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Abstract 

The finite nilpotent groups can now be formed in various dimensions. As such, 

results up to two dimensions are now obtainable. In this paper, the fuzzy 

subgroups of the nilpotent product of two abelian subgroups of orders n2  and 

64. Here, the integers 6>n  have been successfully considered and the 

derivation for the explicit formulae for its number distinct fuzzy subgroups 

were calculated. 

1. Introduction 

From inception, several methods, techniques and approaches were 

used for the classification of which some are obtainable in [6], and, for 

example, the natural equivalence relation was introduced in [10]. In this 

work, an essential role in solving counting problems is played by adopting 

the “Inclusion-Exclusion Principle”. The process leads to some recurrence 

relations from which the solutions are finally computed with ease. In the 

process of our computation, the use of GAP (Group Algorithm and 

Programming) was actually applied. 

2. Basic Definitions and Terms 

Suppose that ( )eG ,, ⋅  is a group with identity e. Let ( )GS  denote the 

collection of all fuzzy subsets of .G  An element ( )GS∈λ  is said to be a 

fuzzy subgroup of G  if the following two conditions are satisfied: 

(i)                    ( ) ( ) ( ){ } ;,,,min Gbabaab ∈∀λλ≥λ  

(ii)                    ( ( ) .anyfor1 Gaaa ∈λ≥λ −  

And, since ( ) ,
11 aa =

−−  we have that ( ) ( ),1 aa λ=λ −  for any .Ga ∈  

Also, by this notation and definition, ( ) ( )Ge λ=λ sup  (Marius [7]). 

Define by ,,,, 21 tMMM …  the maximal subgroups of ,G  and denote by 

( )Gh  the number of chains of subgroups of G  which ends in .G  
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Theorem (Marius [7]). The set ( )GFL  possessing all fuzzy subgroups 

of G  forms a lattice under the usual ordering of fuzzy set inclusion. This 

is called the fuzzy subgroup lattice of .G  

We define the level subset: ( ){ }β≥λ∈=λ β aGaG  for each 

[ ].1,0∈β  The fuzzy subgroups of a finite p-group G  are thus, 

characterized, based on these subsets. In the sequel, λ  is a fuzzy 

subgroup of G  if and only if its level subsets are subgroups in .G  This 

theorem gives a link between ( )GFL  and ( ),GL  the classical subgroup 

lattice of .G  

Moreover, some natural relations on ( )GS  can also be used in the 

process of classifying the fuzzy subgroups of a finite q-group G  (see [9] 

and [10]). One of them is defined by: γλ ~  iff ( ( ) ( ) ( ) ( ),baba νν >⇐⇒λ>λ  

)., Gba ∈∀  Also, two fuzzy subgroups γλ,  of G  are said to be distinct if 

.~ v/λ  

As a result of this development, let G  be a finite p-group and   

suppose that [ ]1,0: →−λ G  is a fuzzy subgroup of .G  Put              

( ) { }kβββ=λ ,,, 21 …G  with the assumption that .21 kβ>>β<β ⋯  

Then, ends in G  is determined by .λ  

.21 GGGG =λ⊂⊂λ⊂λ βββ k
⋯   (a) 

Also, we have that 

( ) { } ,\max 1−βββ λλ∈⇐⇒λ∈=⇐⇒β=λ ttrt GGaGarta  for any 

Ga ∈  and ,,,1 k…=t  where by convention, set .0 ∅=λ βG  
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3. The Techniques 

The method that will be used in counting the chains of fuzzy 

subgroups of an arbitrary finite p-group G  is described. Suppose that 

tMMM ,,, 21 …  are the maximal subgroups of ,G  and denote by ( )Gh  

the number of chains of subgroups of G  which ends in .G  By simply 

applying the technique of computing ( ),Gh  using the application of the 

Inclusion-Exclusion Principle, we have that 

( ) ( ) ( ) ( ) .12
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In [8], ( )#  was used to obtain the explicit formulas for some positive 

integers n. 

Theorem ( )∗
 (Marius [10]). The number of distinct fuzzy subgroups 

of a finite p-group of order np  which have a cyclic maximal subgroup is: 

(i) ( ) ;2n

pnh =Z  

(ii) ( ) ( ) ( )( ).122 1
1 pnMhh n

ppp nn −+==× −
−ZZ  

Proposition A (see [4]). Suppose that .
216 nG ZZ ×=  

Then 

( ) ( ) ( ) ( )20022417122
3

1 232 nn nnnGh +−++= +  

( ) [(( ) ( ) ( ) ).2417122
3

1 235

1

1 −−+−+−+ ∑
−

=

+
kkk

k
nnn
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Proposition B (see [5]). Suppose that .
232 nG ZZ ×=  

Then 

( ) [ ( ) ( )] ( )( ).22 11 216
16

1216216 k

k

k
−−− ×+×+×= +−

=∑ nnn hhhGh
n

ZZZZZZ  

4. Computation for nG
264 ZZ ×=  

Suppose that 6464 ZZ ×=G  Then, ( ) ( ).2 6232 ZZ ×= hGh  

If ,7264 ZZ ×=G  then ( ) [ ( ) ( ) ( ).2 676 232232264 ZZZZZZ ×−×+×= hhhGh   

For ,8264 ZZ ×=G  we have that 

( ) [ ( ) ( ) ( ).2 787 232232264 ZZZZZZ ×−×+×= hhhGh  

Also, if ,9264 ZZ ×=G  then 

( ) [ ( ) ( ) ( ).2 898 232232264 ZZZZZZ ×−×+×= hhhGh  

Now, let ,
264 nG ZZ ×=  then 

( ) ( ) ( ) ( )11 264232232 222 −− ×+×−×= nnn hhhGh ZZZZZZ  

( ) ( ) ( )21 232232232 422 −− ×−×+×= nnn hhh ZZZZZZ  

( )22644 −×+ nh ZZ  

( ) ( ) ( )21 232232232 422 −− ×+×+×= nnn hhh ZZZZZZ  

( ) ( )33 264232 88 −− ×+×− nn hh ZZZZ  

( ) ( ) ( )21 232232232 422 −− ×+×+×= nnn hhh ZZZZZZ  

( ) ( ) ( )443 264232232 16168 −−− ×+×−×+ nnn hhh ZZZZZZ  
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( ) ( )1232232 22 −×+×= nn hh ZZZZ  

( )( ) ( )tnn hh tt

−−− ×−×+ −−

=∑ 232232
12

1
224 1 ZZZZ k

k

k
 

( ),2
264 tnht

−×+ ZZ  

where, ,6=− tn  implying that .6−= nt  

Therefore 

( ) ( ) ( ) ( )( )k

k

k
−−− ×+×+×= −−

=∑ 11 232
18

1232232 2422 nnn hhhGh
n

ZZZZZZ  

( ) ( )66 264
6

232
6 22 ZZZZ ×+×− −− hh nn  

[ ( ) ( ) ( )]565 216216232
42 ZZZZZZ ×−×+×= − hhhn  

( ) ( )1232232 22 −×+×+ nn hh ZZZZ  

( )( ),24 1232
18

1
k

k

k
−−×+ −−

=∑ nh
n

ZZ  

where, ( )nh
232 ZZ ×  is found using Proposition B.  � 

5. Conclusion 

We have been able to successfully classified and the number of 

distinct fuzzy subgroups for the abelian structure formed from two 

nilpotent subgroups of orders 64 and ,2n  respectively where .6≥n  This 

has been made possible by a comprehensive analysis and the application 

of GAP (Group Algorithms and Programming, Version 4.8.7; https: 

www.gap-system.org). 
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