Transnational Journal of Mathematical Analysis and Applications
Vol. 10, Issue 2, 2022, Pages 145-167
ISSN 2347-9086
Published Online on January 20, 2023
© 2022 Jyoti Academic Press
http://jyotiacademicpress.org

A NOTE ON THE DIOPHANTINE EQUATION
 $$
X^{P}-1=B Z^{Q}
$$

BENJAMIN DUPUY

Laboratoire de Mathematiques Mathmax
Lycée Max Linder
33505 Libourne
France
e-mail: benjamin.dupuy1@ac-bordeaux.fr

Abstract

In this paper, we consider the Diophantine equation $X^{p}-1=B Z^{q}$ which generalize the Catalan equation and which has not been studied so far. For the first time, we prove that this equation has no non-trivial solution under certain simple conditions on p, q and B.

1. Introduction

Let p and q be distinct odd prime numbers and B be a non-zero integer. In this paper, we consider the Diophantine equation

$$
\begin{equation*}
X^{p}-1=B Z^{q}, \tag{1}
\end{equation*}
$$

[^0]where X and Z are the unknown integers. A solution $(X ; Z)$ of this equation with $|X| \leqslant 1$ is called trivial solution. A such equation generalize the Catalan equation $X^{p}-1=Z^{q}$ and has not been studied so far. In this paper, we prove, for the first time, that this Diophantine equation has no non trivial solution under some conditions on p, q and B.

The Catalan equation has been successfully solved by Mihailescu (see [1]). In his work (see [1] or [7]), Mihailescu proved that if Catalan's equation has a non-trivial solution then $q \mid h_{p}^{-}$(so, by symmetry, $p \mid h_{q}^{-}$), where h_{p}^{-}is the p-th relative class number. A quite natural question is to know if this class number criterion can be extended to the Diophantine equation (1). In other words, can we claim that if $q \nmid h_{p}^{-}$then the Diophantine equation (1) has no non-trivial solution? There exists no paper where this question is studied. In this article, we propose to prove that this claim holds under certain simple conditions on p, q and B.

From now, we assume, once and for all, that if ℓ is a prime number dividing B, then $\ell \neq 1 \bmod p$. In this paper, we first prove the following beautiful theorem which is a simple consequence of the principal result of [3]:

Theorem 1. Assume that $p>3, p \mid B$ and $q \nmid h_{p}^{-}$. Thus, the only solution of the Diophantine equation (1) is $X=1, Z=0$.

Then, by using methods which go back to [5], [7] and by using a new method based on the use of a recent result on a circulant matrix (see [4]), we prove the following beautiful theorem:

Theorem 2. Assume that $7 \leqslant p<q, q \nmid h_{p}^{-}$and that the q-adic valuation of B is equal to 1 . Furthermore, we assume that $p \equiv 3 \bmod 4$ if $p \leqslant 191$. Thus, the only solution of the Diophantine equation (1) is $X=1, Z=0$.

Example 1. Assume that $p \equiv 3 \bmod 4,7 \leqslant p \leqslant 31$ and that the q-adic valuation of B is equal to 1 . If $p<q$, then the only solution of the Diophantine equation (1) is $X=1, Z=0$. Namely, for such p, h_{p}^{-}has no prime factor q such that $q>p$.

2. The Stickelberger Ideal

In this section, we give some useful results on the Stickelberger ideal. We refer the reader to [1], [2], [7] or [9] for more details.

2.1. Prerequisites and notations

We put $\zeta=e^{\frac{2 i \pi}{p}}$ and $P=\{1 ; 2 ; \cdots ; p-1\}$. For $c \in P$, we denote by σ_{c} the \mathbb{Q}-automorphism of $\mathbb{Q}(\zeta)$ defined by $\zeta^{\sigma_{c}}=\zeta^{c}$. The extension $\mathbb{Q}(\zeta) / \mathbb{Q}$ is a Galois extension whose Galois group G is given by $G=\left\{\sigma_{c}: c \in P\right\}$. If $n \in \mathbb{Z}$ is congruent to $c \in P$ modulo p, we put $\sigma_{n}=\sigma_{c}$. Particularly, σ_{-1} is the complex conjugation.

Definition 1. (1) The Stickelberger element $\theta \in \mathbb{Q}[G]$ is defined by

$$
\theta=\frac{1}{p} \sum_{c \in P} c \sigma_{c}^{-1}
$$

(2) The Stickelberger ideal $\mathcal{I}_{\mathcal{S}}$ is the ideal of $\mathbb{Z}[G]$ defined by

$$
\mathcal{I}_{\mathcal{S}}=\mathbb{Z}[G] \cap \theta \mathbb{Z}[G]
$$

In other words, $\mathcal{I}_{\mathcal{S}}$ is the set of $\mathbb{Z}[G]$-multiples of θ which have integral coefficients.

An element $\sum_{c \in P} n_{c} \sigma_{c}$ of $\mathcal{I}_{\mathcal{S}}$ is said to be positive if and only if

$$
\forall c \in P, n_{c} \geqslant 0
$$

In this paper, the set of positive elements of $\mathcal{I}_{\mathcal{S}}$ is denoted by $\mathcal{I}_{\mathcal{S}}^{+}$. In other words

$$
\mathcal{I}_{\mathcal{S}}^{+}=\left\{\sum_{c \in P} n_{c} \sigma_{c} \in \mathcal{I}_{\mathcal{S}}: \forall c \in P, n_{c} \geqslant 0\right\} .
$$

2.2. Particular elements of $\mathcal{I}_{\mathcal{S}}$

Let n be an integer such that $(n, p)=1$. Recall that σ_{n} is the element of G defined by $\zeta^{\sigma_{n}}=\zeta^{n}$. By abuse of notation, the element $n \sigma_{1}$ is denoted by n. Using this notation, we put

$$
\Theta_{n}=\left(n-\sigma_{n}\right) \theta \in \theta \mathbb{Z}[G] .
$$

For a real number x, we denote by $[x]$ the integer part of $x:[x]=\max$ $\{a \in \mathbb{Z}: a \leqslant x\}$. We have (see [1], Proposition 7.2)

$$
\Theta_{n}=\sum_{c \in P}\left[\frac{n c}{p}\right] \sigma_{c}^{-1}
$$

So, $\Theta_{n} \in \mathcal{I}_{\mathcal{S}}^{+}$. In particular

$$
\Theta_{2}=\sum_{c=\frac{p+1}{2}}^{p-1} \sigma_{c}^{-1} \in \mathcal{I}_{\mathcal{S}}^{+}
$$

From the above, we can deduce that

$$
\begin{equation*}
\left(1+\sigma_{-1}\right) \Theta_{2}=\mathrm{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}} \tag{2}
\end{equation*}
$$

where $\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}$ is the norm relative to the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$. Namely,

$$
\begin{aligned}
\left(1+\sigma_{-1}\right) \Theta_{2} & =\sum_{c=\frac{p+1}{2}}^{p-1}\left(1+\sigma_{-1}\right) \sigma_{c}^{-1}=\sum_{c=\frac{p+1}{2}}^{p-1} \sigma_{c}^{-1}+\sum_{c=\frac{p+1}{2}}^{p-1} \sigma_{-1} \sigma_{c}^{-1} \\
& =\sum_{c=\frac{p+1}{2}}^{p-1} \sigma_{c}^{-1}+\sum_{c=\frac{p+1}{2}}^{p-1} \sigma_{p-c}^{-1}=\sum_{c=1}^{p-1} \sigma_{c}^{-1} \\
& =\sum_{c=1}^{p-1} \sigma_{c}=\mathrm{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}} .
\end{aligned}
$$

2.3. A property of Θ_{2} for $p \equiv 3 \bmod 4$

In this subsection, we assume that $p \equiv 3 \bmod 4$. Let \mathbb{F}_{p} be the field of p elements. We fix, once and for all, a primitive element of \mathbb{F}_{p}^{\times}which is denoted by g. Let $\sigma \in G$ defined by $\zeta^{\sigma}=\zeta^{g^{2}} .-1$ is not a square modulo p since $p \equiv 3 \bmod 4$. Consequently, for all $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$ there exist integers $a_{k}, b_{k} \in\{0 ; 1\}$, such that

$$
\begin{equation*}
\Theta_{2}=\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma_{g^{2 k}}+b_{k} \sigma_{-g^{2 k}}=\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}+b_{k} \sigma_{-1} \sigma^{k} . \tag{3}
\end{equation*}
$$

We have the following lemma:
Lemma 1. There exists at least an integer $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$ such that $a_{k}-b_{k}= \pm 1$.

Proof. There exists at least an integer $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$ such that $a_{k}-b_{k}= \pm 1$. Otherwise

$$
\forall k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}, a_{k}=b_{k}
$$

since $\forall k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}, a_{k}, b_{k} \in\{0 ; 1\}$. Consequently, we obtain

$$
\begin{aligned}
\Theta_{2} & =\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}+b_{k} \sigma_{-1} \sigma^{k}=\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}+b_{k} \sigma_{-1} \sigma^{k} \\
& =\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}\left(1+\sigma_{-1}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\left(1-\sigma_{-1}\right) \Theta_{2} & =\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}\left(1-\sigma_{-1}\right)\left(1+\sigma_{-1}\right) \\
& =\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}\left(1-\sigma_{-1}^{2}\right),
\end{aligned}
$$

that is

$$
\begin{equation*}
\Theta_{2}-\sigma_{-1} \Theta_{2}=0 \tag{4}
\end{equation*}
$$

Equality (2) implies that

$$
\begin{equation*}
\Theta_{2}-\left(\mathrm{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}-\Theta_{2}\right)=0 \tag{5}
\end{equation*}
$$

that is

$$
\begin{equation*}
2 \Theta_{2}=\mathrm{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}} \tag{6}
\end{equation*}
$$

Finally, we obtain

$$
\begin{equation*}
\sum_{c=\frac{p+1}{2}}^{p-1} 2 \sigma_{c}^{-1}=\mathrm{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}} \tag{7}
\end{equation*}
$$

which is false.

2.4. The Stickelberger theorem

In the following, by (fractional) ideal we mean (fractional) ideal of $\mathbb{Z}[\zeta]$.

From Stickelberger's theorem, we know that Stickelberger's ideal $\mathcal{I}_{\mathcal{S}}$ annihilates the class group of $\mathbb{Q}(\zeta)$. In other words, if \mathfrak{a} is a fractional ideal and if $\Theta \in \mathcal{I}_{\mathcal{S}}$, then \mathfrak{a}^{Θ} is principal. We can have a more precise result (see [7], page 4):

Theorem 3. Let \mathfrak{a} be an ideal. Suppose that $\boldsymbol{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(\mathfrak{a})=t$, where t is a product of powers of prime numbers $\ell, \ell \equiv 1 \bmod p$. Then, for all $\Theta \in \mathcal{I}_{\text {st }}^{+}$, there exists a Jacobi integer $j \in \mathbb{Z}[\zeta]$ such that

$$
\begin{equation*}
\mathfrak{a}^{\Theta}=(j) \tag{8}
\end{equation*}
$$

3. The Mihailescu Ideal

3.1. The augmented part of an ideal of $\mathbb{Z}[G]$

The weight homomorphism $w: \mathbb{Z}[G] \longrightarrow \mathbb{Z}$ is defined by

$$
w\left(\sum_{c \in P} n_{c} \sigma_{c}\right)=\sum_{c \in P} n_{c}
$$

By definition, its kernel consists of elements of weight 0 . It is called the augmentation ideal of $\mathbb{Z}[G]$. If \mathcal{I} is an ideal of $\mathbb{Z}[G]$, then the augmented part of \mathcal{I} is the ideal of $\mathbb{Z}[G]$ defined by

$$
\mathcal{I}^{\text {aug }}=\{\Theta \in \mathcal{I}: w(\Theta)=0\}
$$

3.2. The r-ball of an ideal of $\mathbb{Z}[G]$

The size function $\|\cdot\|$ is defined from $\mathbb{Z}[G] \longrightarrow \mathbb{N}$ by

$$
\left\|\sum_{c \in P} n_{c} \sigma_{c}\right\|=\sum_{c \in P}\left|n_{c}\right| .
$$

Let \mathcal{I} be an ideal of $\mathbb{Z}[G]$. The r-ball of \mathcal{I} is defined by

$$
\mathcal{I}(r)=\{\Theta \in \mathcal{I}:\|\Theta\| \leqslant r\} .
$$

3.3. A theorem on Mihailescu's ideal

In this subsection, we fix a non-zero integer x. Recall that q is an odd prime number distinct from p. Mihailescu's ideal \mathcal{I}_{M} is the ideal of $\mathbb{Z}[G]$ consisting of $\Theta \in \mathbb{Z}[G]$ such that $(x-\zeta)^{\Theta} \in\left(\mathbb{Q}(\zeta)^{\times}\right)^{q}$. We have the following result (see Theorem 8.5 of [1]):

Theorem 4. Assume that $p<q$. If $|x| \geqslant 8 q^{q}$, then $\mathcal{I}_{M}^{a u g}(2)=\{0\}$.

4. A Circulant Matrix

Recall that g is a primitive element of \mathbb{F}_{p}^{\times}and that $\sigma \in G$ is defined by $\zeta^{\sigma}=\zeta^{g^{2}}$. We put $Z=\frac{1}{1-\zeta}-\frac{1}{1-\bar{\zeta}}$. We denote by \mathcal{M} the circulant matrix whose first line is given by

$$
Z Z^{\sigma} \cdots Z^{\frac{p-3}{2}}
$$

This matrix plays an important role in the proof of the Theorem 2. We have the following lemma:

Lemma 2. The coefficients of the matrix \mathcal{M} are elements of the ring $\mathbb{Z}\left[\zeta, \frac{1}{1-\zeta}\right]$.

Proof. Let $k \in\left\{0 ; \ldots ; \frac{p-3}{2}\right\}$. It is not difficult to see that

$$
Z^{\sigma^{k}}=\frac{1+\zeta \sigma^{\sigma^{k}}}{1-\zeta \sigma^{\sigma^{k}}}=\frac{1-\zeta}{1-\zeta^{\sigma^{k}}} \cdot \frac{1+\zeta \sigma^{k}}{1-\zeta}
$$

The algebraic number $\frac{1-\zeta}{1-\zeta \sigma^{\sigma^{k}}}$ is a unit of $\mathbb{Z}[\zeta]$ (called cyclotomic or circular unit). Consequently,

$$
Z^{\sigma^{k}}=\frac{1-\zeta}{1-\zeta \sigma^{\sigma^{k}}} \cdot \frac{1+\zeta^{\sigma^{k}}}{1-\zeta} \in \mathbb{Z}\left[\zeta, \frac{1}{1-\zeta}\right]
$$

Furthermore, if $p \equiv 3 \bmod 4$ then the determinant of \mathcal{M} does not depend on the choice of the value of g and it is given by (see [4])

$$
\operatorname{det}(\mathcal{M})=(-1)^{\frac{p-3}{4}} \times 2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p}
$$

5. Some Useful Lemmas to Prove the Theorems 1 and 2

Lemma 3 (see [8], P1.2 page 11). Let $x \neq 0$ and $y \neq 0$ be distinct co-prime integers. We have the following results:
(1) The quotient $\frac{x^{p}-y^{p}}{x-y}$ is a non-zero positive integer. Furthermore, we have $\frac{x^{p}-y^{p}}{x-y}=1$ if and only if $x=1$ and $y=-1$ or $x=-1$ and $y=1$.
(2) p divides $\frac{x^{p}-y^{p}}{x-y}$ if and only if p divides $x-y$. Furthermore, the p-adic valuation of $\frac{x^{p}-y^{p}}{x-y}$ is equal to 0 or 1 .
(3) We have $\left(\frac{x^{p}-y^{p}}{x-y}, x-y\right)=(x-y, p)$.

Lemma 4. Let x and y be distinct co-prime integers. We assume that there exist integers $n \geqslant 2$ and $z>1$ such that

$$
\begin{equation*}
\frac{x^{p}-y^{p}}{x-y}=z^{n} \tag{9}
\end{equation*}
$$

We have the following results:
(1) The ideals $\left(x-\zeta^{c} y\right), c \in P=\{1,2, \cdots, p-1\}$ are pairwise co-prime.
(2) There exists an ideal \mathfrak{a} such that $(x-\zeta y)=\mathfrak{a}^{n}$.
(3) For all prime number ℓ dividing z, we have $\ell \equiv 1 \bmod p$. Particularly, $\boldsymbol{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(\mathfrak{a})=z$ is a product of powers of prime numbers ℓ such that $\ell \equiv 1 \bmod p$.

Proof. (1) The ideals $\left(x-\zeta^{c} y\right), c \in P$ are pairwise co-prime. Otherwise, there exist $a, b \in P$ distinct integers and a prime ideal \mathfrak{p} such that

$$
\begin{equation*}
x-\zeta^{a} y \in \mathfrak{p} \text { and } x-\zeta^{b} y \in \mathfrak{p} \tag{10}
\end{equation*}
$$

so that $y\left(\zeta^{b}-\zeta^{a}\right)=x-\zeta^{a} y-\left(x-\zeta^{b} y\right) \in \mathfrak{p}$, that is, $y \in \mathfrak{p}$ or $\zeta^{b}-\zeta^{a} \in \mathfrak{p}$.

Suppose that $y \in \mathfrak{p}$. In this case, $x=x-\zeta^{a} y+\zeta^{a} y \in \mathfrak{p}$ in contradiction with the fact that x and y are co-prime integers.

Suppose that $\zeta^{b}-\zeta^{a} \in \mathfrak{p}$. Recall that p is totally ramified in the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$ and that $\zeta^{b}-\zeta^{a}$ is a generator of the only prime ideal of $\mathbb{Z}[\zeta]$ above p since $a \neq b \bmod p$. The ideal $\left(\zeta^{b}-\zeta^{a}\right)$ is even a maximal ideal of $\mathbb{Z}[\zeta]$ since $\mathbb{Z}[\zeta]$ is a Dedekind ring. From $\zeta^{b}-\zeta^{a} \in \mathfrak{p}$, we deduce that $\mathfrak{p}=\left(\zeta^{b}-\zeta^{a}\right)$, so that $x-\zeta^{a} y \in\left(\zeta^{b}-\zeta^{a}\right)$ since $x-\zeta^{a} y \in \mathfrak{p}$. The Equation (9) can be rewritten as

$$
\begin{equation*}
\prod_{c \in P}\left(x-\zeta^{c} y\right)=z^{n} \tag{11}
\end{equation*}
$$

Since $x-\zeta^{a} y \in\left(\zeta^{b}-\zeta^{a}\right)$, we have $p \mid z^{n}$. Particularly, the p-adic valuation of $\frac{x^{p}-y^{p}}{x-y}$ is greater than or equal to $n>1$, in contradiction with the second assertion of Lemma 3.
(2) The ideals $\left(x-\zeta^{c} y\right), c \in P$, being pairwise co-prime, we deduce from (11) that there exists an ideal \mathfrak{a} such that $(x-\zeta y)=\mathfrak{a}^{n}$.
(3) Let \mathcal{L} be a prime ideal above ℓ. From the equality (11), we deduce that there exists $k \in P$ such that $\mathcal{L} \mid\left(x-\zeta^{k} y\right)$. The ideals $\left(x-\zeta^{c} y\right), c \in P$, being pairwise co-prime, we can claim that the prime ideals $\mathcal{L}^{\sigma}, \sigma \in G$ are pairwise distinct, so that the ideal \mathcal{L} is totally split in the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$. So, the decomposition group of ℓ in this extension is trivial. This group being generated by $\ell \bmod p$, so we have $\ell \equiv 1 \bmod p$. The last assertion is clear since

$$
\begin{aligned}
\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(\mathfrak{a})^{n}=\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}\left(\mathfrak{a}^{n}\right) & =\left|\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(x-\zeta y)\right| \\
& =\left|\prod_{c \in P}\left(x-\zeta^{c} y\right)\right| \\
& =z^{n} .
\end{aligned}
$$

Lemma 5 (see [2], Lemma 3.5.19). Let $\alpha \in \mathbb{Q}(\zeta)$ be such that $\frac{\bar{\alpha}}{\alpha} \in \mathbb{Z}[\zeta]$. Then $\frac{\bar{\alpha}}{\alpha}$ is a root of unity of $\mathbb{Z}[\zeta]$, that is a $2 p$-th root of unity.

Lemma 6. Suppose $p<q$ and there exists integers $x \neq 1$ and $z>1$ such that

$$
\frac{x^{p}-1}{x-1}=z^{q}
$$

If $q \nmid h_{p}^{-}$then $|x|<8 q^{q}$.
Proof. From the second assertion of Lemma 4, there exists an ideal \mathfrak{a} such that

$$
\begin{equation*}
(x-\zeta)=\mathfrak{a}^{q} \tag{12}
\end{equation*}
$$

As $q \nmid h_{p}^{-}$, the class of \mathfrak{a} belongs to the real part of the class group of $\mathbb{Q}(\zeta)$. In other words, we have $\mathfrak{a}=\mathfrak{b}(\gamma)$ where $\gamma \in \mathbb{Q}(\zeta)^{\times}$and \mathfrak{b} is a "real" fractional ideal of $\mathbb{Z}[\zeta]$ (that is, $\mathfrak{b}=\overline{\mathfrak{b}}$). Furthermore, \mathfrak{b}^{q} is a principal real ideal; in other words, $\mathfrak{b}^{q}=(\beta)$ where $\beta \in \mathbb{Q}(\zeta)$ and $\overline{\mathfrak{b}}^{q}=\mathfrak{b}^{q}$ that is $(\bar{\beta})=(\beta)$. Particularly, there exists a unit u of $\mathbb{Z}[\zeta]$ such that $\bar{\beta}=\beta u$. In fact, by Lemma $5 u$ is a $2 p$-th root of unity since $u=\frac{\bar{\beta}}{\beta} \in \mathbb{Z}[\zeta]$. From the equality (12), we deduce that

$$
x-\zeta=\beta \gamma^{q} \eta
$$

where η is a unit of $\mathbb{Z}[\zeta]$. Particularly

$$
\begin{equation*}
\frac{x-\bar{\zeta}}{x-\zeta}=\frac{\bar{\eta}}{\eta} u\left(\frac{\bar{\gamma}}{\gamma}\right)^{q} \tag{13}
\end{equation*}
$$

We have $\frac{\bar{\eta}}{\eta} \in \mathbb{Z}[\zeta]$ since η is a unit of $\mathbb{Z}[\zeta]$. By lemma $5, \frac{\bar{\eta}}{\eta}$ as u is a $2 p$-th root of unity. Particularly, $\frac{\bar{\eta}}{\eta} u$ is the q-th power of a $2 p$-th root of unity since $(2 p, q)=1$. From (13), we deduce that there exists $\mu \in \mathbb{Q}(\zeta)^{\times}$ such that $\frac{x-\bar{\zeta}}{x-\zeta}=\mu^{q}$, that is

$$
\begin{equation*}
(x-\zeta)^{\sigma_{-1}-1} \in\left(\mathbb{Q}(\zeta)^{\times}\right)^{q} \tag{14}
\end{equation*}
$$

We have $w\left(\sigma_{-1}-1\right)=0$ and $\left\|\sigma_{-1}-1\right\|=2$. (14) implies that $\sigma_{-1}-1 \in \mathcal{I}_{M}^{\text {aug }}(2)$. Particularly, $\mathcal{I}_{M}^{\text {aug }}(2) \neq\{0\}$. From Theorem 4 of the Subsection 3.3, we deduce that $|x|<8 q^{q}$.

Lemma 7 (See [7], Lemma 1). Let $\alpha \in \mathbb{Z}[\zeta]$ such that $\alpha \cdot \bar{\alpha} \in \mathbb{Z}$. Suppose there exists a Jacobi integer j such that the ideal (α) is generated by j. Then

$$
\alpha= \pm \zeta^{n} \cdot j, n \in \mathbb{Z}
$$

Lemma 8 (See [5], Lemma 1). Let \mathfrak{q} be a prime ideal of the ring of integers \mathcal{O}_{K} of a number field K. Let q be the prime number below \mathfrak{q}. If $\alpha, \beta \in \mathcal{O}_{K}$ with $\alpha^{q} \equiv \beta^{q} \bmod \mathfrak{q}$, then $\alpha^{q} \equiv \beta^{q} \bmod \mathfrak{q}^{2}$.

The following lemma is a nice application of the Theorem 1 of [4]:
Lemma 9. Recall that p and q are distinct odd prime numbers. We assume that $p \equiv 3 \bmod 4$ and that there exists integers x, y and z such that

$$
\frac{x^{p}-y^{p}}{x-y}=z^{q}, \quad z>1, \quad(x, y)=1, \quad \nu_{q}(x-y)=1
$$

where ν_{q} is the q-adic valuation. Then we have $q \mid h_{p}^{-}$.
Proof. By Lemma 4, there exists an ideal \mathfrak{a} such that

$$
\begin{equation*}
(x-\zeta y)=\mathfrak{a}^{q} \tag{15}
\end{equation*}
$$

and $\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(\mathfrak{a})=z$ is a product of powers of prime numbers ℓ such that $\ell \equiv 1 \bmod p$. Let Θ_{2} be one of the positive elements of Stickelberger's ideal (see Subsection 2.2). By Theorem 3 of the Subsection 2.4, there exists a Jacobi integer $j \in \mathbb{Z}[\zeta]$ such that $\mathfrak{a}^{\Theta_{2}}=(j)$. From (15), we deduce that

$$
\begin{equation*}
\left((x-\zeta y)^{\Theta_{2}}\right)=\left(j^{q}\right) \tag{16}
\end{equation*}
$$

By (2), we know that $\left(1+\sigma_{-1}\right) \Theta_{2}=\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}$, so that

$$
\begin{aligned}
(x-\zeta y)^{\Theta_{2}} \cdot \overline{(x-\zeta y)^{\Theta_{2}}} & =(x-\zeta y)^{\left(1+\sigma_{-1}\right) \Theta_{2}}=(x-\zeta y)^{\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}} \\
& =\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(x-\zeta y)=\left|\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}(x-\zeta y)\right| \\
& =\mathbf{N}_{\mathbb{Q}(\zeta) / \mathbb{Q}}\left(\mathfrak{a}^{q}\right)=z^{q} \in \mathbb{Z} .
\end{aligned}
$$

Furthermore, j^{q} is a Jacobi integer since j is one. By (16) and Lemma 7, there exist $n \in \mathbb{Z}$ and $\epsilon= \pm 1$ such that

$$
(x-\zeta y)^{\Theta_{2}}=\epsilon \zeta^{n} j^{q}
$$

We have $(2 p, q)=1$ so that $\epsilon \zeta^{n}$ is the q-th power of a $2 p$-th root of unity. So, we can suppose that $\epsilon \zeta^{n}=1$. In other words, we can suppose that

$$
\begin{equation*}
(x-\zeta y)^{\Theta_{2}}=j^{q} \tag{17}
\end{equation*}
$$

with $j \in \mathbb{Z}[\zeta]$. Note that j is no longer necessarily a Jacobi integer but the fact that $j \in \mathbb{Z}[\zeta]$ is sufficient for our purpose.

From (17) we deduce that

$$
\begin{equation*}
(y(1-\zeta))^{\Theta_{2}}\left(1+\frac{x-y}{y(1-\zeta)}\right)^{\Theta_{2}}=j^{q} \Rightarrow\left(1+\frac{x-y}{y(1-\zeta)}\right)^{\Theta_{2}}=\frac{j^{q}}{y^{\frac{p-1}{2}}(1-\zeta)^{\Theta_{2}}} \tag{18}
\end{equation*}
$$

Recall that we have (see (3))

$$
\Theta_{2}=\sum_{k=0}^{\frac{p-3}{2}} a_{k} \sigma^{k}+b_{k} \sigma_{-1} \sigma^{k},
$$

with $a_{k}, b_{k} \in\{0 ; 1\}$, for all $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$, so that

$$
\left(1+\frac{x-y}{y(1-\zeta)}\right)^{\Theta_{2}}=\prod_{k=0}^{\frac{p-3}{2}}\left(1+\frac{x-y}{y\left(1-\zeta^{\sigma^{k}}\right)}\right)^{\alpha_{k}} \times \prod_{k=0}^{\frac{p-3}{2}}\left(1+\frac{x-y}{y\left(1-\bar{\zeta}^{\sigma^{k}}\right)}\right)^{b_{k}}
$$

that is

$$
\begin{equation*}
\left(1+\frac{x-y}{y(1-\zeta)}\right)^{\Theta_{2}}=\prod_{k=0}^{\frac{p-3}{2}}\left(1+\frac{a_{k}(x-y)}{y\left(1-\zeta^{\sigma^{k}}\right)}\right) \times \prod_{k=0}^{\frac{p-3}{2}}\left(1+\frac{b_{k}(x-y)}{y\left(1-\bar{\zeta} \sigma^{k}\right)}\right) \tag{19}
\end{equation*}
$$

Let \mathfrak{q} be a prime ideal above $q, s \geqslant 1$ an integer and $\alpha, \beta \in \mathbb{Q}(\zeta)$. In the rest of this paper, we adopt the following notation:

$$
\alpha \equiv \beta \bmod \mathfrak{q}^{s}
$$

if and only if there exists $\gamma \in \mathbb{Q}(\zeta)$ such that

$$
\alpha=\beta+\gamma, \nu_{\mathfrak{q}}(\gamma) \geqslant s
$$

where $\nu_{\mathfrak{q}}$ is the \mathfrak{q}-adic valuation.

Let $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$. Recall that $q \mid x-y$. Furthermore $1-\zeta \sigma^{k}$ is a generator of the only prime ideal of $\mathbb{Z}[\zeta]$ above p and $q \nmid y$ since $q \mid x-y$ and $(x, y)=1$. Consequently, we have

$$
\frac{x-y}{y\left(1-\zeta \sigma^{k}\right)} \equiv 0 \bmod \mathfrak{q} \text { and } \frac{x-y}{y\left(1-\bar{\zeta} \sigma^{k}\right)} \equiv \bmod \mathfrak{q} .
$$

From (19) we deduce that

$$
\left(1+\frac{x-y}{y(1-\zeta)}\right)^{\Theta_{2}} \equiv 1+\frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}} \frac{a_{k}}{1-\zeta^{\sigma^{k}}}+\frac{b_{k}}{1-\bar{\zeta} \sigma^{\sigma^{k}}} \bmod \mathfrak{q}^{2}
$$

Using (18) we obtain

$$
\begin{equation*}
\frac{j^{q}}{y^{\frac{p-1}{2}}(1-\zeta)^{\Theta_{2}}} \equiv 1+\frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}} \frac{a_{k}}{1-\zeta^{\sigma^{k}}}+\frac{b_{k}}{1-\bar{\zeta}^{\sigma^{k}}} \bmod \mathfrak{q}^{2} \tag{20}
\end{equation*}
$$

By a similar reasoning to the above, we have

$$
\frac{j^{q}}{y^{\frac{p-1}{2}}(1-\zeta)^{\Theta_{2}}} \equiv 1+\frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}} \frac{a_{k}}{1-\zeta^{\sigma k}}+\frac{b_{k}}{1-\bar{\zeta} \bar{\sigma}^{k}} \bmod \overline{\mathfrak{q}}^{2}
$$

so that

$$
\begin{equation*}
\frac{\bar{j}^{q}}{y^{\frac{p-1}{2}}(1-\bar{\zeta})^{\Theta_{2}}} \equiv 1+\frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}} \frac{a_{k}}{1-\bar{\zeta} \sigma^{k}}+\frac{b_{k}}{1-\zeta^{\sigma k}} \bmod \mathfrak{q}^{2} \tag{21}
\end{equation*}
$$

Equations (20) and (21) imply that

$$
\begin{aligned}
\frac{j^{q}}{y^{\frac{p-1}{2}}(1-\zeta)^{\Theta_{2}}}-\frac{\bar{j}^{q}}{y^{\frac{p-1}{2}}(1-\bar{\zeta})^{\Theta_{2}}} & \equiv \frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) \\
& \times\left(\frac{1}{1-\zeta \sigma^{k}}-\frac{1}{1-\bar{\zeta}^{\sigma^{k}}}\right) \bmod \mathfrak{q}^{2}
\end{aligned}
$$

that is,

$$
\begin{aligned}
\frac{1}{y^{\frac{p-1}{2}}(1-\zeta)^{\Theta_{2}}}\left(j^{q}-\frac{\bar{j}^{q}(1-\zeta)^{\Theta_{2}}}{(1-\bar{\zeta})^{\Theta_{2}}}\right) & \equiv \frac{x-y}{y} \sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) \\
& \times\left(\frac{1}{1-\zeta^{\sigma^{k}}}-\frac{1}{1-\bar{\zeta} \sigma^{k}}\right) \bmod \mathfrak{q}^{2}
\end{aligned}
$$

In other words

$$
\begin{align*}
j^{q}-\bar{j}^{q} \frac{(1-\zeta)^{\Theta_{2}}}{(1-\bar{\zeta})^{\Theta_{2}}} \equiv & y^{\frac{p-3}{2}}(1-\zeta)^{\Theta_{2}}(x-y) \sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) \\
& \times\left(\frac{1}{1-\zeta \sigma^{k}}-\frac{1}{1-\bar{\zeta} \sigma^{k}}\right) \bmod \mathfrak{q}^{2} . \tag{22}
\end{align*}
$$

We have

$$
\frac{(1-\zeta)^{\Theta_{2}}}{(1-\bar{\zeta})^{\Theta_{2}}}=(-\zeta)^{\Theta_{2}}
$$

where $-\zeta$ is the q-th power of a $2 p$-th root of unity since $(2 p, q)=1$. Particularly, there exists a $2 p$-th root of unity denoted by r such that

$$
(-\zeta)^{\Theta_{2}}=r^{q}
$$

We put $j_{1}=r \bar{j} \in \mathbb{Z}[\zeta]$. Equation (22) implies that

$$
\begin{equation*}
j^{q}-j_{1}^{q} \equiv y^{\frac{p-3}{2}}(1-\zeta)^{\Theta_{2}}(x-y) \sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right)\left(\frac{1}{1-\zeta^{\sigma^{k}}}-\frac{1}{1-\bar{\zeta}^{\sigma^{k}}}\right) \bmod \mathfrak{q}^{2} \tag{23}
\end{equation*}
$$

Recall that $q \mid x-y$ and for all $k \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}, \nu_{\mathfrak{q}}\left(1-\zeta^{\sigma^{k}}\right)=0$.
Thus (23) implies that

$$
j^{q}-j_{1}^{q} \equiv 0 \bmod \mathfrak{q}^{2}
$$

Therefore, by Lemma 8, we have

$$
\begin{equation*}
j^{q}-j_{1}^{q} \equiv 0 \bmod \mathfrak{q}^{2} \tag{24}
\end{equation*}
$$

Since $\nu_{\mathfrak{q}}\left(y^{\frac{p-3}{2}}(1-\zeta)^{\Theta_{2}}\right)=0$, Equations (23) and (24) imply that

$$
\begin{equation*}
(x-y) \sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right)\left(\frac{1}{1-\zeta^{\sigma^{k}}}-\frac{1}{1-\bar{\zeta}^{\sigma^{k}}}\right) \equiv 0 \bmod \mathfrak{q}^{2} \tag{25}
\end{equation*}
$$

By hypothesis $\nu_{q}(x-y)=1$ and we know that q is unramified in the extension $\mathbb{Q}(\zeta) / \mathbb{Q}$ since $q \neq p$, so that $\nu_{\mathfrak{q}}(x-y)=1$. Thus, we deduce from (25) that

$$
\begin{equation*}
\sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right)\left(\frac{1}{1-\zeta^{\sigma^{k}}}-\frac{1}{1-\bar{\zeta} \sigma^{k}}\right) \equiv 0 \bmod \mathfrak{q} \tag{26}
\end{equation*}
$$

We put $Z=\frac{1}{1-\zeta}-\frac{1}{1-\bar{\zeta}}$ as noted in the Section 4. Equation (26) implies that

$$
\begin{equation*}
\sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) Z^{\sigma^{k}} \equiv 0 \bmod \mathfrak{q} \tag{27}
\end{equation*}
$$

Let $i \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\}$. By a similar reasoning to the above, we obtain

$$
\sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) Z^{\sigma^{k}} \equiv 0 \bmod \mathfrak{q}^{\sigma^{i-1}}
$$

that is

$$
\begin{equation*}
\sum_{k=0}^{\frac{p-3}{2}}\left(a_{k}-b_{k}\right) Z^{\sigma^{k-i+1}} \equiv 0 \bmod \mathfrak{q} . \tag{28}
\end{equation*}
$$

As noted in the Section 4 , let \mathcal{M} be the circulant matrix whose first line is given by

$$
Z Z^{\sigma} \cdots Z^{\frac{p-3}{2}}
$$

Note that the coefficient of \mathcal{M} on the i-th row and j-th column is given by

$$
[\mathcal{M}]_{i j}=Z^{\sigma^{j-i}}
$$

Let \mathcal{X} be the column matrix defined by

$$
\mathcal{X}=\left(\begin{array}{c}
a_{0}-b_{0} \\
\vdots \\
a_{\frac{p-3}{2}}-b_{\frac{p-3}{2}}
\end{array}\right)
$$

Let $i \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\}$ be an integer. We have
$[\mathcal{M X}]_{i 1}=\sum_{k=1}^{\frac{p-1}{2}}[\mathcal{M}]_{i k}[\mathcal{X}]_{k 1}=\sum_{k=1}^{\frac{p-1}{2}} Z^{\sigma^{k-i}}\left(a_{k-1}-b_{k-1}\right)=\sum_{k=0}^{\frac{p-3}{2}} Z^{\sigma^{k-i+1}}\left(a_{k}-b_{k}\right)$.
From (28), we deduce that

$$
[\mathcal{M X}]_{i 1} \equiv 0 \bmod \mathfrak{q}
$$

i being an arbitrary element of $\left\{1 ; \cdots ; \frac{p-1}{2}\right\}$, we have

$$
\begin{equation*}
\forall i \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\},[\mathcal{M X}]_{i 1} \equiv 0 \bmod \mathfrak{q} \tag{29}
\end{equation*}
$$

Let \mathcal{A} be the adjugate of the matrix \mathcal{M}. It follows from Lemma 2 of the Section 4 that the coefficients of \mathcal{A} are elements of the ring $\mathbb{Z}\left[\zeta, \frac{1}{1-\zeta}\right]$. Particularly

$$
\forall i, k \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\}, \nu_{\mathfrak{q}}\left([\mathcal{A}]_{i k}\right) \geqslant 0 .
$$

From (29) we deduce that

$$
\begin{equation*}
\forall i \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\},[\mathcal{A M X}]_{i 1}=\sum_{k=1}^{\frac{p-1}{2}}[\mathcal{A}]_{i k}[\mathcal{M X}]_{k 1} \equiv 0 \bmod \mathfrak{q} \tag{30}
\end{equation*}
$$

By a well-known result $\mathcal{A} \mathcal{M} \mathcal{X}=\operatorname{det}(\mathcal{M}) \mathcal{X}$.
Since $p \equiv 3 \bmod 4$, by Theorem 1 of [4]

$$
\operatorname{det}(\mathcal{M})=(-1)^{\frac{p-3}{4}} \times 2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p}
$$

Particularly

$$
\mathcal{A M X}=(-1)^{\frac{p-3}{4}} \times 2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p} \mathcal{X}
$$

From (30), we deduce that $\forall i \in\left\{1 ; \cdots ; \frac{p-1}{2}\right\}$,

$$
2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p}[\mathcal{X}]_{i 1} \equiv 0 \bmod \mathfrak{q}
$$

that is

$$
\begin{equation*}
\forall i \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}, 2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p}\left(a_{i}-b_{i}\right) \equiv 0 \bmod \mathfrak{q} \tag{31}
\end{equation*}
$$

By Lemma 1 of the Subsection 2.3, there exists $i_{0} \in\left\{0 ; \cdots ; \frac{p-3}{2}\right\}$ such that $a_{i_{0}}-b_{i_{0}}= \pm 1$. From (31) we deduce that

$$
2^{\frac{p-3}{2}} \times p^{\frac{p-7}{4}} \times h_{p}^{-} \times \sqrt{-p} \equiv 0 \bmod \mathfrak{q}
$$

that is $q \mid h_{p}^{-}$. The lemma is proved.

6. Proof of the Theorem 1

Suppose that the Diophantine equation (1) has a solution ($X ; Z$) with $X \neq 1$. Since $X \neq 1$, this equation can be rewritten as

$$
\begin{equation*}
(X-1) \frac{X^{p}-1}{X-1}=B Z^{q} \tag{32}
\end{equation*}
$$

Recall that $p \mid B$. Write

$$
B=p^{\nu_{p}(B)} B_{1}, Z=p^{\nu_{p}(Z)} Z_{1},\left(p, B_{1} Z_{1}\right)=1
$$

where ν_{p} is the p-adic valuation. We have

$$
\begin{equation*}
(X-1) \frac{X^{p}-1}{X-1}=p^{\nu_{p}(B)+q \nu_{p}(Z)} \cdot B_{1} \cdot Z_{1}^{q} \tag{33}
\end{equation*}
$$

Since $\nu_{p}(B)+q \nu_{p}(Z)>0$, by assertion 2 and 3 of Lemma 3, we have

$$
\begin{equation*}
\left(X-1, \frac{X^{p}-1}{X-1}\right)=p \text { and } \nu_{p}\left(\frac{X^{p}-1}{X-1}\right)=1 \tag{34}
\end{equation*}
$$

Recall that if ℓ is a prime number dividing B, then $l \neq 1 \bmod p$. By Proposition 2.10 of [9], if $\ell \neq p$ is a prime number dividing $\frac{X^{p}-1}{X-1}$ then $l \equiv 1 \bmod p$. Furthermore, if ℓ is a prime number dividing B_{1} then $\ell \neq p$ and $\ell \neq 1 \bmod p$ since $B_{1} \mid B$. Consequently B_{1} is a divisor of $X-1$. So, from (33) and (34), we deduce that there exists integers Z_{2} and Z_{3} such that

$$
X-1=p^{\nu_{p}(B)+q \nu_{p}(Z)-1} \cdot B_{1} \cdot Z_{2}^{q}, \frac{X^{p}-1}{X-1}=p \cdot Z_{3}^{q}, Z_{1}=Z_{2} \cdot Z_{3}
$$

By Theorem 1.1 of [3], $q \mid h_{p}^{-}$in contradiction with the hypothesis $q \nmid h_{p}^{-}$. The theorem is proved.

7. Proof of the Theorem 2

Suppose that the Diophantine equation (1) has a solution ($X ; Z$) with $X \neq 1$. If $p \mid B Z$, reasoning as before, we can prove that $q \mid h_{p}^{-}$in contradiction with the hypothesis $q \nmid h_{p}^{-}$. So, we can suppose in the following that $B Z$ is co-prime to p.

By a similar reasoning, as one used in the previous proof, there exists integers Z_{1} and Z_{2} such that

$$
\begin{equation*}
X-1=B Z_{1}^{q}, \frac{X^{p}-1}{X-1}=Z_{2}^{q}, Z=Z_{1} Z_{2} \tag{35}
\end{equation*}
$$

Note that $Z_{2}>1$. Namely, by Lemma $3, \frac{X^{p}-1}{X-1}=Z_{2}^{q}$ is a non-zero positive integer. Consequently, if $Z_{2} \leqslant 1$ then $Z_{2}=1$. By Lemma 3 (note that $X \neq 0$), we obtain $X=-1$. Equation (35) implies that

$$
1+B Z_{1}^{q}=-1 \Rightarrow q=2(\text { since } q \mid B)
$$

which is false. Consequently, we have

$$
\begin{equation*}
X-1=B Z_{1}^{q}, \frac{X^{p}-1}{X-1}=Z_{2}^{q}, Z_{2}>1 \tag{36}
\end{equation*}
$$

Particularly

$$
\begin{equation*}
q \mid X-1, \frac{X^{p}-1}{X-1}=Z_{2}^{q}, Z_{2}>1 \tag{37}
\end{equation*}
$$

- Assume that $7 \leqslant p \leqslant 191$. Thus, by hypothesis $p \equiv 3 \bmod 4$. From (37) we know that $q \mid X-1$. By Lemma $9, q^{2} \mid X-1$ since $q \nmid h_{p}^{-}$. From (36), we deduce that

$$
q^{2}\left|B Z_{1}^{q} \Rightarrow q\right| Z_{1}
$$

since the q-adic valuation of B is equal to 1 . The fact that q is a divisor of Z_{1} implies that

$$
|X|=\left|1+B Z_{1}^{q}\right| \geqslant|B| q^{q}-1
$$

By hypothesis, $7 \leqslant p<q$ and $q \mid B$. Particularly $8<q \leqslant|B|$, so that

$$
|X| \geqslant|B| q^{q}-1 \Rightarrow|X|>8 q^{q}-1 \Rightarrow|X| \geqslant 8 q^{q}
$$

Nevertheless, (36) and Lemma 6 imply that $|X|<8 q^{q}$ in contradiction with the previous result. Consequently, $X=1$ and $Z=0$ is the only solution of the Diophantine equation (1) if $7 \leqslant p \leqslant 191, p \equiv 3 \bmod 4$.

- Assume that $p>191$. From (37) we know that $q \mid X-1$. By Theorem 1 of [6], $q^{2} \mid X-1$ since $q \nmid h_{p}^{-}$. Then, reasoning as before, we can prove that $|X| \geqslant 8 q^{q}$ and $|X|<8 q^{q}$ which give us a contradiction. The theorem is proved.

References

[1] Y. Bilu, Y. Bugeaud and M. Mignotte, The Problem of Catalan, Springer, 2014. DOI: https://doi.org/10.1007/978-3-319-10094-4
[2] H. Cohen, Number Theory, Springer, New York, 2007.
[3] B. Dupuy, A class number criterion for the equation $\left(x^{p}-1\right) /(x-1)=p y^{q}$, Acta Arithmetica 127(4) (2007), 391-401. DOI: https://doi.org/10.4064/aa127-4-5
[4] B. Dupuy, Note on a determinant, Integers 20 (2020); Article 48.
[5] P. Mihailescu, A class number free criterion for Catalan's conjecture, Journal of Number Theory 99(2) (2003), 225-231. DOI: https://doi.org/10.1016/S0022-314X(02)00101-4
[6] P. Mihailescu, New bounds and conditions for the equation of Nagell-Ljunggren, Journal of Number Theory 124(2) (2007), 380-395.

DOI: https://doi.org/10.1016/j.jnt.2006.10.010
[7] P. Mihailescu, On the class groups of cyclotomic extensions in presence of a solution to Catalan's equation, Journal of Number Theory 118(1) (2006), 123-144.

DOI: https://doi.org/10.1016/j.jnt.2005.08.011
[8] P. Ribenboim, Catalan's Conjecture, Academic, Boston, 1994.
[9] L. Washington, Introduction to Cyclotomic Fields, Springer, Berlin, Second Edition, 1997.

[^0]: 2020 Mathematics Subject Classification: 11D72, 11R18, 11R27, 11R29, 11R32.
 Keywords and phrases: Nagell-Ljunggren, Mihailescu ideal, class number, Stickelberger ideal, Jacobi integers.
 Communicated by Francisco Bulnes.
 Received December 30, 2022

