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Abstract

The Riccati equation method is used to obtain a fast convergent approximation
method for solution of second order linear ordinary differential equations. By
examples it is shown how fast can converge the proposed method.

1. Introduction

Let p(t) be a real-valued continuous function on [T, T]. Consider

the second order linear ordinary differential equation

O +pt)o=0, telly, T (1.1)
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In practice, the problem of finding the values of solutions of differential
equations (in particular, of Equation (1.1)) arises very often. This problem
is solvable in the case when the solutions of a differential equation
(in particular of a case of Equation (1.1)) are representable in the closed
form through the known data of the equation. However this occurs in the
very rare cases. To solve this problem, many numerical methods have
been developed for solving differential equations (in particular for solving
Equation (1.1)), and many works are devoted to them (see [1-10] and cited
works therein). Among them notice [4] in which an impressive fast
convergent numerical method for solving second order linear ordinary
differential equations is developed. Unfortunately, the fast convergence of
this method has been demonstrated practically in some examples, but has
not yet been proved mathematically, which is why it is unclear to which

equations it can be effectively applied.

In this paper, we propose a new approximation method for solution of
Equation (1.1) based on the Riccati equation method. We show with

examples how fast this method can converge.
2. Auxiliary Propositions

Let [a, B] be a subset of [Ty, T]. Consider the equation
0"+ pt)d =0, tela,pl, (2.1)
and associated with it the Riccati equation
u =u®+p@), telo, Bl (2.2)

All solutions u(t) of the last equation, existing on [a, B], are connected

with solutions 6(¢) of Equation (2.1) by the relations (see [11], p. 332)

t
8(t) = 6(¢y ) exp |- j u(r)drb, B(tg) % O, to, t € [0, Bl. 2.3)
to
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For any x € C(lo, B]) denote by [x[, g; = x| the norm of x in C([a, B]).
Set

t F - p2(r
D (t) = Ip(’r)d’l‘, Pn+1 (t) = Pn(t)j%d’r

’

o

t
where P, (¢) = exp {ZI pn(T)dT}, telo,Bl,n=12 ...
o

Theorem 2.1. Let the following conditions be satisfied:

1) B-a)@+]p]) < 1;

@ B-o)(c?+ ||p||)e(B_°°)c < ¢ for some ¢ € (0, 1].
Then the following assertions are valid:

(I) the solution u.(t) of Equation (2.2) with u.(a) = 0 exists on [o, B]:

(I1) the sequence {p,, (t)};j1 converges to u,(t) in C'([a, B]) and

e—Z(B—oc)c
e =yl < B_—uEn(p), n=12 .; (2.4)
-2(B-a)c -4(B-a)c
u, — p), <2 P+ E——E2 (p),n=23 .., (25)
p-a B - )
p4
where p = (B - a)e®~¥¢ min{|p|, ¢}, E\(p) = p% Eylp) = 5
2n
En(p) = p ’ n = 37 47

2 -1 @2 o127 L (2n - 1)
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Proof. Set M = |u2+p(t)|, hsmin{B—a,%}, v> 0.

telon, B Oy
Since the function f(t; u)=u? + p(t) is continuous on the domain
{# w):te]a,B],0 <u <y}, by the Peano’s theorem (see [11], p. 10)
Equation (2.2) has a solution u,(t) on [o, B]. Therefore, the assertion (I)

will be proved if we show that it is always possible to take h =  — a. If

|P| =0, then for = B—LOC we have h =P - o (since in this case

% = B—a). If |p| # 0, then taking y = |p| we obtain M < |p|® +|p|.
By the condition (1) from here it follows X ] 1

M~ 2 . 12P-
Iol? +p| eI+

Therefore in this case we have also & = B — a. The assertion (I) is proved.
Prove (II). By (2.2) we have
u.(t) = w(t)+ p,(t), tela,pl, (2.6)
t

where u; (t) = juf (t)dm, t € [a, B]. Using (2.2) from here we obtain
o

wi(t) - 2py (Ou.t) = uf ) - pE () + p(t), te [o, Bl. @.7)

Let 9, be an integral operator, acting on C([a, B]) by the rule

t
)0 = 710 [ £ dr, e o B,

P

Acting on both sides of (2.7) by 9%; and taking into account that

u. (o) = 0, we obtain

u(t) = ug(t) + pa(t), te o, B, (2.8)
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t 2
ol

(2.7) from here we obtain

where uy(t) =

dr, t € [a, B]. Using again (2.2) by analogy of

wa(t) - 2po (s (t) = W (t) - P3(t) + p(2), t e [0, Bl. 2.9)

Let 9, be an integral operator, acting on C([o, B]) by the rule

(Ma)(t) = P() j i, we oo B)

Acting on both sides of (2.9) by 915 and taking into account that

u.(o) =0 we get

ux(t) = u3(t)+ p3(t)’ te [OL9 B],

where us(t) = Py t)j ' (T)d T, t € [a, B], so on. Continuing this process

of recursive determination of u;(¢), ug(), us(¢), ... for the general case of

n (taking into account (2.6)-(2.9)), we obtain the following recursive

formulae:

ux(t) = un(t) + pn(t)7 le [OC, BL (2.10)

t 2
where u,(t) = Pn(t)jL})’f_—b(_;)d'r, telo, B, n =2, 3, .... Let us estimate
o n

the norms |u.|, |y, » =1, 2, .... Show that
Ipall e, n=1,2, ... (2.11)

By (2) for n = 1, we have

Ioal < 6 - o] < (B - o) (¢ + [p])e2-¢ <.
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Therefore (2.11) is valid for n = 1. Suppose (2.11) is valid for some n = k.

Show that it is valid also for n = k + 1. Since ||p;| < ¢ we have

t

t
_[ eXp{ZI Py (S)dS} (p(r) - p(r))dr

I[Pl = max

tela, B]

< (B - 0)e” P p| + ]

This together with (2) implies (2.11) for n = k +1. Therefore (2.11) is
valid for all n =1, 2, .... Obviously

luy ()] = < (t - o)ud?s te o, Bl.

t
I u2 (T)d~

From here and from (2.11) we get
3
_ t—o 2
ug @) < X600 L= O 12 ¢ o )
which together with (2.11) implies

juz0)] < el2+2) B0 (““) e, t e o, B

so on. Continuing this process of successive estimations in the general

case of n we obtain

2" -1
|un(t)| < e(2+22+...+2n71)(ﬁ—0t)0 — (t - OC) — ”u*"2n
(2' -1 (22-172 .. (2"-1)
t e [a, B,
n =1, 2,.... From here it follows
-2(B-a)c _ (B-a)c 2"
e < & [~ o)e o] nel2 ...

Boo (g2 92 12" (2n 1)

(2.12)
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By the Peano’s Theorem we have [u.|| < |p|. This together with condition

(2) implies

B - )e® Yy, < (B - a)e?P~¥|p| < Il < ol <1
e Il < 17 = a2, [

From here, from (2.10) and (2.12) it follows that the sequence of functions
{p,@)}'=, converges to u,(t) in C([a, B]). Then since ||u.| < |p| and by

n=1

(2.11) ||p,] S ¢, n =1, 2, ... we have
e+ < min|p], c}. (2.13)

This together with (2.6), (2.10) and (2.12) implies (2.4). As far as

E,(p) > 0 for n — + then to complete the proof of the theorem it is

enough to prove (2.5). It is not difficult to verify that

W (t) - p,(t) = u2_1(t) + 2p, (t)u, (), n=23, ...
This together with (2.4), (2.10) and (2.11) implies (2.5). The theorem is
proved.
For any matrix A = (aij )12 j=1 (aij € R, i, j = 1, 2) denote by ||A| the norm

2
g%§;|aij| of A. Then for any matrix B = (bi,j)ijzl(bij eR i, j=12)
the following relations are valid.
P + 1B < PIA]+ W B, & we B, JAB| < [A][B]. (@19

By (2.3) under the conditions of Theorem 2.1 we have a solution of
Equation (2.1) of the form

¢
0p(t) = exp {— Iu*('r)dﬂ}, t e [o, B].
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Another solution of Equation (2.1), linearly independent of 6(t),

given by the formula (see [11], p. 327)

t

0,(t) = eoa)je?—:), t e [o Bl

o\T
Set
t t d
0,,0(t) = exp {— [ pn(ﬂr)dﬂr}, 0,,1(6) = 0,,0(0) [ —

o

T
’

en’o (T)

can be

(2.15)

eO(t) el(t) en,O(t) en,l(t)
o) = [ J 0,) = , tela Bl

00 (t) 07 (2) 07,0(t) 07,1(8)

1,2, ...

Corollary 2.1. Let the conditions of Theorem 2.1 be satisfied. Then

the sequences {Gn)o(t)};:l and {en)l(t)}::l

and 0,(t) in C2([o, B]) and

[00 — 0,0 < e ®FE,(p), n=12, ..,

=t c} e B-%E (), n=12 ...,

0 = o] < | 52

05 - 0, 0] < [p|e P~9E, (p)

e—4([3—oc)c

+ ——(E, () + E,(p))’, n=23, ..

(B-a)

[0 = 0,1 < B E, (p), n=12 .,

0 — 0, 1] <[2+cle®*E,(p), n=12 .,

’

converge respectively to 0y(t)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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07 - 67,1 < Iple” "B, (p) + es(# (Ener(p) + En (),
n=213, .., (2.21)
lo¢) - 0,0 < Soe B E,(p), tela,pl.m=12 .., (222
where Sy = max{l + Bi g e 3+c}.

Proof. The inequality (2.22) we can obtain easily from (2.16), (2.17),
(2.19) and (2.20) by using (2.14). The convergence of the sequences

{en’o(t)};jl and {Gml(t)};:l, respectively to 0,(t) and 6;(¢) in C2([a, B])

follows immediately from (2.16)-(2.21). Therefore to complete the proof of
the corollary it is enough to prove (2.16)-(2.21). We have

exp {— jux (’T)d’l’} — exp {— j.pn (T)d’l’}

o
exp{

This together with (2.4), (2.11) and (2.13) implies (2.16). Obviously by
(2.11) and (2.13) we have

|80 (&) = 6,,,0(t)| =

t

Ipn('r)dT

o

<

’

}, te[o, Bl

j(u*(T)—pn(T))dT ju*(T)dT

log| < e®-%)e, l:,0] < eB-a)e, (2.23)

From here and from (2.16) it follows: ||9'0 - 9;170” = || - ufg + pn9n7o|| <

80l . = Pull + 4l 180 = 8 0ll < €®~Vlus = py]l + [pal e =B, (p),
n =1, 2,.... This together with (2.4) and (2.11) implies (2.17). Prove

(2.18). Using the easily verifiable equalities

pp(t) = 2D, ()p, () + D(t) — p2_1 (1), te o, Bl,n =23, ..,
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we obtain
07,0(t) = ([pn (&) = Puy OF = P(E))0y,0, te o, Bl n =23, ...
Then
05() — 67, 0(t) = p(t) (8,,0(t) — 80 (t) — [P (t) = Puer ()16, 0(2),
t € [a, Bl
From here it follows

05 — 07, 0] < 10w = D1 161.0] + 121 61,0 — o]

< (e = Pall+ s = Pca])* [0, 0] + 1211 [0, 0 = 8]

This together with (2.4), (2.16) and (2.23) implies (2.18). It is not difficult
to verify that

0x]) < (B — )e®¢, Jlo,,.1] < B - )eP¥¢ n =123 .. (2.24)

We have

101(t) = 0,1 ()] =

j exp{— j. u.(s)ds + j[ Us (s)ds} dr

T o

— jexp{— ju* (s)ds + j.ux (s)ds}d‘r

o

<

j.[j[ [2(s) = Py (s)]ds - j. [us(s) - pp (S)]ds]

o

X exp {max{

‘— jpn(s)ds+ [ pateras

T

o T

t T

- Iu*(s)ds + Iu*(s)ds

T o

’

}d’r, telo,Bl, n=1,23, ...
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This together with (2.4), (2.11) and (2.13) implies (2.19). Since

emw=—wwmw=—i7,%Jm=—nwmmm)

0o (¢

1
-l icqwBla=12 ..
0 B

we have

1

1
R R
B0 00

01 — 67, 1] < [

e1 - en,l" + ”en,l" "u'>< - pn" +

(2.25)

We have also

11
80(t) 0, 0()

exp {t[ u*(T)dT} — exp {t[ Dn (T)d’l’}

exp{max {

This together with (2.4), (2.11) and (2.13) implies

t

ju*(’r)d“r

o

<

>

t
[l = py(r)lar

t
Ipn(’r)d'r

I}

telo,Bl,n=1,2,....

1 1

—(B-a)c _
<e E (p), n=12, ...
B0 On0 .

From here, from (2.4), (2.13), (2.24) and (2.25) it follows (2.20). It is not
difficult to verify that

07,1() = [(P(®) = Ppt(0)? = P16, 1 (), te o, Bln =23, ...
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Then since 07(t) = — p(¢)6,(), t € [a, B], we have

07 (t) — 67, 1(t) = 0, 1 (£) (P, (t) = Py ()
- pt)(8:(t) =0, 1), t € [, B, n =23, ...
From here it follows
” 2
l67 = 0,1] < 12101 = 05, 1]| + [0, 1]| (1P — wall + |Prq — wal])*

This together with (2.4), (2.19) and (2.24) implies (2.21). The corollary is

proved.
3. Fast Convergent Approximation Method

From the conditions of Theorem 2.1 is seen that they are satisfied if

B — a is enough small. This suggests how to use Theorem 2.1 to construct

approximate solutions for Equation (1.1) on arbitrarily large intervals

[T, T]. Obviously to do this it is enough to partition the interval [T, T']

in a sum (union) of small intervals so that for each of which Theorem 2.1
holds, and after construct an approximate solution on each of the
partitions and then “glue” them properly. Next we show how we realize

this idea.

Let Th =ty <t <...> tyN = T be the partition of the interval

[T}y, T] so that for each [, t;,1] = [0, B] (k = 0, 2V —1) the conditions of
Theorem 2.1 are satisfied. Then according to Theorem 2.1 for every

k=0, oN _ 1, the equation

’ 2
¥ =y"+plt), tely, tpql
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has a solution y;(¢) on [, t,1] with yj(¢,) = 0. Set

t
0o, (t) = exp —JyZ(T)dT s 01,1(8) = 9o, k()

&,

’

¢(2) k(t)

Pr-1,k(7)

dr,
Poiem

Py, () = Ip T)dt, pu k) =Pyu_q t)j plr) -
b

t —
where P,_; ,(t) = exp{Z j pn_Lk(T)dT}, t e [ty tpel, k =0, 2V — 1,
&,

¢n0k(t)—eXP_Ipnk(T)dT, On.1. 1) = 0,0 5 ( )-[q) 0
n,0,k

do, 1. (¢) 01,5(t) On0, () Op,1, 1 (0)
P, (t) = , @y () = ;
90, 1. (¢) 01,5(¢) 00,1 () 0n,1, 1 ()

telty, tyeg], k=0,2Y -1, n =1, 2, ... Ttis not difficult to verify that

1 0

(Dk(tk):q)n,k(tk):[ J k=02 -1,n=12 ... (3.1)

0 1

By induction on m define ¢ ; =tg;, k =0, oN-1 _ L bpsk = U, 2k
k=02N"_1,m=1 N,
CI’2k(t) t e [tog, torsl,
CI’1 (¢
Do i1 ()Po (tog41), t € [togi1s topral,
D@, o1 (1), te [to, tops],

0
(I)1 n, k
D@, o1 (O)Poy(tor41) t € [togi1s togeal,
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The matrix functions ®(t), ®, ;(t) and the intervals [t, t],
k= m, n=12 ... we will call the matrix functions and the
intervals of level 0 respectively, and the matrix functions @?’ (), @?’ n k()

and the intervals [ty ., & pq], k=0,2V1 -1, n =12 ... we will call
the matrix functions and the intervals of level 1, respectively. Let

CIJOmyk(t) and dJOm,n,k(t), k=0,2Y" _1,n=1,2, ... be matrix functions
of level m on the intervals [tm,k, tm’;ﬁl], k=0,2V" _1 of level m.
Define by induction on m the matrix functions d)?n)k(t) and d)?n)n)k(t),
k=021 _1,n=12.. on the intervals [f,i1 1 tmst peils

k=0, oN-m=1 _1 of level m + 1, respectively as follows:

0
0 (Dm,k(t)’ te [tm,k’ tm,k+1]7
q)m+1,k(t) =

¢21,k+1(t)q)gz,k(tm,k+l)’ te [tm,k+1’ tm,k+2]7

0
0 qu,n,k(t)’ te [tm,lc’ tm,k+l]’
(Dm+1,n,k(t) =

0 0
@y k41 OPry i), t € [tm,k+1’ tm,k+2]’

k=021 1,m=1L,N-1,n=12 ... Sett &) =dY (),

@, o) = X, 0(), t € [tn o, ty1] = [To, T), n =1, 2, ... Since
1 0

CI)S(TO): D, (Ty) = by the uniqueness theorem and (2.3),
0 1

(2.15) the matrix function <.I>9(t) is a fundamental matrix of Equation

(1.1) on [T}, T]. Next our goal is to estimate

ter[r%(fixT]"@*(t) -, ).
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Let ¢, be a constant for which the conditions of Theorem 2.1 with

[o, B] = [¢),, ty41] ave satisfied (k = 0, 2V —1). Set
e T A e U t,)e 1 78)% minfd, , ¢},

p = max{p,, k = 0, 2V -1},

1

+cp, 3+ck}, k=0,2N -1,
thv1 — B

Sj41 = max{l +

S = max{S,, k = m}
Then by Corollary 2.1 (see (2.22)), we have
[,0) - @, )] < SE, (), t € Tty tral, k=0, 28 —1,n=1,2 ...
(3.2)

Set

Ry TR B L

= max max
k=0, 2N—m -1 te [tm,k’ tm,k+1]

‘q)?n,k(t) - ‘1>9n,n,k(t)H,

m=1,N,n=12, ...

By (2.4) we have | @ ;(t) = @7, 1 (0)] = | @41 () Doty 11) = P 241 (0)
X @, opltop+1)| < [ Pops1(t) = @ opr1 O] | Portaprn) | + || Poxltarsa)]

X [ @gr (tap1) = P2k tops1 ), ¢ € [tops1s torso]- Hence,
|07 1 (&) = @7, 1 @) < [P oy (tapri) | Popa1 (£) = @py 2401 ()]
+ [ Por41 () = P21 O] [Popi1 Cori1) = P21 Eopia) |
+ [ @ops1 (O] | ok tor1) = @ ok (tor)] £ € lt2pans topsz],

k=0,2M -1 (3.3)
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For any (e [Ty, T] denote by ®((;¢) the fundamental matrix of
1 0

max
CelTp, T[S, T

Equation (1.1) with ®((; ¢) = {
0 1

J. Set M = max |[®(; ¢)]|.
Then from (3.3) it follows
|07 1 (t) = @7 1 ()] < 2MAG ,, + A, ¢ € [togans topsal-
By obvious inequality M > 1 from here it follows
“q)?,k(t) - q)?,n,k(t)” < 2MAgp + A s te [0 gl
Hence
Ay < 2MAq , + 8%,
and in general for any m = 0,1, ..., N —1 it can be shown that
Amsin < 2MA,, o + A2, . (3.4)
From here we obtain

Amson < CMPAy, , +(2M + (2M)*)AZ, , + AMAS, ,

+AL om=0292n=12 ..,

m,n>

Amasn < CMP A, , +[@M)? + (M) + 2M)* A2, , +16M%A, ,
+ [4M? + 48M? + 16M* A%, , + [24M2% + 32M3]A5,
+ [4M + 8M2]A?n’n + 8MA7m,n + A?mn,

and finally

teI[I%(;a’XT] ||q)*(t) - q)*,n(t)" = AN,n < (2M)NAO’H

+ A% QN80 ) n =12 ..,
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where @y () is a polynomial of degree 2N _ 9 with the positive
coefficients (depending only on M) such that @ (0) # 0. From here and

from (3.2) it follows immediately.

Theorem 3.1. The sequence {CID*n(t)};Z’ | converges to the fundamental

1 0
matrix ®.() of Equation (1.1) [db*(TO) = [ JJ on [Ty, T] by the

0 1

norm of matrices uniformly by t and the following estimates are valid:

max|®.(t) - @, ,(0)] < @M)N SE, (p) + (SE, (0)? QN (SE, (), n = 1, 2, ....

4. Examples

In this section, we show how fast can converge the proposed
approximation method. Consider the Mathieu equation (see [12], [13], p. 111)

0"+ (1 -€e+3dcos2t)0 =0, te [Ty T] (4.1)

In the case € = 6 = 0 this equation becomes an equation with constant
coefficients, that is;

¢”+¢ = 0, t e [To, T]
Obviously for this equation the matrix function

cos(t — Q) sin(¢ — Q)
@y (t; €) = },(TOSCStST)
—sin(t - ) cos(t — €)

1 0

is its fundamental matrix with ®y(g; §) = { J for all ¢ e [T}, T].

0 1
It is also obvious that |[®(z; {)| < V2, Ty £ ¢ <t <T. Due to this we will

assume that the parameters € and 6 are so small, that
D@ Q)| <2 Ty <{<t<T, (4.2)

where ®(¢; ) is the fundamental matrix for Equation (4.1) with

1 0
D(; C) = ( ] for all ¢ e [Ty, T].
0 1
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Example 4.1. Let n = 2, [Ty, T] = [0, 1]. Take #;, = %, k = 0, 8. For
this case we have |p| <1, N =3 and by (4.2) M =2. Then it is not
difficult to check that the conditions of Theorem 2.1 with
[o, Bl = [t, tps1] e = % (k: = m) are satisfied for Equation (4.1). It is

1

not difficult to verify also, that for this case p = max p;, = %656 < %
k=0, 8

4 .
Then S =1+38 +%, and SE;(p) < %(51—5) . Then applying (3.4) three
times for successive estimation of Ay g, Ag g, Ag g via SEy(p) (Aq o via

Ag 2 = SEy(p), Ag g via Ay 5 and Ag g via Ag ) from here we obtain
|, (£) = @, 5(2)] < 0.00003, ¢ e [0, 1].

Example 4.2. Let n =2, [Ty, T] = [0, 8]. Take #;, = £ k=0, 128.
For this case we have N =7, M = 2. Then it is not difficult to verify that
for ¢, = 1—15 (k: =0, 127) the conditions of Theorem 2.1 with

[o, B] = [, t341] for Equation (4.1) are satisfied. It is also not difficult to

1
verify that for this case p = max p; = ﬁ e240 < ﬁ. Hence, since for
k=0, 128
this case S = %, we have

4
Ag5 = SEy(p) < 228 (L)',

Then applying (3.4) for successive estimations of A; 5, ..., A7 9 via Ag o

from here we obtain

|@.(£) - @, 5 ()] < 0.000001, ¢ e [0, 8].
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Example 4.3. Let n = 3, [T, T] = [0, 128]. Take ¢, = %, k=0,512.

For this case we have N =9, M = 2. Then it is not difficult to verify that

for ¢, :% (k =0, 511) the conditions of Theorem 2.1 with

[o, B] = [¢;, t341] for Equation (4.1) are satisfied. For this case we have

1
p= max p; = Lel? < L Hence, since for this case S = 18 we have
§=0, 198 12 11 3

16 (1)
Ag o = SEy(p) < @(ﬁ) .

Then applying (3.4) for successive estimations of A; 9, ..., Ag g via Ag g

from here we obtain

|, (£) - @, 5(2)] < 0.00004, ¢ e [0, 128].

Example 4.4. Let n =4, [T, T]=[0,1048576]. Take ¢, = %, k=0,512.
For this case we have N = 22, M = 2.

16 1 1)6
SE4(P) < 3—347215 (H) .

and, finally, the estimate

|[@.(t) - @, 4 ()] < 0.0000001, ¢e [0, 1048576].
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