y) =1, volx-y) =1,
where v, is the g-adic valuation. Then we have q| hI;.

Proof. By Lemma 4, there exists an ideal a such that

(x - t.ty) = aq’ (15)
and NQ(c)/Q(a) = z is a product of powers of prime numbers ¢ such that

¢ =1mod p. Let ®, be one of the positive elements of Stickelberger’s
ideal (see Subsection 2.2). By Theorem 3 of the Subsection 2.4, there
exists a Jacobi integer je Z[{] such that a2 = (j). From (15), we
deduce that

((x - £)®2) = (j9). (16)
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By (2), we know that (1 +06_1)®y = Ng()/q, so that

(x _ Cy)®2 . (.’XI _ Cy)®2 — (.’XI _ Cy)(1+0—1)®2 — (x — Q)NQ(C)/Q
= No()/o@ ~ &) = [N/l - &)
= Now)/la?) = 2% € Z.

Furthermore, j? is a Jacobi integer since j is one. By (16) and

Lemma 7, there exist n € Z and ¢ = 1 such that
(e = )% = e,

We have (2p, q) =1 so that (™ is the g-th power of a 2p-th root of

unity. So, we can suppose that ¢{" = 1. In other words, we can suppose

that
(x - )2 = j4, (17)

with j e Z[{]. Note that j is no longer necessarily a Jacobi integer but the

fact that j e Z[(] is sufficient for our purpose.

From (17) we deduce that

R = B S A

Recall that we have (see (3))

p=3
2
@2 = Z aka + ka_IGk,
k=0
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with a;, b, € {0; 1}, for all k € {0; --; pT_S}, so that

ay,
[1+—x—yk ] X
0 y1-C°)

o

by,
{1+—x—_yk] ,
0 y1-8°)

b
o
=

—
—1

(1 * ya(cl—_sz))@“‘ B

that is

Eel
Il
Eel
I

p-3 p=3
0 2 _ 2 -
1+ x -y — 1+M]XII{1+M] (19)
( y(1- C)) g[ y(1 - g“k )) k=0 y(1- Eck )

Let q be a prime ideal above ¢, s > 1 an integer and o, p € Q({). In

the rest of this paper, we adopt the following notation:
o = Bmod ¢°,
if and only if there exists y € Q({) such that
o=PB+7 vy > s,

where v, is the g-adic valuation.

q

k
Let ke {0; --; pT_S }. Recall that g|x — y. Furthermore 1-(° is a

generator of the only prime ideal of Z[{] above p and gty since g|x —

and (x, y) = 1. Consequently, we have

_x=-y x-y

— = 0modgq and—_kEmodq.
y1-2%) y(1-C°)
From (19) we deduce that
b3
_ S R
(1+ j(cl—y)) =1+202 akk+ bikmodq2.
y1 -8 Y 1ot 1-To
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Using (18) we obtain

p=3
Jj? -y g by, 2
= =1+ Z —+ _kmodq.
y 2 (1-¢)% Yof21-¢° 1-T°

By a similar reasoning to the above, we have

jq

(1-1¢)%2

p-3
2
_ x—-y ay by, -2
=1+ + mod q
] 2 : & — ’
= Yo of=m1-8t

Y
so that

p-3
-q 2
L Xy a b
p-1 - —k ok
£z - —\0 y - _ro 1-
y 2 (1-7)% k=0 1-C g

Equations (20) and (21) imply that

mod qz.

p=3
.q -q 2

d - J Ex_yZ(ak_bk)

yTa-pe ST =

x[ 1 = l_kJmodqz,
1-¢° 1-¢°

that is,

21
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In other words

p-3
o —a(1-0% 23 2
]q—Jqﬁ=y 2 (1—@@2(30—3’);((%_[%)
x[ 1 = l_kJmodqz. (22)
1_CG 1_CG

We have

©
o

where — { is the g-th power of a 2p-th root of unity since (2p, q) = 1.

Particularly, there exists a 2p-th root of unity denoted by r such that
(-0)%2 = rd.

We put j, = rj e Z[{]. Equation (22) implies that

p-3
a_ a5 ©2 \ 1 1 2
- =y20-0 (x—y)Z(ak—bk) ———— |modg”.
k=0 1-¢° 1-¢°

(23)

Recall that g|x —y and for all ke {0;-; pT—?’}, Vq(]_ - Cck ) =0.
Thus (23) implies that
j =l = 0 mod q2.
Therefore, by Lemma 8, we have

j9 = j = 0mod q2. (24)
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b3
Since Vq[ y 2 (1- C)G)QJ = 0, Equations (23) and (24) imply that

-3
=N . )
(x - y)z (ay, —bk)[ i — k} = O mod q2. (25)
k=0 1-¢° 1-¢°

By hypothesis Vq(x —y) =1 and we know that g is unramified in the
extension Q({)/Q since g # p, so that v (x —y) =1. Thus, we deduce

from (25) that

b3
2 1 1
D (e —by) —————|=0modaq. 26)
=0 1-¢° 1-¢°
We put Z = ﬁ - ﬁ as noted in the Section 4. Equation (26) implies
that
-3
2 k
Z (@ —b;)Z° = 0modq. 27
k=0
Let i e {1; - pT_l }. By a similar reasoning to the above, we obtain
b3
2 K i-1
z (@, —b,)Z° =0modq® ,
k=0
that is
p—3

i+

(ap — by, )ZGk_ ' = 0mod q. (28)

Nl

T
o
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As noted in the Section 4, let M be the circulant matrix whose first line

is given by

p-3
Z7%.20 7

Note that the coefficient of M on the i-th row and j-th column is given by
[M]U — ZGJ*z ‘

Let X be the column matrix defined by

ag — by
X =
ap-3 ~bp-s
2 2
Letie {1;-; pT_l} be an integer. We have
p-1 p-l p=3
2 2, ki 2\ kit
[MX]; = Z Ml [X] = Z Z% (apq —byq) = Z Z (ar —by.).
k=1 k=1 k=0
From (28), we deduce that
[MX]; = 0mod q.
i being an arbitrary element of {1; ---; pT_l }, we have
Vie {1; g pT_l}, [MX],; = 0mod g. (29)

Let A be the adjugate of the matrix M. It follows from Lemma 2 of

the Section 4 that the coefficients of A are elements of the ring

1 .
Z [C, ﬁ} Particularly

Vi, ke {15 s 2L v ([A4ly) > 0.
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From (29) we deduce that
p-l
_1 2
Vi e {1; e pT} [AMX]; = Z [Al; [MX]; = 0mod g. (30)
k=1

By a well-known result AMX = det(M)X.

Since p = 3 mod 4, by Theorem 1 of [4]

5
3
w
7
Ni

det(M) = (- 1)% X2 2 xp 4 xh;x+-p.
Particularly

p-3 p=3 p=T7
AMX = (=12 x2 2 xp 4 xh, x-pX.

From (30), we deduce that Vi e {1; --; p1 1,

p-3 p—"7
2

22 xp 4 xh,xy-p[X]; = 0modg,

that is

p=3  p=T7
Vie{O;m;pT_S},Z 2 xp 4 xh;x\/—p(ai—bi)EOmodq. (31)

By Lemma 1 of the Subsection 2.3, there exists ig e {0; --+; pT_S}

such that @, — b, = x1. From (31) we deduce that

0

p—3 p—7
2

2 xpTxh;x\/—szmodq,

that is q|h1;. The lemma is proved. U

6. Proof of the Theorem 1

Suppose that the Diophantine equation (1) has a solution (X; Z) with

X # 1. Since X # 1, this equation can be rewritten as

XP -1
(X -1

- = BZ". (32)
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Recall that p|B. Write

(B)

B=p"®B, z=p"P7 (pBZ)=1,

where v, is the p-adic valuation. We have

XP -1

X-1)7%—3

_ pr(B)+qu(Z) . B1 . Z](_I (33)
Since v ,(B) + qv ,(Z) > 0, by assertion 2 and 3 of Lemma 3, we have

XP -1 XP -1
[X—l, ﬂj =p and l/p[ﬂJ =1. (34)

Recall that if /¢ is a prime number dividing B, then [ # 1mod p. By

b _
Proposition 2.10 of [9], if ¢ # p is a prime number dividing ‘); — 11

[ =1mod p. Furthermore, if ¢ is a prime number dividing B; then

then

¢+ p and / # 1mod p since B1|B. Consequently B; is a divisor of
X —1. So, from (33) and (34), we deduce that there exists integers Z,
and Zs such that

XP -1

vpB)tarp(Z)-1 Y1 =P 2.7 =2y Zs.

X-1=p B, - 74,

By Theorem 1.1 of [3], q|h; in contradiction with the hypothesis g{h,,.

The theorem is proved. O
7. Proof of the Theorem 2

Suppose that the Diophantine equation (1) has a solution (X; Z) with
X #1. If p|BZ, reasoning as before, we can prove that q|h;7 in

contradiction with the hypothesis g{h,. So, we can suppose in the

following that BZ is co-prime to p.



166 BENJAMIN DUPUY

By a similar reasoning, as one used in the previous proof, there exists

integers Z; and Z, such that

XP -1
X —

X -1=BZY, =74, 7 = 7,7, (35)

XP -1
X -1

positive integer. Consequently, if Zy <1 then Zy =1. By Lemma 3

Note that Z5 > 1. Namely, by Lemma 3, = ZJ is a non-zero

(note that X # 0), we obtain X = — 1. Equation (35) implies that
1+ BZ] = -1= q = 2(sinceg|B),
which is false. Consequently, we have

XP -1

X-1=B28, 5L =28,2,51 (36)
Particularly
D _
dx -1, % =78, Zy > 1. (37)

¢ Assume that 7 < p < 191. Thus, by hypothesis p = 3 mod 4. From

(37) we know that ¢|X —1. By Lemma 9, q2|X—1 since g{h,. From
(36), we deduce that

q®%| BZY = q|7;,

since the g-adic valuation of B is equal to 1. The fact that q is a divisor of

Z; implies that
|X|] =1+ BZ}| > |Blq? - 1.
By hypothesis, 7 < p < ¢ and g|B. Particularly 8 < ¢ < |B|, so that

IX| > |Blg? -1 = |X] > 8¢ -1 = |X] > 8¢°.
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Nevertheless, (36) and Lemma 6 imply that |X| < 8¢? in contradiction

with the previous result. Consequently, X =1 and Z =0 is the only

solution of the Diophantine equation (1) if 7 < p < 191, p = 3mod 4.

e Assume that p >191. From (37) we know that ¢|X —1. By

Theorem 1 of [6], q2|X —1 since g{h,. Then, reasoning as before, we can

prove that |X| > 8¢? and |X| < 8¢? which give us a contradiction. The

theorem is proved. O

(1]

(2]
(3]

(4]
(5]

(6]
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