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Abstract 

In this note we prove asymptotic expansions for the sums ,
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1. Introduction 

In Lemma 1.2 of [1], Alladi and Erdős proved the formula (p denotes a 

positive prime) 
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where .1>k  In this note we obtain a more precise result for the          

sum .
1
kp

xp∑ >
 That is, we prove the following theorem. 
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Theorem 1.1. Let 1>k  be and h be an arbitrary but fixed positive 

integer. The following formula holds: 
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Proof. We have (L’Hospital’s rule) 
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where i is a positive integer. 

Integration by parts give us 
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Let ( )xπ  be (as usual) the prime counting function. The following formula 

is well-known (see [3], Chapter 7), where h  is an arbitrary but fixed 

positive integer. 
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Abel summation (see [2], Chapter XXII) give us 
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If we eliminate the integrals in Equation (3) (see below) we obtain the 

formula 
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Now, we shall determinate the coefficients .ia  If ,1=i  then we have (see 

(3) and (2)) 
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Therefore (see (5)) 
1

1
1

−
=
k

a  and we put .1
1

1
2 −

−
−=
k

A  

If ,2≥i  then (see (3) and (2)) 
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Therefore (see (6)) 
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and we put (see (6)) 
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We shall prove that for 1≥i  
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Clearly (9) is true for 1=i  and 2=i  (see (5) and (6)). 

Suppose that Equation (9) is true. Equations (7), (8) and (9) give 
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Therefore Equation (9) is proved. Equations (4) and (9) give (1). The 

theorem is proved. 

Theorem 1.2. The following asymptotic formula holds: 
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where the positive integers jc  satisfy the recurrence relation 

,11 =c  (11) 

( ).1!21 ≥+=+ jjjcc j
jj   (12) 

Therefore ,90,14,3 432 === ccc  etc. 

Proof. We have the formula (see the proof of Theorem 1.1) 
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where ( ) .0→if  Hence 
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Note that (L’Hospital’s rule) 
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The function 
x

x
jlog

 is positive and strictly increasing. Consequently, 
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Substituting (16) and (17) into (14) we obtain 
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Now, we have (use integration by parts in the first integral) 
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In this form we eliminate successively all integrals into (18) and obtain 

(10). Where 

,11 =K  
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12 −

=
j

j
j

c
K  then we obtain (11) and (12). The theorem is proved. 

We have the following general theorem. 

Theorem 1.3. Let α  be a positive real number and h be a positive 

integer. The following asymptotic formula holds: 
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where ( ) ( )…,3,2,1=syPs  is the polynomial 
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Therefore ( )yPs  has degree ,1−s  integer coefficients alternating in sign 

and leading coefficient ( ) .1
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Proof. The Taylor’s formula for the binomial formula is 
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where hm ,,2,1 …=  and 
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number 
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We have the formula (see the proof of Theorem 1.1) 
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Substituting 
x

z
log

log α
=  into (23) and then substituting (23) into (25) we 

obtain (19) and (20). The theorem is proved. 

Theorem 1.4. Let 2≥k  be a fixed positive integer. The following 

asymptotic formula holds: 

( ) ( )
( ) ( )( )

,
loglog

log!1

2










+

−−
=π−π ∑

= x

x
o

x

xPs
xx

hs

s
h

s

kkk
kk   (26) 

where .,4,3,2 …=h  Therefore 
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In particular, if ,2=k  
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Proof. It is an immediate consequence of Theorem 1.3. The theorem 

is proved. 

We also can obtain (as a direct consequence of Theorem 1.3) an 

asymptotic expansion for ( ) ( ),xxx π−+π ε  where 0>ε  is small. That is, 

for the number of primes in the small interval [ ]., xxx ε+  If we take the 

first terms of this expansion we obtain the formula 
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Theorem 1.5. Let m  be and let h be arbitrary but fixed positive 

integers. The following asymptotic formula holds: 
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where ( ) ( )…,3,2,1=+ syP sm  is the polynomial 
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Therefore ( )yP sm+  has degree ,1−s  positive integer coefficients and 

leading coefficient .1−sm  We have 
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Proof. The proof is the same as the proof of Theorem 1.3. The 

theorem is proved. 
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