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Abstract 

In this paper, we consider the Diophantine equation qp BZX =− 1  

which generalize the Catalan equation and which has not been studied 

so far. For the first time, we prove that this equation has no non-trivial 

solution under certain simple conditions on qp,  and .B  

1. Introduction 

Let p  and q  be distinct odd prime numbers and B  be a non-zero 

integer. In this paper, we consider the Diophantine equation 

,1 qp BZX =−  (1) 
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where X  and Z  are the unknown integers. A solution ( )ZX ;  of this 

equation with 1�X  is called trivial solution. A such equation 

generalize the Catalan equation qp ZX =− 1  and has not been studied 

so far. In this paper, we prove, for the first time, that this Diophantine 

equation has no non trivial solution under some conditions on qp,  and .B  

The Catalan equation has been successfully solved by Mihailescu (see 

[1]). In his work (see [1] or [7]), Mihailescu proved that if Catalan’s 

equation has a non-trivial solution then −
phq  (so, by symmetry, ),−

qhp  

where −
ph  is the p-th relative class number. A quite natural question is to 

know if this class number criterion can be extended to the Diophantine 

equation (1). In other words, can we claim that if −
phq�  then the 

Diophantine equation (1) has no non-trivial solution ? There exists no 

paper where this question is studied. In this article, we propose to prove 

that this claim holds under certain simple conditions on qp,  and .B  

From now, we assume, once and for all, that if ℓ  is a prime 

number dividing ,B  then 1=/ℓ  mod .p  In this paper, we first prove the 

following beautiful theorem which is a simple consequence of the 

principal result of [3]: 

Theorem 1. Assume that Bpp ,3>  and .−
phq�  Thus, the only 

solution of the Diophantine equation (1) is .0,1 == ZX  

Then, by using methods which go back to [5], [7] and by using a new 

method based on the use of a recent result on a circulant matrix (see [4]), 

we prove the following beautiful theorem: 

Theorem 2. Assume that −< phqqp �,7 �  and that the q-adic 

valuation of B is equal to 1. Furthermore, we assume that 4mod3≡p  if 

.191�p  Thus, the only solution of the Diophantine equation (1) is 

.0,1 == ZX  

Example 1. Assume that 317,4mod3 �� pp ≡  and that the       

q-adic valuation of B  is equal to 1. If ,qp <  then the only solution of the 

Diophantine equation (1) is .0,1 == ZX  Namely, for such −
php,  has no 

prime factor q  such that .pq >  
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2. The Stickelberger Ideal 

In this section, we give some useful results on the Stickelberger ideal. 

We refer the reader to [1], [2], [7] or [9] for more details. 

2.1. Prerequisites and notations 

We put p

i

e

π

=ζ

2

 and { }.1;;2;1 −= pP ⋯  For ,Pc ∈  we denote by 

cσ  the smautomorphi-Q  of ( )ζQ  defined by .cc ζ=ζ
σ

 The extension 

( ) QQ /ζ  is a Galois extension whose Galois group G  is given by 

{ }.: PcG c ∈σ=  If Z∈n  is congruent to Pc ∈  modulo ,p  we put 

.cn σ=σ  Particularly, 1−σ  is the complex conjugation. 

Definition 1. (1) The Stickelberger element [ ]GQ∈θ  is defined by 

.
1 1−

∈

σ=θ ∑ c

Pc

c
p

 

(2) The Stickelberger ideal SI  is the ideal of [ ]GZ  defined by 

[ ] [ ].GG ZZ θ= ∩SI  

In other words, SI  is the set of [ ] multiples-GZ  of θ  which have integral 

coefficients. 

An element ccPc
n σ∑ ∈

 of SI  is said to be positive if and only if 

.0, �cnPc ∈∀  

In this paper, the set of positive elements of SI  is denoted by .+
SI  In 

other words 

.0,:












∈∀∈σ= ∑
∈

+
�ccc

Pc

nPcn SS II  
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2.2. Particular elements of SI  

Let n be an integer such that ( ) .1, =pn  Recall that nσ  is the 

element of G  defined by .nn ζ=ζ
σ

 By abuse of notation, the element 

1σn  is denoted by .n  Using this notation, we put 

( ) [ ].Gn nn Zθ∈θσ−=Θ  

For a real number ,x  we denote by [ ]x  the integer part of [ ] max: =xx  

{ }.: xaa �Z∈  We have (see [1], Proposition 7.2) 

.1−

∈

σ



=Θ ∑ c

Pc

n p

nc
 

So, .+∈Θ SIn  In particular 

.1
1

2

2

1

+−
−

=

∈σ=Θ ∑
+

SIc

p

c
p

 

From the above, we can deduce that 

( ) ( ) ,N1 21 QQ ζ− =Θσ+  (2) 

where ( ) QQ ζN  is the norm relative to the extension ( ) .QQ ζ  Namely, 

( ) ( ) 1
1

1
1

1
1

1

1

21

2

1

2

1

2

1

11 −
−

−

=

−
−

=

−
−

−

=

− σσ+σ=σσ+=Θσ+ ∑∑∑
+++

c

p

c

c

p

c

c

p

c
ppp

 

1
1

1

1
1

1
1

2

1

2

1

−
−

=

−
−

−

=

−
−

=

σ=σ+σ= ∑∑∑
++

c

p

c

cp

p

c

c

p

c
pp

 

( ) .N

1

1

QQ ζ

−

=

=σ= ∑ c

p

c
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2.3. A property of 2ΘΘΘΘ  for 4mod3≡p  

In this subsection, we assume that .4mod3≡p  Let pF  be the field 

of p  elements. We fix, once and for all, a primitive element of ×
pF  which 

is denoted by g. Let G∈σ  defined by 1.
2

−ζ=ζσ g  is not a square 

modulo p  since .4mod3≡p  Consequently, for all { }
2

3
;;0

−
∈

p
⋯k  

there exist integers { },1;0, ∈kk ba  such that 

.1

2

3

0

2

3

0

2 22
k

k
k

k

k

kk

k

kk σσ+σ=σ+σ=Θ −

−

=
−

−

=
∑∑ baba

p

gg

p

 (3) 

We have the following lemma: 

Lemma 1. There exists at least an integer { }
2

3
;;0

−
∈

p
⋯k  such that 

.1±=− kk ba  

Proof. There exists at least an integer { }
2

3
;;0

−
∈

p
⋯k  such that 

.1±=− kk ba  Otherwise 

,,
2

3
;;0 kkk ba

p
=







 −

∈∀ ⋯  

since { }.1;0,,
2

3
;;0 ∈







 −

∈∀ kkk ba
p

⋯  Consequently, we obtain 

k
k

k
k

k

k
k

k
k

k

σσ+σ=σσ+σ=Θ −

−

=

−

−

=
∑∑ 1

2

3

0

1

2

3

0

2 baba

pp

 

  ( ),1 1

2

3

0

−

−

=

σ+σ= ∑ k
k

k

a

p
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so that 

( ) ( ) ( )11

2

3

0

21 111 −−

−

=

− σ+σ−σ=Θσ− ∑ k
k

k

a

p

 

 ( ),1 2
1

2

3

0

−

−

=

σ−σ= ∑ k
k

k

a

p

 

that is 

.0212 =Θσ−Θ −   (4) 

Equality (2) implies that 

( ( ) ) ,0N 22 =Θ−−Θ ζ QQ  (5) 

that is 

( ) .N2 2 QQ ζ=Θ  (6) 

Finally, we obtain 

( ) ,N2 1
1

2

1

QQ ζ
−

−

=

=σ∑
+

c

p

c
p

  (7) 

which is false.  � 

2.4. The Stickelberger theorem 

In the following, by (fractional) ideal we mean (fractional) ideal of 

[ ].ζZ  

From Stickelberger’s theorem, we know that Stickelberger’s ideal SI  

annihilates the class group of ( ).ζQ  In other words, if a  is a fractional 

ideal and if ,SI∈Θ  then Θa  is principal. We can have a more precise 

result (see [7], page 4): 
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Theorem 3. Let a  be an ideal. Suppose that ( ) ( ) ,t=ζ aQQN  where t 

is a product of powers of prime numbers .mod1, p≡ℓℓ  Then, for all 

,+∈Θ stI  there exists a Jacobi integer [ ]ζ∈ Zj  such that 

( ).j=Θa  (8) 

3. The Mihailescu Ideal 

3.1. The augmented part of an ideal of [ ]GZ  

The weight homomorphism [ ] ZZ →−Gw :  is defined by 

.c

Pc

cc

Pc

nnw ∑∑
∈∈

=













σ  

By definition, its kernel consists of elements of weight 0. It is called the 

augmentation ideal of [ ].GZ  If I  is an ideal of [ ],GZ  then the augmented 

part of I  is the ideal of [ ]GZ  defined by 

( ){ }.0: =Θ∈Θ= waug II  

3.2. The r-ball of an ideal of [ ]GZ  

The size function ⋅  is defined from [ ] NZ →−G  by 

.c

Pc

cc

Pc

nn ∑∑
∈∈

=σ  

Let I  be an ideal of [ ].GZ  The r-ball of I  is defined by 

( ) { }.: rr �Θ∈Θ= II  

3.3. A theorem on Mihailescu’s ideal 

In this subsection, we fix a non-zero integer .x  Recall that q  is an 

odd prime number distinct from .p  Mihailescu’s ideal MI  is the ideal of 

[ ]GZ  consisting of [ ]GZ∈Θ  such that ( ) ( ( ) ) .
q

x
×Θ

ζ∈ζ− Q  We have the 

following result (see Theorem 8.5 of [1]): 
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Theorem 4. Assume that .qp <  If ,8 qqx �  then ( ) { }.02 =aug
MI  

4. A Circulant Matrix 

Recall that g is a primitive element of ×
pF  and that G∈σ  is defined 

by .
2gζ=ζσ  We put .

1

1

1

1

ζ−
−

ζ−
=Z  We denote by M  the circulant 

matrix whose first line is given by 

.
2

3−

σσ

p

ZZZ ⋯  

This matrix plays an important role in the proof of the Theorem 2. We 

have the following lemma: 

Lemma 2. The coefficients of the matrix M  are elements of the ring 

[ ].,
1

1
ζ−

ζZ  

Proof. Let { }.;;0
2

3−
∈

p
…k  It is not difficult to see that 

.
1

1

1

1

1

1

ζ−

ζ+
⋅

ζ−

ζ−
=

ζ−

ζ+
=

σ

σσ

σ
σ

k

kk

k
k

Z  

The algebraic number 
kσζ−

ζ−

1

1
 is a unit of [ ]ζZ  (called cyclotomic or 

circular unit). Consequently, 

.
1

1
,

1

1

1

1






ζ−
ζ∈

ζ−

ζ+
⋅

ζ−

ζ−
=

σ

σ

σ
Z

k

k

k

Z  

� 
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Furthermore, if 4mod3≡p  then the determinant of M  does not 

depend on the choice of the value of g and it is given by (see [4]) 

( ) ( ) .21det 4

7

2

3

4

3

php p

ppp

−××××−= −
−−−

M  

5. Some Useful Lemmas to Prove the Theorems 1 and 2 

Lemma 3 (see [8], P1.2 page 11). Let 0=/x  and 0=/y  be distinct    

co-prime integers. We have the following results: 

(1) The quotient 
yx

yx pp

−

−
 is a non-zero positive integer. Furthermore, 

we have 1=
−

−

yx

yx pp

 if and only if 1=x  and 1−=y  or 1−=x  and 

.1=y  

(2) p divides 
yx

yx pp

−

−
 if and only if p divides .yx −  Furthermore, the 

p-adic valuation of 
yx

yx pp

−

−
 is equal to 0 or 1. 

(3) We have ( ).,, pyxyx
yx

yx pp

−=









−

−

−
 

Lemma 4. Let x  and y be distinct co-prime integers. We assume that 

there exist integers 2�n  and 1>z  such that 

.n
pp

z
yx

yx
=

−

−
 (9) 

We have the following results: 

(1) The ideals ( ) { }1,,2,1, −=∈ζ− pPcyx c
⋯  are pairwise          

co-prime. 

(2) There exists an ideal a  such that ( ) .nyx a=ζ−  
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(3) For all prime number ℓ  dividing ,z  we have .mod1 p≡ℓ  

Particularly, ( ) ( ) z=ζ aQQN  is a product of powers of prime numbers ℓ  

such that .mod1 p≡ℓ  

Proof. (1) The ideals ( ) Pcyx c ∈ζ− ,  are pairwise co-prime. 

Otherwise, there exist Pba ∈,  distinct integers and a prime ideal p  

such that  

p∈ζ− yx a  and ,p∈ζ− yx b   (10) 

so that ( ) ( ) ,p∈ζ−−ζ−=ζ−ζ yxyxy baab  that is, p∈y  or .p∈ζ−ζ ab  

Suppose that .p∈y  In this case, p∈ζ+ζ−= yyxx aa  in 

contradiction with the fact that x and y are co-prime integers. 

Suppose that .p∈ζ−ζ ab  Recall that p is totally ramified in the 

extension ( ) QQ ζ  and that ab ζ−ζ  is a generator of the only prime ideal 

of [ ]ζZ  above p since .mod pba =/  The ideal ( )ab ζ−ζ  is even a maximal 

ideal of [ ]ζZ  since [ ]ζZ  is a Dedekind ring. From ,p∈ζ−ζ ab  we deduce 

that ( ),ab ζ−ζ=p  so that ( )aba yx ζ−ζ∈ζ−  since .p∈ζ− yx a  The 

Equation (9) can be rewritten as 

( ) .nc

Pc

zyx =ζ−∏
∈

  (11) 

Since ( ),aba yx ζ−ζ∈ζ−  we have .nzp  Particularly, the p-adic 

valuation of 
yx

yx pp

−

−
 is greater than or equal to ,1>n  in contradiction 

with the second assertion of Lemma 3. 

(2) The ideals ( ) ,, Pcyx c ∈ζ−  being pairwise co-prime, we deduce 

from (11) that there exists an ideal a  such that ( ) .nyx a=ζ−  
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(3) Let L  be a prime ideal above .ℓ  From the equality (11), we deduce 

that there exists P∈k  such that ( ).yx kζ−L  The ideals 

( ) ,, Pcyx c ∈ζ−  being pairwise co-prime, we can claim that the prime 

ideals G∈σσ ,L  are pairwise distinct, so that the ideal L  is totally split 

in the extension ( ) .QQ ζ  So, the decomposition group of ℓ  in this 

extension is trivial. This group being generated by ,mod pℓ  so we have 

.mod1 p≡ℓ  The last assertion is clear since 

( ) ( ) ( ) ( ) ( ) ( )yxnn ζ−== ζζζ QQQQQQ NNN aa  

( )yx c

Pc

ζ−= ∏
∈

 

.nz=  

� 

Lemma 5 (see [2], Lemma 3.5.19). Let ( )ζ∈α Q  be such that 

[ ].ζ∈
α

α
Z  Then 

α

α
 is a root of unity of [ ],ζZ  that is a 2p-th root of unity. 

Lemma 6. Suppose qp <  and there exists integers 1=/x  and 1>z  

such that 

.
1

1 q
p

z
x

x
=

−

−
 

If −
phq �  then .8 qqx <  

Proof. From the second assertion of Lemma 4, there exists an ideal a  

such that 

( ) .qx a=ζ−   (12) 



BENJAMIN DUPUY 156 

As ,−
phq �  the class of a  belongs to the real part of the class group of 

( ).ζQ  In other words, we have ( )γ= ba  where  ( )×ζ∈γ Q  and b  is a “real” 

fractional ideal of [ ]ζZ  (that is, ).bb =  Furthermore, qb  is a principal 

real ideal; in other words, ( )β=qb  where ( )ζ∈β Q  and qq
bb =  that is 

( ) ( ).β=β  Particularly, there exists a unit u of [ ]ζZ  such that .uβ=β  In 

fact, by Lemma 5 u is a 2p-th root of unity since [ ].ζ∈
β

β
= Zu  From the 

equality (12), we deduce that 

,ηβγ=ζ− qx  

where η  is a unit of [ ].ζZ  Particularly 

.
q

u
x

x








γ

γ

η

η
=

ζ−

ζ−
  (13) 

We have [ ]ζ∈
η

η
Z  since η  is a unit of [ ].ζZ  By lemma 5, 

η

η
 as u is a 

2p-th root of unity. Particularly, u
η

η
 is the q-th power of a 2p-th root of 

unity since ( ) .1,2 =qp  From (13), we deduce that there exists ( )×ζ∈µ Q  

such that ,q

x

x
µ=

ζ−

ζ−
 that is  

( ) ( ( ) ) .
11 q

x
×−σ

ζ∈ζ− − Q  (14) 

We have ( ) 011 =−σ−w  and .211 =−σ−  (14) implies that 

( ).21 aug
1 M

I∈−σ−  Particularly, ( ) { }.02aug =/M
I  From Theorem 4 of the 

Subsection 3.3, we deduce that .8 qqx <   � 
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Lemma 7 (See [7], Lemma 1). Let [ ]ζ∈α Z  such that .Z∈α⋅α  

Suppose there exists a Jacobi integer j such that the ideal ( )α  is generated 

by j. Then 

., Z∈⋅ζ±=α njn  

Lemma 8 (See [5], Lemma 1). Let q  be a prime ideal of the ring of 

integers KO  of a number field .K  Let q be the prime number below .q  If 

KO∈βα,  with ,mod qqq β≡α  then .mod 2qqq β≡α  

The following lemma is a nice application of the Theorem 1 of [4]: 

Lemma 9. Recall that p and q are distinct odd prime numbers. We 

assume that 4mod3≡p  and that there exists integers yx,  and z such 

that 

( ) ( ) ,1,1,,1, =−=>=
−

−
yxyxzz

yx

yx
q

q
pp

ν  

where qν  is the q-adic valuation. Then we have .−
phq  

Proof. By Lemma 4, there exists an ideal a  such that 

( ) ,qyx a=ζ−  (15) 

and ( ) ( ) z=ζ aQQN  is a product of powers of prime numbers ℓ  such that 

.mod1 p≡ℓ  Let 2Θ  be one of the positive elements of Stickelberger’s 

ideal (see Subsection 2.2). By Theorem 3 of the Subsection 2.4, there 

exists a Jacobi integer [ ]ζ∈ Zj  such that ( ).2 j=Θ
a  From (15), we 

deduce that 

(( ) ) ( ).2 qjyx =ζ−
Θ

  (16) 
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By (2), we know that ( ) ( ) ,1 21 QQ ζ− =Θσ+ N  so that 

( ) ( ) ( )( ) ( ) ( ) QQ ζ− ζ−=ζ−=ζ−⋅ζ− Θσ+ΘΘ N
yxyxyxyx 2122 1

 

 ( ) ( ) ( ) ( )yxyx ζ−=ζ−= ζζ QQQQ NN  

 ( ) ( ) .ZQQ ∈== ζ
qq zaN  

Furthermore, qj  is a Jacobi integer since j  is one. By (16) and 

Lemma 7, there exist Z∈n  and 1±=ε  such that 

( ) .2 qn jyx ζ=ζ−
Θ ε  

We have ( ) 1,2 =qp  so that nζε  is the q-th power of a 2p-th root of 

unity. So, we can suppose that .1=ζnε  In other words, we can suppose 

that 

( ) ,2 qjyx =ζ−
Θ

  (17) 

with [ ].ζ∈ Zj  Note that j is no longer necessarily a Jacobi integer but the 

fact that [ ]ζ∈ Zj  is sufficient for our purpose. 

From (17) we deduce that 

( )( )
( ) ( )

( )

.

1
1

1
1

11

22

1

22
2

Θ

ΘΘ
Θ

ζ−

=







ζ−

−
+⇒=








ζ−

−
+ζ−

−p

y

j

y

yx
j

y

yx
y

q
q  

(18) 

Recall that we have (see (3)) 

,1

2

3

0

2
k

k
k

k

k

σσ+σ=Θ −

−

=
∑ ba

p
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with { },1;0, ∈kk ba  for all { },;;0
2

3−
∈

p
⋯k  so that 

( )
( ) ( )

,

1

1

1

1
1

1
2

3

0

2

3

0

2
k

k

k

k

kk

b
p

a
p

y

yx

y

yx

y

yx














ζ−

−
+×















ζ−

−
+=








ζ−

−
+

σ

−

=
σ

−

=

Θ

∏∏  

that is 

( )
( )

( )

( )

( )
.

1

1

1

1
1

1
2

3

0

2

3

0

2















ζ−

−
+×















ζ−

−
+=








ζ−

−
+

σ

−

=
σ

−

=

Θ

∏∏ kk

k

k

k

k y

yxb

y

yxa

y

yx

pp

  (19) 

Let q  be a prime ideal above 1, �sq  an integer and ( )., ζ∈βα Q  In 

the rest of this paper, we adopt the following notation: 

,mod sqβ≡α  

if and only if there exists ( )ζ∈γ Q  such that 

( ) ,, s�γγ+β=α qν  

where qν  is the adic-q  valuation. 

Let { }.;;0
2

3−
∈

p
⋯k  Recall that .yxq −  Furthermore 

kσζ−1  is a 

generator of the only prime ideal of [ ]ζZ  above p and yq �  since yxq −  

and ( ) .1, =yx  Consequently, we have 

( )
qmod0

1

≡

ζ−

−

σky

yx
 and 

( )
.mod

1

q≡

ζ−

−

σky

yx
 

From (19) we deduce that 

( )
.mod

11

1
1

1 2
2

3

0

2

q
kk

kk

k
σσ

−

=

Θ

ζ−

+

ζ−

−
+≡








ζ−

−
+ ∑

ba

y

yx

y

yx

p
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Using (18) we obtain 

( )

.mod

11

1

1

2
2

3

022

1
q

kk

kk

k
σσ

−

=Θ ζ−

+

ζ−

−
+≡

ζ−

∑−

ba

y

yx

y

j

p

q

p
 (20) 

By a similar reasoning to the above, we have 

( )

,mod

11
1

1

2
2

3

022

1
q

k

k

k

k

k
σσ

−

=Θ ζ−

+
ζ−

−
+≡

ζ−

∑−

ba

y

yx

y

j

p

q

p
 

so that 

( )
.mod

11

1

1

2
2

3

022

1
q

k

kk

k

k σσ

−

=Θ ζ−
+

ζ−

−
+≡

ζ−

∑−

ba

y

yx

y

j

p
q

p
 (21) 

Equations (20) and (21) imply that 

( ) ( )
( )kk

k

ba
y

yx

y

j

y

j

p
qq

pp
−

−
≡

ζ−

−

ζ−

∑
−

=ΘΘ
−−

2

3

022

1

22

1

11

 

,mod

1

1

1

1 2q














ζ−

−

ζ−

×
σσ kk

 

that is, 

( )

( )

( )
( )kk

k

ba
y

yxj
j

y

p
q

q
p

−
−

≡














ζ−

ζ−
−

ζ−

∑
−

=
Θ

Θ

Θ
−

2

3

0
2

2

22

1
1

1

1

1
 

.mod

1

1

1

1 2q














ζ−

−

ζ−

×
σσ kk
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In other words 

( )

( )
( ) ( ) ( )kk

k

bayxyjj

p

qq
p

−−ζ−≡
ζ−

ζ−
− ∑

−

=

Θ

Θ

Θ − 2

3

0

22

3

2

2

1
1

1
 

.mod

1

1

1

1 2q














ζ−

−

ζ−

×
σσ kk

  (22) 

We have 

( )

( )
( ) ,

1

1 2

2

2
Θ

Θ

Θ

ζ−=
ζ−

ζ−
 

where ζ−  is the q-th power of a 2p-th root of unity since ( ) .1,2 =qp  

Particularly, there exists a 2p-th root of unity denoted by r such that 

( ) .2 qr=ζ−
Θ

 

We put [ ].1 ζ∈= Zjrj  Equation (22) implies that 

( ) ( ) ( ) .mod

1

1

1

1
1 2

2

3

0
1

22

3

q














ζ−

−

ζ−

−−ζ−≡−
σσ

−

=

Θ ∑
−

kkkk

k

bayxyjj

p

qq
p

 

(23) 

Recall that yxq −  and for all { } ( ) .01,;;0
2

3
=ζ−∈ σ− k

k qν
p

⋯  

Thus (23) implies that 

.mod0 2
1 q≡− qq jj  

Therefore, by Lemma 8, we have 

.mod0 2
1 q≡− qq jj   (24) 
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Since ( ) ,01 22

3

=












ζ− Θ

−p

yqν  Equations (23) and (24) imply that 

( ) ( ) .mod0

1

1

1

1 2
2

3

0

q≡














ζ−

−

ζ−

−−
σσ

−

=
∑ kkkk

k

bayx

p

  (25) 

By hypothesis ( ) 1=− yxqν  and we know that q is unramified in the 

extension ( ) QQ /ζ  since ,pq =/  so that ( ) .1=− yxqν  Thus, we deduce 

from (25) that 

( ) .mod0

1

1

1

1
2

3

0

q≡














ζ−

−

ζ−

−
σσ

−

=
∑ kkkk

k

ba

p

 (26) 

We put 
ζ−

−
ζ−

=
1

1

1

1
Z  as noted in the Section 4. Equation (26) implies 

that 

( ) .mod0
2

3

0

q≡− σ

−

=
∑

k

kk

k

Zba

p

 (27) 

Let { }.;;1
2

1−
∈

p
i ⋯  By a similar reasoning to the above, we obtain 

( ) ,mod0
1

2

3

0

−σσ

−

=

≡−∑
i

Zba

p

q
k

kk

k

 

that is 

( ) .mod0
1

2

3

0

q≡−
+−σ

−

=
∑

i
Zba

p

k

kk

k

 (28) 
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As noted in the Section 4, let M  be the circulant matrix whose first line 

is given by 

.
2

3−

σσ

p

ZZZ ⋯  

Note that the coefficient of M  on the i-th row and j-th column is given by 

[ ] .
ij

Zij

−σ=M  

Let X  be the column matrix defined by 

.

2

3

2

3

00

























−

−

=

−− pp ba

ba

⋮X  

Let { }
2

1
;;1

−
∈

p
i ⋯  be an integer. We have 

[ ] [ ] [ ] ( ) ( ).
1

2

3

0

11

2

1

1

1

2

1

1

1 kk

k

kk

k

kk

k

kk

baZbaZ
ii

pp

i

p

i −=−==
+−− σ

−

=

−−
σ

−

=

−

=
∑∑∑ XMMX  

From (28), we deduce that 

[ ] .mod01 q≡iMX  

i being an arbitrary element of { },;;1
2

1−p
⋯  we have 

{ } [ ] .mod0,;;1 12

1
q≡∈∀

−
i

p
i MX⋯   (29) 

Let A  be the adjugate of the matrix .M  It follows from Lemma 2 of 

the Section 4 that the coefficients of A  are elements of the ring 

.
1

1
, 





ζ−
ζZ  Particularly 

{ } [ ]( ) .0,;;1,
2

1
�

k
k i

p
i Aqν

−
∈∀ ⋯  
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From (29) we deduce that 

{ } [ ] [ ] [ ] .mod0,;;1 1

2

1

1

12

1
q≡=∈∀ ∑

−

=

−
kk

k

MXAAMX i

p

i
p

i ⋯  (30) 

By a well-known result ( ) .det XMAMX =  

Since ,4mod3≡p  by Theorem 1 of [4] 

( ) ( ) .21det 4

7

2

3

4

3

php p

ppp

−××××−= −
−−−

M  

Particularly 

( ) .21 4

7

2

3

4

3

XAMX php p

ppp

−××××−= −
−−−

 

From (30), we deduce that { },;;1
2

1−
∈∀

p
i ⋯  

[ ] ,mod02 1
4

7

2

3

q≡−××× −
−−

ip php

pp

X  

that is 

{ } ( ) .mod02,;;0 4

7

2

3

2

3
q≡−−×××∈∀ −−

−−

iip
p

baphpi

pp

⋯  (31) 

By Lemma 1 of the Subsection 2.3, there exists { }
2

3
0 ;;0

−
∈

p
i ⋯  

such that .1
00

±=− ii ba  From (31) we deduce that 

,mod02 4

7

2

3

q≡−××× −
−−

php p

pp

 

that is .−
phq  The lemma is proved.  � 

6. Proof of the Theorem 1 

Suppose that the Diophantine equation (1) has a solution ( )ZX ;  with 

.1=/X  Since ,1=/X  this equation can be rewritten as 

( ) .
1

1
1 q

p

BZ
X

X
X =

−

−
−  (32) 
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Recall that .Bp  Write 

( ) ( )
( ) ,1,,, 1111 === ZBpZpZBpB

ZB pp νν

 

where pν  is the p-adic valuation. We have 

( )
( ) ( )

.
1

1
1 11

qZqB
p

ZBp
X

X
X pp ⋅⋅=

−

−
−

+ νν

 (33) 

Since ( ) ( ) ,0>+ ZqB pp νν  by assertion 2 and 3 of Lemma 3, we have 

p
X

X
X

p

=










−

−
−

1

1
,1  and .1

1

1
=











−

−

X

X p

pν   (34) 

Recall that if ℓ  is a prime number dividing ,B  then .mod1 pl =/  By 

Proposition 2.10 of [9], if p=/ℓ  is a prime number dividing 
1

1

−

−

X

X p

 then 

.mod1 pl ≡  Furthermore, if ℓ  is a prime number dividing 1B  then 

p=/ℓ  and pmod1=/ℓ  since .1 BB  Consequently 1B  is a divisor of 

.1−X  So, from (33) and (34), we deduce that there exists integers 2Z  

and 3Z  such that 

( ) ( )
.,

1

1
,1 321321

1
ZZZZp

X

X
ZBpX q

p
qZqB pp ⋅=⋅=

−

−
⋅⋅=−

−+ νν

 

By Theorem 1.1 of [3], −
phq  in contradiction with the hypothesis .−

phq �  

The theorem is proved.  � 

7. Proof of the Theorem 2 

Suppose that the Diophantine equation (1) has a solution ( )ZX ;  with 

.1=/X  If ,BZp  reasoning as before, we can prove that −
phq  in 

contradiction with the hypothesis .−
phq �  So, we can suppose in the 

following that BZ  is co-prime to p. 
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By a similar reasoning, as one used in the previous proof, there exists 

integers 1Z  and 2Z  such that 

.,
1

1
,1 2121 ZZZZ

X

X
BZX q

p
q ==

−

−
=−   (35) 

Note that .12 >Z  Namely, by Lemma 3, q
p

Z
X

X
21

1
=

−

−
 is a non-zero 

positive integer. Consequently, if 12 �Z  then .12 =Z  By Lemma 3 

(note that ),0=/X  we obtain .1−=X  Equation (35) implies that 

( ),since211 1 BqqBZq =⇒−=+  

which is false. Consequently, we have 

.1,
1

1
,1 221 >=

−

−
=− ZZ

X

X
BZX q

p
q   (36) 

Particularly 

.1,
1

1
,1 22 >=

−

−
− ZZ

X

X
Xq q

p

  (37) 

• Assume that .1917 �� p  Thus, by hypothesis .4mod3≡p  From 

(37) we know that .1−Xq  By Lemma 9, 12 −Xq  since .−
phq �  From 

(36), we deduce that 

,11
2 ZqBZq q ⇒  

since the q-adic valuation of B is equal to 1. The fact that q is a divisor of 

1Z  implies that 

.11 1 −+= qq qBBZX �  

By hypothesis, qp <�7  and .Bq  Particularly ,8 Bq �<  so that 

.8181 qqq qXqXqBX �� ⇒−>⇒−  
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Nevertheless, (36) and Lemma 6 imply that qqX 8<  in contradiction 

with the previous result. Consequently, 1=X  and 0=Z  is the only 

solution of the Diophantine equation (1) if .4mod3,1917 ≡pp ��  

• Assume that .191>p  From (37) we know that .1−Xq  By 

Theorem 1 of [6], 12 −Xq  since .−
phq �  Then, reasoning as before, we can 

prove that qqX 8�  and qqX 8<  which give us a contradiction. The 

theorem is proved.  � 
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