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Abstract 

The aim of this note is to study the limit behaviour of the ratio of the 

arithmetic mean and the geometric mean of the first n terms of some general 

sequences. In fact, this note generalizes some of the previously known results 

and extends the results to several well-known sequences in number theory. 
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1. Introduction 

Suppose that na  is a sequence of positive real numbers and let 

( ),,,, 21 nn aaaAA …=  

and 

( )nn aaaGG ,,, 21 …=  

denote the arithmetic and geometric means of the numbers 

,,,, 21 naaa … respectively. 

The limiting behaviour of the ratio of nA  and nG  have attracted the 

attention of many mathematicians in recent years, and interesting results 

have been obtained for some special sequences of positive numbers. For 

example, consider the sequence of the first n  positive integers. The well-

known Stirling’s approximation 
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As a generalization of this limit, Kubelka [11] proved that for any ,0>α  
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Recently, similar results have been considered for the sequence np  of 

prime numbers. In his paper [3], Hassani established some inequalities 

and asymptotic formulas for the ratio 
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For more inequalities and asymptotic formulas for the ratio 
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…

 see also [1]. 
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Our interest in this paper is to show that the ratio 
1+α

αe
 (with 

)0>α  appears surprisingly in studying the limit behaviour of the ratio 

of the arithmetic and geometric means of the first n  terms of some 

general sequences. Furthermore, we show that the general results of this 

paper apply to some well-known sequences in number theory, for example 

to the sequence of k-free numbers ( ),2≥k  the sequence of k-full numbers 

( ),2≥k  the sequence of prime numbers, the sequence of numbers with 

2≥k  prime factors in their prime factorization and the sequence of 

perfect powers. 

2. Main Results 

Theorem 2.1. Let nA  be a strictly increasing sequence of positive 

integers such that 

,~ s
n cnA  (1) 

where 0>c  and 1≥s  are fixed real numbers. The following limits hold 

for all 0>α  
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  (3) 

where ( )xυ/  is the counting function of the sequence. Namely, ( ) .1∑ ≤
=/

xAi
xυ  
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Proof. We have the following general proposition [13, page 332]. Let 
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∞

=1
 and ii
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∞

=1
 be two series of positive terms such that .1→

i
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Therefore, we have (see (1))  
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Equation (1) gives 

( ),1lnlnln onscAn ++=   (5) 

and the Stirling’s formula 
n

n
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Equations (5) and (6) give 
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and consequently 
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Equations (4) and (7) give Equation (2). 

Since ( ) ,nAn =/υ  Equation (4) can be written in the form 
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If [ ),, 1+∈ nn AAx  then α
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 and consequently we 

have (see (8)) 
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since, by Equation (1), .~1 nn AA +  Therefore by the compression 

theorem we have 
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Analogously if [ )1, +∈ nn AAx  Equation (7) gives 
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and therefore we have 
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Equations (9) and (10) give Equation (3). The theorem is proved. 

Theorem 2.2. The equation 

s
n cnA ~  (11) 

is equivalent to 
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1

1
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x
xυ/  (12) 
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Proof. Clearly (12) implies (11) if we substituting nAx =  into (12). 

On the other hand, Equation (11) can be written in the form 

( )( ) .~
s

nn AcA υ/  That is, 
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since .~ 1+nn AA  Therefore, by the compression theorem we obtain (12). 

That is, (11) implies (12). The theorem is proved. 

Example 2.3. The sequence nAn =  satisfies Theorem 2.1, since 

.~ nnAn =  In this case we obtain the result by Kubelka (see the 

introduction) 
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since in this case .1=s  

In general, all sequence nA  with positive density ,0>ρ  that is, 

( ) ,~ xx ρ/υ  satisfies Theorem 2.1. For example, the sequence of square-

free numbers and in general the sequence of k-free numbers ( ),2≥k  

since (as it is well-known) they have positive density 
( )

,
1

kζ
 where ( )kζ  

denotes the zeta function (see, for example, [8]). The sequence of square-

full numbers and in general the sequence of k-full numbers ( )2≥k  also 

satisfies Theorem 2.1, since if ( )xυ/  is the number of k-full numbers not 

exceeding x then (as it is well-known) ( ) ,~

1

kcxxυ/  where the constant c 

depends of k (see, for example, [9]). 
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The sequence nn PA =  of perfect powers also satisfies Theorem 2.1, 

since (as it is well-known) 2~ nPn  (see, for example, [10]) etc. 

The following definition was established in [4]. 

Definition 2.4. Let ( )xf  be a function defined on the interval [ )∞,a  

such that ( ) ( ) ∞=> ∞→ xfxf xlim,0  and with continuous derivative 

( ) .0>′ xf  The function ( )xf  is of slow increase if and only if the following 

condition holds: 

( )
( )

.0lim =
′

∞→ xf

xfx

x
 (13) 

Typical functions of slow increase are ,
lnln

ln
,lnln,ln,ln 2

x

x
xxx  etc. 

The functions ( )xf  of slow increase have the following property (see 

[4]): for all 0>α  the following limit holds: 

( )
.0lim =

α∞→ x

xf

x
 

Besides, if ( )xf  is of slow increase then ( )xfc  and ( )α
xf  are also 

functions of slow increase, where 0>c  and 0>α  are real numbers (see 

[4]). 

Theorem 2.5. Let nA  be a strictly increasing sequence of positive 

integers such that 

( ),~ nfnA s
n  (14) 

where 1≥s  is a real number and ( )xf  is a function of slow increase. The 

following limits hold for all 0>α  
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where ( )xυ/  is the counting function of the sequence. Namely, ( ) .1∑ ≤
=/

xAi
xυ  

Proof. In [4, Theorem 22] is proved the following formula: 
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and in [4, Theorem 24] is proved the following formula: 
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Equations (17) and (18) give Equation (15). 

In [4, Theorem 22] is also proved the following formula: 
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can be proved from Equation (18) in the same way as in Theorem 1.1. 

Equations (19) and (20) give Equation (16). The theorem is proved. 
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Example 2.6. Let np  be the n-th prime number. The prime number 

theorem is .ln~ nnpn  Therefore the sequence of primes nn pA =  

satisfies Theorem 2.5. In this case 1=s  and ( ) .ln xxf =  Consequently, 

we have the limits (where ( )xπ  denotes the prime counting function) 
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Equation (21) with 1=α  was proved by Hassani (see the Introduction). 

The sequence nA  of numbers with k  prime factors in their prime 

factorization, where k  is an arbitrary but fixed positive integer, also 

satisfies Theorem 2.5 (see [4, Example 11]) etc. 

In the following theorem we obtain asymptotic expansions for (21) 

and (22). 

Theorem 2.7. Let 0>α  be and let m be an arbitrary but fixed 

positive integer. 

The following asymptotic expansion holds: 
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where a method for to determinate the coefficients ,, hbα  depending of ,α  is 

given below (in the proof). 
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The following asymptotic expansion holds. 
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where the ( )xfh  are polynomials. A method for to determinate the 

polynomials ( )xfh  is given below (in the proof). 

Proof. We have the following Taylor’s polynomial 
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On the other hand, we have the following asymptotic expansion (see 

either [6] or [7]): 
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We also have the following formula well-known [14], where a is a positive 

constant. 
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and the following Panaitopol’s asymptotic expansion [12]: 
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where the coefficients ka  can be obtained recursively (see [12]). 
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Now, we have 
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Substituting (25), (26), (27) and (28) into (29) we obtain 
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That is, Equation (23). 

We have the following Taylor’s formula: 
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Cipolla [2] proved the following asymptotic expansion for ,ln np  where 

np  denotes the n-th prime number, 
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where the ( )xgi  are polynomials of degree i  and rational coefficients.  

Cipolla [2] gives a recursive method to obtain the polynomials ( ).xgi   

Next, we obtain an asymptotic expansion for .
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and use Equation (31) then we obtain 
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where the ( )xhi  are polynomials of rational coefficients. This is the 

asymptotic expansion for .
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since .ln~ln npn  Finally, substituting (35) (with )3−= mr  into (36) 

we find that 
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(37) 

where the ( )xfh  are polynomials. This is the asymptotic expansion (24) 

that we desired. The theorem is proved. 

Example 2.8. We choose .3=m  Equation (30) becomes 
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since 11 −=a  and .32 −=a  Now, 03 =−= mr  and Equation (34) 

becomes 
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Finally, Equation (37) becomes 
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Theorem 2.9. Let nA  be a sequence of positive real numbers (in 

particular integers) such that 

( ) ,~
1

βα

−
nfCn

A

A

n

n  (38) 

where 0,0 >α>C  and β  are fixed real numbers and ( )xf  is a function 

of slow increase. 
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The following limit holds. 
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Proof. In [5, Theorem 5] was proved the formula 
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On the other hand, we have (L’Hospital’s rule and (13)) 
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Note that the function ( )βα xfCx  is strictly increasing from a certain 

positive integer a and ( ) .lim ∞=βα
∞→ xfCxx  Therefore we have 
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Equations (40) and (41) give Equation (39). The theorem is proved. 
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Example 2.10. Let us consider the sequence nB  of Bell numbers. It 

is well-known (see, for instance, [5]) that .
ln
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1 n
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Theorem 2.9 is applicable and we have 
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