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Abstract 

In this article, we study some sums on primes and obtain asymptotic 

expansions for sums of primes, sums of least prime factors, and sum of the 

geometric mean of the prime factors of an integer. 

1. Generalization of Some Sums on Primes 

We have 
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The following strong form of the prime number theorem is well-known [5]. 
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where a is a positive constant. Note that 
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for all positive number .m  

We need the following well-known fundamental lemma. 

Lemma 1.1. If ( )xf  is a function with derivative ( )xf ′  continuous on 

the interval [ ),,2 ∞  then the following formula holds: 
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Proof (See (2.26) of [6]). The lemma is proved. 

Now, we prove some formulas for sums on primes. Some          

formulas generalize the following well-known sums on primes. 
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Theorem 1.2. If k  is a nonnegative integer, then the following 

formula holds: 

( ) ( )
,

log

1

loglogloglog

log

1

3










++

+
=

+

≤≤
∑ xa

xp e

x
OC

x

p

p
k

kk

k
 

where kC  is a constant depending of .k  

Proof. We have (Lemma 1.1 and (1)) 
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Note that the integral in the interval [ )∞,3  converges since it is 

absolutely convergent (see (2)). On the other hand, we have 
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where M  is a positive constant and (L’Hospital’s rule) 
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The theorem is proved. 

Theorem 1.3. If k  is a positive integer, then the following formula 

holds: 
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where kE  is a constant depending of .k  

Proof. We have (Lemma 1.1 and (1)) 
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Note that the integral in the interval [ )∞,2  converges since it is 

absolutely convergent (see (2)). On the other hand, we have 
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where M  is a positive constant and (L’Hospital’s rule) 
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The theorem is proved. 

Theorem 1.4. If k is a positive integer, then the following asymptotic 

formula holds: 
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where the ia  are integer coefficients (see below in the proof ). 

Proof. Lemma 1.1 and (1) give 

( ) ( )
( ) ( )( )

dt
e

tO

e

xx
Odttp

ta

x

xa

x

xp
log

1

2log

1

2
2

log1log
loglog

−
−

≤≤
∫∫∑ +











+=

kk
kk

 

( )
( )

.
log

log
log

1













+=

−

=
∑ xa

i
i

i e

xx
Oxxa

k
k

k

 

Now, we have 
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On the other hand, we have (integration by parts) 
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The theorem is proved. 

Remark 1.5 (On the Cipolla’s expansion). If we put into (3) 1=k  

then we obtain the well-known result 
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By (2), we have the weaker result 
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If we put npx =  and use the prime number theorem ,log~ nnpn  then 

we obtain 
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for all nonnegative integer .m  The Cipolla’s expansion for np  is of the 

form ( ) ,
log
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of the nonnegative integer .m  Therefore, substituting into (4) we obtain 

( ) .
log

log

1










+=∑

= n

n
onfp

mmi

n

i

 

That is, i
n

i
plog
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 has the same Cipolla’s asymptotic expansion as .np  

This fact was proved in [2] by use of the Cipolla’s theorems [1]. This is 
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another simple proof. For example, if 0=m  then the first Cipolla’s 

formula is ( )nonnnnnpn +−+= logloglog   and consequently also we 

have ( ).loglogloglog
1

nonnnnnpi
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 In this case, ( ) nnf =0  

.logloglog nnnn −+   

Theorem 1.6. If 0>α  is a real number, then the following asymptotic 

formula holds: 
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Proof. Lemma (1.1) and (1) gives 
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The theorem is proved. 
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Remark 1.7. By successive integration by parts of the function 
t

t

log
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we obtain the following asymptotic expansion for all positive integer m  

(see (5) and (2)). 
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This asymptotic expansion was obtained by use of a different method in 

[4]. 

Remark 1.8 (Sum of least prime factors and sum of the geometric 

mean of the prime factors of an integer). Let ( )na  be the least prime 

factor of a positive integer .n  Note that if pn =  is a prime then 
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Consequently 
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In the same way we obtain 
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Theorem 1.9. If k is a positive integer, then the following asymptotic 

formula hold: 
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By Lemma 1.1 and (1), we obtain 
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and 
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The theorem is proved. 

Theorem 1.10. If k is a positive integer, then the following asymptotic 

formula holds: 
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Remark 1.11. By successive integration by parts of the function 
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