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Abstract 

The Riccati equation method is used to obtain a fast convergent approximation 

method for solution of second order linear ordinary differential equations. By 

examples it is shown how fast can converge the proposed method. 

1. Introduction 

Let ( )tp  be a real-valued continuous function on [ ].,0 TT  Consider 

the second order linear ordinary differential equation 

( ) [ ].,,0 0 TTttp ∈=φ+φ ′′  (1.1) 
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In practice, the problem of finding the values of solutions of differential 

equations (in particular, of Equation (1.1)) arises very often. This problem 

is solvable in the case when the solutions of a differential equation         

(in particular of a case of Equation (1.1)) are representable in the closed 

form through the known data of the equation. However this occurs in the 

very rare cases. To solve this problem, many numerical methods have 

been developed for solving differential equations (in particular for solving 

Equation (1.1)), and many works are devoted to them (see [1-10] and cited 

works therein). Among them notice [4] in which an impressive fast 

convergent numerical method for solving second order linear ordinary 

differential equations is developed. Unfortunately, the fast convergence of 

this method has been demonstrated practically in some examples, but has 

not yet been proved mathematically, which is why it is unclear to which 

equations it can be effectively applied. 

In this paper, we propose a new approximation method for solution of 

Equation (1.1) based on the Riccati equation method. We show with 

examples how fast this method can converge. 

2. Auxiliary Propositions 

Let [ ]βα,  be a subset of [ ].,0 TT  Consider the equation 

( ) [ ],,,0 βα∈=θ+θ ′′ ttp   (2.1) 

and associated with it the Riccati equation 

( ) [ ].,,2 βα∈+=′ ttpuu   (2.2) 

All solutions ( )tu  of the last equation, existing on [ ],, βα  are connected 

with solutions ( )tθ  of Equation (2.1) by the relations (see [11], p. 332) 

( ) ( ) ( ) ( ) [ ].,,,0,exp 000

0

βα∈=/θ













−θ=θ ∫ tttdutt

t

t

ττ   (2.3) 
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For any [ ]( )βα∈ ,Cx  denote by [ ] xx =βα,
 the norm of x in [ ]( )., βαC  

Set 

( ) ( ) ( ) ( )
( ) ( )

( )
,,

2

11 τ

τ

ττ

ττ

τ

d
pp

ttpdptp
n

n
nn

t

P
P

−
≡≡ ∫∫

α

+

α

 

where ( ) ( ) [ ] .,2,1,,,2exp …=βα∈












≡ ∫
α

ntdpt n

t

n ττP  

Theorem 2.1. Let the following conditions be satisfied: 

(1) ( ) ( ) ;11 ≤+α−β p  

(2) ( )( ) ( ) cepc c ≤+α−β α−β2  for some ( ].1,0∈c  

Then the following assertions are valid: 

(I) the solution ( )tu∗  of Equation (2.2) with ( ) 0=α∗u  exists on [ ]:, βα  

(II) the sequence ( ){ } ∞+
=1nn tp  converges to ( )tu∗  in [ ]( )βα,1

C  and 

( )
( ) ;,2,1,

2

…=ρ
α−β

≤−
α−β−

∗ nE
e

pu n

c

n   (2.4) 

( )
( )

( )

( )
( ) ,,3,2,

2 2
12

42

…=ρ
α−β

+ρ
α−β

≤′−′ −

α−β−α−β−

∗ nE
e

E
ce

pu n

c

n

c

n   (2.5) 

where ( ) ( ) { } ( ) ( ) ,
3

,,,min
4

2
2

1
ρ

≡ρρ≡ρα−β≡ρ α−β EEcpe c  

( )
( ) ( ) ( )

.,4,3,

121212
21 2221

2

…

…

=

−−−

ρ
≡ρ

−−
nE

n
n nn

n

 

 



G. A. GRIGORIAN 98 

Proof. Set 
[ ]

( ) { } .0,,min,max 2

0,,
>γ

γ
α−β≡+≡

γ≤≤βα∈ M
htpuM

ut
 

Since the function ( ) ( )tpuutf +≡ 2;  is continuous on the domain 

{( ) [ ] },0,,:; γ≤≤βα∈ utut  by the Peano’s theorem (see [11], p. 10) 

Equation (2.2) has a solution ( )tu∗  on [ ]., βα  Therefore, the assertion (I) 

will be proved if we show that it is always possible to take .α−β=h  If 

,0=P  then for  
α−β

=γ
1

 we have α−β=h  (since in this case 

).α−β=
γ

M
 If ,0=/p  then taking p=γ  we obtain .

2
ppM +≤  

By the condition (1) from here it follows .
1

1
2

α−β≥
+

≥
+

≥
γ

ppp

p

M
 

Therefore in this case we have also .α−β=h  The assertion (I) is proved. 

Prove (II). By (2.2) we have 

( ) ( ) ( ) [ ],,,11 βα∈+=∗ ttptutu   (2.6) 

where ( ) ( ) [ ].,,2
1 βα∈≡ ∗

α
∫ tdutu

t

ττ  Using (2.2) from here we obtain 

( ) ( ) ( ) ( ) ( ) ( ) [ ].,,2 2
1

2
11 βα∈+−=−′ ∗∗ ttptptututptu   (2.7) 

Let 1M  be an integral operator, acting on [ ]( )βα,C  by the rule 

( )( ) ( )
( )
( )

[ ]( ).,,
1

11 βα∈= ∫
α

C
P

P ud
u

ttu

t

τ

τ

τ

M  

Acting on both sides of (2.7) by 1M  and taking into account that 

( ) ,0=α∗u  we obtain 

( ) ( ) ( ) [ ],,,22 βα∈+=∗ ttptutu   (2.8) 
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where ( ) ( )
( )
( )

[ ].,,
1

2
1

12 βα∈≡ ∫
α

td
u

ttu

t

τ

τ

τ

P
P  Using again (2.2) by analogy of 

(2.7) from here we obtain 

( ) ( ) ( ) ( ) ( ) ( ) [ ].,,2 2
2

2
22 βα∈+−=−′ ∗∗ ttptptututptu   (2.9) 

Let 2M  be an integral operator, acting on [ ]( )βα,C  by the rule 

( )( ) ( )
( )
( )

[ ]( ).,,
2

22 βα∈= ∫
α

C
P

P ud
u

ttu

t

τ

τ

τ

M  

Acting on both sides of (2.9) by 2M  and taking into account that 

( ) 0=α∗u  we get 

( ) ( ) ( ) [ ],,,33 βα∈+=∗ ttptutu  

where ( ) ( )
( )
( )

[ ],,,
2

2
2

23 βα∈≡ ∫
α

td
u

ttu

t

τ

τ

τ

P
P  so on. Continuing this process 

of recursive determination of ( ) ( ) ( ) …,,, 321 tututu  for the general case of 

n (taking into account (2.6)-(2.9)), we obtain the following recursive 

formulae: 

( ) ( ) ( ) [ ],,, βα∈+=∗ ttptutu nn   (2.10) 

where ( ) ( )
( )

( )
[ ] .,3,2,,,

2
1

…=βα∈≡ −

α
∫ ntd

u
ttu

n

n
t

nn τ

τ

τ

P
P  Let us estimate 

the norms .,2,1,, …=∗ npu n  Show that 

.,2,1, …=≤ ncpn   (2.11) 

By (2) for ,1=n  we have 

( ) ( ) ( ) ( ) .22
1 cepcpp c ≤+α−β≤α−β≤ α−β  
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Therefore (2.11) is valid for .1=n  Suppose (2.11) is valid for some .k=n  

Show that it is valid also for .1+= kn  Since cp ≤k  we have 

[ ]
( ) ( ( ) ( )) τττ

τ

dppdsspp

tt

t

2

,
1 2expmax kkk −














= ∫∫

α
βα∈

+  

( ) ( ) [ ].22 cpe c +α−β≤ α−β  

This together with (2) implies (2.11) for .1+= kn  Therefore (2.11) is 

valid for all .,2,1 …=n  Obviously 

( ) ( ) ( ) [ ].,,
22

1 βα∈α−≤= ∗∗

α
∫ tutdutu

t

ττ  

From here and from (2.11) we get 

( ) ( ) ( )
[ ],,,

3

22
3

2
2 βα∈

α−
≤ ∗

α−β tu
t

etu c  

which together with (2.11) implies 

( ) ( ) ( ) ( )
[ ],,,

73

32 2

12

7
22

3 βα∈
α−

≤ ∗
α−β+ tu

t
etu c  

so on. Continuing this process of successive estimations in the general 

case of n we obtain 

( ) ( ) ( ) ( )

( ) ( ) ( )
,

121212

2

2221

12
222

21

12 n

nn

n
n

u
t

etu
n

c
n ∗

−
α−β+++

−−−

α−
≤

−−

−

…

…  

[ ],, βα∈t  

.,2,1 …=n  From here it follows 

( ) [( ) ( ) ]

( ) ( ) ( )
.,2,1,

121212
21 2221

22

…

…

=

−−−

α−β

α−β
≤

−−

∗
α−βα−β−

n
uee

u
n

cc

n nn

n

 

(2.12) 
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By the Peano’s Theorem we have .pu ≤∗  This together with condition 

(2) implies 

( ) ( ) ( ) ( ) .1
2

2

2 <
+

≤
+

≤α−β≤α−β α−β
∗

α−β

pc

p

pc

pc
peue cc  

From here, from (2.10) and (2.12) it follows that the sequence of functions 

( ){ }+∞
=1nn tp  converges to ( )tu∗  in [ ]( )., βαC  Then since pu ≤∗  and by 

(2.11) …,2,1, =≤ ncpn  we have 

{ }.,min cpu ≤∗   (2.13) 

This together with (2.6), (2.10) and (2.12) implies (2.4). As far as 

( ) 0→ρnE  for +∞→n  then to complete the proof of the theorem it is 

enough to prove (2.5). It is not difficult to verify that 

( ) ( ) ( ) ( ) ( ) .,3,2,22
1 …=+=′−′ −∗ ntutptutptu nnnn  

This together with (2.4), (2.10) and (2.11) implies (2.5). The theorem is 

proved. 

For any matrix ( ) ( )2,1,,
2

1,
=∈≡

=
jiaaA ijjiij R  denote by A  the norm 

ij
i

j
a∑

=
=

2

1
2,1

max  of .A  Then for any matrix ( ) ( )2,1,,
2

1,, =∈≡
=

jibbB ijjiji R  

the following relations are valid. 

.,,, BAABBABA ≤∈µλµ+λ≤µ+λ R   (2.14) 

By (2.3) under the conditions of Theorem 2.1 we have a solution of 

Equation (2.1) of the form 

( ) ( ) [ ].,,exp0 βα∈













−≡θ ∗

α
∫ tdut

t

ττ  
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Another solution of Equation (2.1), linearly independent of ( ),0 tθ  can be 

given by the formula (see [11], p. 327) 

( ) ( )
( )

[ ].,,
2
0

01 βα∈
θ

θ≡θ ∫
α

t
d

tt

t

τ

τ

  (2.15) 

Set 

( ) ( ) ( ) ( )
( )

,,exp
2

0,

0,1,0,
τ

τ

ττ

n

t

nnn

t

n
d

ttdpt
θ

θ≡θ













−≡θ ∫∫

αα

 

( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
[ ],,,,

1,0,

1,0,

10

10

βα∈














θ′θ′

θθ

≡Θ














θ′θ′

θθ

≡Θ t
tt

tt

t

tt

tt

t

nn

nn

n  

.,2,1 …=n  

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied. Then 

the sequences ( ){ }+∞

=
θ

10, nn t  and ( ){ }+∞

=
θ

11, nn t  converge respectively to ( )t0θ  

and ( )t1θ  in [ ]( )βα,2
C  and 

( ) ( ) ,,2,1,0,0 …=ρ≤θ−θ α−β− nEe n
c

n   (2.16) 

( ) ( ) ,,2,1,
1

0,0 …=ρ



 +

α−β
≤θ′−θ′ α−β− nEec n

c
n   (2.17) 

( ) ( )ρ≤θ ′′−θ ′′ α−β−
n

c
n Eep0,0  

( )

( )
( ( ) ( )) ,,3,2,

2
12

4

…=+ρ
α−β

+ −

α−β−

npEE
e

nn

c

  (2.18) 

( ) ( ) ,,2,1,1,1 …=ρ≤θ−θ α−β− nEe n
c

n   (2.19) 

[ ] ( ) ( ) ,,2,1,21,1 …=ρ+≤θ′−θ′ α−β− nEec n
c

n  (2.20) 
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( ) ( )
( )

( ( ) ( )) ,
2

1

3

1,1 pEE
e

Eep nn

c

n
c

n +ρ
α−β

+ρ≤θ ′′−θ ′′ −

α−β−
α−β−  

,,3,2 …=n   (2.21) 

( ) ( ) ( ) ( ) [ ] ,,2,1,,,0 …=βα∈ρ≤Θ−Θ α−β− mtEeStt n
c

n   (2.22) 

where { }.3,
1

1max0 ccS ++
α−β

+≡  

Proof. The inequality (2.22) we can obtain easily from (2.16), (2.17), 

(2.19) and (2.20) by using (2.14). The convergence of the sequences 

( ){ }+∞

=
θ

10, nn t  and ( ){ } ,
11,

+∞

=
θ

nn t  respectively to ( )t0θ  and ( )t1θ  in [ ]( )βα,2
C  

follows immediately from (2.16)-(2.21). Therefore to complete the proof of 

the corollary it is enough to prove (2.16)-(2.21). We have 

( ) ( ) ( ) ( )













−−














−=θ−θ ∫∫

α

∗

α

ττττ dpdutt n

tt

n expexp0,0  

( ( ) ( )) ( ) ( ) [ ].,,,exp βα∈













−≤ ∫∫∫

α

∗

α

∗

α

tdpdudpu n

tt

n

t

τττττττ  

This together with (2.4), (2.11) and (2.13) implies (2.16). Obviously by 

(2.11) and (2.13) we have 

( ) ( ) ., 0,0
c

n
c ee α−βα−β ≤θ≤θ   (2.23) 

From here and from (2.16) it follows: ≤θ+θ−=θ′−θ′ ∗ 0,00,0 nnn pu  

( ) ( ) ( ),0,00 ρ+−≤θ−θ+−θ α−β−
∗

α−β
∗ n

c
nn

c
nnn Eeppueppu  

.,2,1 …=n  This together with (2.4) and (2.11) implies (2.17). Prove 

(2.18). Using the easily verifiable equalities 

( ) ( ) ( ) ( ) ( ) [ ] ,,3,2,,,2 2
11 …=βα∈−+=′ −− nttptptptptp nnnn  
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we obtain 

( ) ([ ( ) ( )] ( )) [ ] .,3,2,,,0,
2

10, …=βα∈θ−−=θ ′′ − nttptptpt nnnn  

Then 

( ) ( ) ( ) ( ( ) ( )) [ ( ) ( )] ( ),0,
2

100,0,0 ttptptttptt nnnnn θ−−θ−θ=θ ′′−θ ′′ −  

[ ]., βα∈t  

From here it follows 

[ ] 00,0,
2

10,0 θ−θ+θ−≤θ ′′−θ ′′ − nnnnn ppp  

 ( ) .00,0,
2

1 θ−θ+θ−+−≤ −∗∗ nnnn ppupu  

This together with (2.4), (2.16) and (2.23) implies (2.18). It is not difficult 

to verify that 

( ) ( ) ( ) ( ) .,3,2,1,, 1,1 …=α−β≤θα−β≤θ α−βα−β nee c
n

c   (2.24) 

We have 

( ) ( ) ( ) ( ) τ

τ

τ

ddssudssutt

tt

n













+−=θ−θ ∗

α

∗

α
∫∫∫ exp1,1  

( ) ( ) τ

τ

τ

ddssudssu

tt














+−− ∗

α

∗

α
∫∫∫ exp  

[ ( ) ( )] [ ( ) ( )]













−−−≤ ∗∗

αα
∫∫∫ dsspsudsspsu n

t

n

t

τ

τ

 

( ) ( )













+−× ∗

α

∗ ∫∫ ,maxexp dssudssu

t τ

τ

 

( ) ( ) [ ] .,3,2,1,,, …=βα∈






+− ∫∫

α

ntddsspdssp nn

t

τ

τ

τ
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This together with (2.4), (2.11) and (2.13) implies (2.19). Since 

 ( ) ( ) ( )
( )

( ) ( ) ( )ttpt
t

ttut nnn 1,1,
0

11 ,
1

θ−=θ′
θ

=θ−=θ′ ∗  

( )
[ ] ,,2,1,,,

1

0,
…=βα∈

θ
= nt

tn

 

we have 

.,2,1,
11

0,0
1,1,11,1 …=

θ
−

θ
+−θ+θ−θ≤θ′−θ′ ∗∗ npuu

n
nnnn  

(2.25) 

We have also 

( ) ( )
( ) ( )














−














=

θ
−

θ ∫∫
α

∗

α

ττττ dpdu
tt n

tt

n
expexp

11

0,0
 

[ ( ) ( )] ( ) ( ) ,,maxexp



























−≤ ∫∫∫

α

∗

α

∗

α

τττττττ dpdudpu n

tt

n

t

 

[ ] .,2,1,, …=βα∈ nt  

This together with (2.4), (2.11) and (2.13) implies 

( ) ( ) .,2,1,
11

0,0
…=ρ≤

θ
−

θ
α−β− nEe n

c

n

 

From here, from (2.4), (2.13), (2.24) and (2.25) it follows (2.20). It is not 

difficult to verify that 

( ) [( ( ) ( )) ( )] ( ) [ ] .,3,2,,,1,
2

11, …=βα∈θ−−=θ ′′ − ntttptptpt nnnn  
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Then since ( ) ( ) ( ) [ ],,,11 βα∈θ−=θ ′′ tttpt  we have 

( ) ( ) ( ) ( ( ) ( ))211,1,1 tptpttt nnnn −−θ=θ ′′−θ ′′  

( ) ( ( ) ( )) [ ] .,3,2,,,1,1 …=βα∈θ−θ− nttttp n  

From here it follows 

( ) .
2

11,1,11,1 ∗−∗ −+−θ+θ−θ≤θ−θ ′′ upupp nnnnn  

This together with (2.4), (2.19) and (2.24) implies (2.21). The corollary is 

proved. 

3. Fast Convergent Approximation Method 

From the conditions of Theorem 2.1 is seen that they are satisfied if 

α−β  is enough small. This suggests how to use Theorem 2.1 to construct 

approximate solutions for Equation (1.1) on arbitrarily large intervals 

[ ].,0 TT  Obviously to do this it is enough to partition the interval [ ]TT ,0  

in a sum (union) of small intervals so that for each of which Theorem 2.1 

holds, and after construct an approximate solution on each of the 

partitions and then “glue” them properly. Next we show how we realize 

this idea. 

Let TtttT N =><<=
2100 …  be the partition of the interval 

[ ]TT ,0  so that for each [ ] [ ] ( )12,0,, 1 −=βα=+
Ntt kkk  the conditions of 

Theorem 2.1 are satisfied. Then according to Theorem 2.1 for every 

,12,0 −= N
k  the equation 

( ) [ ]1
2 ,, +∈+=′

kk ttttpyy  
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has a solution ( )ty∗
k  on [ ]1, +kk tt  with ( ) .0=∗

kk ty  Set 

( ) ( ) ( ) ( )
( )

,,exp
2

,0

,0,1,0
t

d
ttdyt

t

t

t

t k

kkkk

kk

φ
φ≡φ














−≡φ ∫∫ ∗ τ

ττ  

( ) ( ) ( ) ( )
( ) ( )

( )
,,

,1

2
,1

,1,,1 τ

τ

ττ

ττ d
pp

ttpdptp
n

n
t

t

nn

t

t l
k

k

kkk

k

−

−
−

−
≡≡ ∫∫ P
P  

where ( ) ( ) [ ] ,12,0,,,2exp 1,1,1 −=∈












≡ +−− ∫ N
n

t

t

n tttdpt kkkkk

k

ττP  

,,3,2 …=n  

( ) ( ) ( ) ( )
( )

,,exp
2

,0,

,0,,1,,,0,
t

d
ttdpt

n

t

t

nnn

t

t

n

k

kkkk

kk

φ
φ≡φ














−≡φ ∫∫

τ

ττ  

( )
( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )
,,

,1,,0,

,1,,0,

,

,1,0

,1,0















φ′φ′

φφ

≡Φ














φ′φ′

φφ

≡Φ
tt

tt

t

tt

tt

t

nn

nn

n

kk

kk

k

kk

kk

k  

[ ] .,2,1,12,0,, 1 …=−=∈ + nttt N
kkk  It is not difficult to verify that 

( ) ( ) .,2,1,12,0,

10

01

, …=−=












=Φ=Φ ntt N

n kkkkk   (3.1) 

By induction on m define ,,12,0, 2,,1
1

2,1 kkkk k mm
N tttt ≡−=≡ +

−  

,,1,12,0 NmmN =−= −
k  

( )
( ) [ ]

( ) ( ) [ ]





∈ΦΦ

∈Φ

≡Φ

++++

+

,,,

,,,

221212212

1222
0
,1

kkkkk

kkk

k

ttttt

tttt

t  

( )
( ) [ ]

( ) ( ) [ ]






∈ΦΦ

∈Φ

≡Φ

++++

+

,,,

,,,

221212212,

1222,
0

,,1

kkkkk

kkk

k

ttttt

tttt

t

n

n

n  
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The matrix functions ( ) ( )tt n kk ,, ΦΦ  and the intervals [ ],, 1+kk tt  

…,2,1,12,0 =−= nN
k  we will call the matrix functions and the 

intervals of level 0 respectively, and the matrix functions ( ) ( )tt n
0

,,1
0
,1 , kk ΦΦ  

and the intervals [ ] …,2,1,12,0,, 1
1,1,1 =−= −

+ ntt N
kkk  we will call 

the matrix functions and the intervals of level 1, respectively. Let 

( )tm
0

,kΦ  and ( ) …,2,1,12,0,0
,, =−=Φ − nt mN

nm kk  be matrix functions 

of level m on the intervals [ ] 12,0,, 1,, −=
−

+
mN

mm tt kkk  of level m. 

Define by induction on m the matrix functions ( )tm
0

,kΦ  and ( ),0
,, tnm kΦ  

…,2,1,12,0
1 =−=

−− nmN
k  on the intervals [ ],, 1,1,1 +++ kk mm tt  

12,0
1

−= −−mN
k  of level ,1+m  respectively as follows: 

( )
( ) [ ]

( ) ( ) [ ]







∈ΦΦ

∈Φ
≡Φ

++++

+

+

,,,

,,,

2,1,1,
0

,
0

1,

1,,
0

,
0

,1

kkkkk

kkk

k

mmmmm

mmm

m

ttttt

tttt
t  

( )
( ) [ ]

( ) ( ) [ ]







∈ΦΦ

∈Φ
≡Φ

++++

+

+

,,,

,,,

2,1,12
0

,,
0

1,,

1,,
0

,,
0

,,1

kkkkk

kkk

k

mmnmnm

mmnm

nm

ttttt

tttt
t  

.,2,1,1,1,12,0
1

…=−=−= −− nNmmN
k  Set: ( ) ( ),0

0, tt NΦ≡Φ∗  

( ) ( ) [ ] [ ] .,2,1,,,, 01,0,
0

0,,, …==∈Φ≡Φ∗ nTTttttt NNnNn  Since  

( ) ( )













=Φ=Φ∗

10

01

000
0 TT  by the uniqueness theorem and (2.3), 

(2.15) the matrix function ( )t0
∗Φ  is a fundamental matrix of Equation 

(1.1) on [ ].,0 TT  Next our goal is to estimate 

[ ]
( ) ( ) .max ,

,0

tt n
TTt

∗∗
∈

Φ−Φ  
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Let kc  be a constant for which the conditions of Theorem 2.1 with 

[ ] [ ]1,, +=βα kk tt  are satisfied ( ).12,0 −= N
k  Set 

[ ] ( ) ( ) { },,min, 1

1 1, kkkkkk
kkk

kk
cdettpd

ctt
tt

−
+

+

+
−≡ρ≡  

{ },12,0,max −=ρ≡ρ N
kk  

,12,0,3,
1

1max
1

1 −=








++
−

+≡
+

+
Ncc

tt
S kkk

kk
k  

{ }.2,1,max NSS =≡ kk  

Then by Corollary 2.1 (see (2.22)), we have 

( ) ( ) ( ) [ ] .,2,1,12,0,,, 1, …=−=∈ρ≤Φ−Φ + ntttSEtt N
nn kkkkk  

(3.2) 

Set 

[ ]
( ) ( ) ,maxmax ,

,
12,0

,0
1

tt n
ttt

n
N

kk

k kk

Φ−Φ≡∆
+∈

−=

 

[ ]
( ) ( ) ,maxmax 0

,,
0

,
,

12,0
,

1,,

tt nmm
ttt

nm
mmmN

kk

k kk

Φ−Φ≡∆
+− ∈

−=

 

.,2,1,,1 …== nNm  

By (2.4) we have ( ) ( ) ( ) ( ) ( )ttttt nn 12,12212
0

,,1
0
,1 +++ Φ−ΦΦ=Φ−Φ kkkkkk  

( ) ( ) ( ) ( ) ( )12212212,12122, +++++ Φ+ΦΦ−Φ≤Φ× kkkkkkkk ttttt nn  

( ) ( ) [ ].,, 2212122,122 ++++ ∈Φ−Φ× kkkkkk ttttt n  Hence, 

( ) ( ) ( ) ( ) ( )ttttt nn 12,12122
0

,,1
0
,1 +++ Φ−ΦΦ≤Φ−Φ kkkkkk  

( ) ( ) ( ) ( )1212,121212,12 ++++++ Φ−ΦΦ−Φ+ kkkkkk tttt nn  

( ) ( ) ( ) [ ],,, 2212122,12212 +++++ ∈Φ−ΦΦ+ kkkkkkk tttttt n  

.12,0 1 −= N
k   (3.3) 
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For any [ ]TT ,0∈ζ  denote by ( )t;ζΦ  the fundamental matrix of 

Equation (1.1) with ( ) .

10

01

;













=ζζΦ  Set 

[ ] [ ]
( ) .;maxmax

,,0

tM
TtTT

ζΦ≡
ζ∈∈ζ

 

Then from (3.3) it follows 

( ) ( ) [ ].,,2 2212
2

,0,0
0

,,1
0
,1 ++∈∆+∆≤Φ−Φ kkkk tttMtt nnn  

By obvious inequality 1≥M  from here it follows 

( ) ( ) [ ].,,2 1,1,1
2

,0,0
0

,,1
0
,1 +∈∆+∆≤Φ−Φ kkkk tttMtt nnn  

Hence 

,2 2
,0,0,1 nnn M ∆+∆≤∆  

and in general for any 1,,1,0 −= Nm …  it can be shown that 

.2 2
,,,1 nmnmnm M ∆+∆≤∆ +  (3.4) 

From here we obtain 

( ) ( ( ) ) 3
,

2
,

2
,

2
,2 4222 nmnmnmnm MMMM ∆+∆++∆≤∆ +  

,,2,1,2,0, 24
, …==∆+ − nm N
nm  

( ) [( ) ( ) ( ) ] 3
,

22
,

432
,

3
,3 162222 nmnmnmnm MMMMM ∆+∆+++∆≤∆ +  

[ ] [ ] 5
,

324
,

432 322416484 nmnm MMMMM ∆++∆+++  

[ ] ,884 8
,

7
,

6
,

2
nmnmnm MMM ∆+∆+∆++  

and finally 

[ ]
( ) ( ) ( ) n

N
nNn

TTt
Mtt ,0,,

,
2max

0

∆≤∆=Φ−Φ ∗∗
∈

 

( ) ,,2,1,,0
2

,0 …=∆∆+ nQ nNn  
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where ( )tQN  is a polynomial of degree ,22 −N  with the positive 

coefficients (depending only on )M  such that ( ) .00 =/NQ  From here and 

from (3.2) it follows immediately. 

Theorem 3.1. The sequence ( ){ }+∞

=∗Φ
1, nn t  converges to the fundamental 

matrix ( )t∗Φ  of Equation (1.1) ( )



























=Φ∗

10

01

0T  on [ ]TT ,0  by the 

norm of matrices uniformly by t and the following estimates are valid: 

( ) ( ) ( ) ( ) ( )( ) ( )( ) .,2,1,2max
2

, …=ρρ+ρ≤Φ−Φ ∗∗ nSEQSESEMtt nNnn
N

n  

4. Examples 

In this section, we show how fast can converge the proposed 

approximation method. Consider the Mathieu equation (see [12], [13], p. 111) 

( ) [ ].,,02cos1 0 TTtt ∈=φδ+ε−+φ ′′   (4.1) 

In the case 0=δ=ε  this equation becomes an equation with constant 

coefficients, that is; 

[ ].,,0 0 TTt ∈=φ+φ ′′  

Obviously for this equation the matrix function  

( )
( ) ( )

( ) ( )
( )TtT

tt

tt

t ≤≤ζ≤













ζ−ζ−−

ζ−ζ−

≡ζΦ 00 ,

cossin

sincos

;  

is its fundamental matrix with ( )













=ζζΦ

10

01

;0  for all [ ].,0 TT∈ζ  

It is also obvious that ( ) .,2; 00 TtTt ≤≤ζ≤≤ζΦ  Due to this we will 

assume that the parameters ε  and δ  are so small, that 

( ) ,,2; 0 TtTt ≤≤ζ≤≤ζΦ   (4.2) 

where ( )ζΦ ;t  is the fundamental matrix for Equation (4.1) with 

( )













=ζζΦ

10

01
;  for all [ ].,0 TT∈ζ  
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Example 4.1. Let [ ] [ ].1,0,,2 0 == TTn  Take .8,0,
8

== k
k

kt  For 

this case we have 3,1 =≤ Np  and by (4.2) .2=M  Then it is not 

difficult to check that the conditions of Theorem 2.1 with 

[ ] [ ] ( )tctt ,0,,
7
1

1 ===βα + kkkk  are satisfied for Equation (4.1). It is 

not difficult to verify also, that for this case .max
55
1

56
1

8,0

56
1

<=ρ=ρ
=

ek
k

 

Then ,81
7
1++=S  and ( ) ( ) .

4

55
1

21
64

2 ≤ρSE  Then applying (3.4) three 

times for successive estimation of ( ) ( viaSE 2,122,32,22,1 via,, ∆ρ∆∆∆  

( ) 2,12,222,0 , ∆∆ρ=∆ viaSE  and )2,22,3 ∆∆ via  from here we obtain 

( ) ( ) [ ].1,0,00003.02, ∈≤Φ−Φ ∗∗ ttt  

Example 4.2. Let [ ] [ ].8,0,,2 0 == TTn  Take .128,0,
16

== k
k

kt  

For this case we have .2,7 == MN  Then it is not difficult to verify that 

for ( )127,0
15
1 == kkc  the conditions of Theorem 2.1 with 

[ ] [ ]1,, +=βα kk tt  for Equation (4.1) are satisfied. It is also not difficult to 

verify that for this case .max
238
1

240
1

128,0

240
1

<=ρ=ρ
=

ek
k

 Hence, since for 

this case ,
15
256=S  we have 

( ) ( ) .
4

238
1

135
256

22,0 <ρ=∆ SE  

Then applying (3.4) for successive estimations of 2,02,72,1 via,, ∆∆∆ …  

from here we obtain 

( ) ( ) [ ].8,0,000001.02, ∈≤Φ−Φ ∗∗ ttt  
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Example 4.3. Let [ ] [ ].128,0,,3 0 == TTn  Take .512,0,
4

== k
k

kt  

For this case we have .2,9 == MN  Then it is not difficult to verify that 

for ( )511,0
3
1 == kkc  the conditions of Theorem 2.1 with 

[ ] [ ]1,, +=βα kk tt  for Equation (4.1) are satisfied. For this case we have 

.max
11
1

12
1

128,0

12
1

<=ρ=ρ
=

ek
k

 Hence, since for this case ,
3

16=S  we have 

( ) .
11

1

189

16
8

22,0 





<ρ=∆ SE  

Then applying (3.4) for successive estimations of 2,02,92,1 via,, ∆∆∆ …  

from here we obtain 

( ) ( ) [ ].128,0,00004.03, ∈≤Φ−Φ ∗∗ ttt  

Example 4.4. Let [ ] [ ].1048576,0,,4 0 == TTn  Take .512,0,
4

== kkkt  

For this case we have .2,22 == MN  

( ) .
11

1

1573

1

3

16
16

244 





<ρSE  

and, finally, the estimate 

( ) ( ) [ ].1048576,0,0000001.04, ∈≤Φ−Φ ∗∗ ttt  
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