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Abstract 

We obtain asymptotic expansions for the geometric mean of prime numbers. 

1. Main Results 

Let np  be the n-th prime and ( )xπ  be the prime counting function. 

The following limit was proved in [2] by use of the prime number theorem 
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Almost an immediate consequence of limit (1) is the limit 
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where p denotes a generic prime. Really limit (1) and limit (2) are 

equivalent, since clearly (2) implies (1) if we put .npx =  

In this article, we obtain asymptotic expansions for (1) and (2). We 

have the following theorem. 

Theorem 1.1. Let m be an arbitrary but fixed positive integer. 

The following asymptotic expansion holds. 
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where a method to determinate the coefficients ib  is given below (in the 

proof). 

The following asymptotic expansion holds. 
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where the ( )xfh  are polynomials. A  method to determinate the polynomials 

( )xfh  is given below (in the proof). 

The following asymptotic expansion holds. 
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where the ( )xqh  are polynomials. A  method to determinate the polynomials 

( )xqh  is given below (in the proof). 
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Proof. We have the following Taylor’s polynomial 
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We also have the following well-known formula [4], where a is a positive 

constant. 
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and the following Panaitopol’s asymptotic expansion [3] 
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where the coefficients ka  can be obtained recursively (see [3]). 

We have (see (7) and (8)) 
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Equations (9) and (6) give 
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Therefore Equation (3) is proved. 

We have the following Taylor’s formula 
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Cipolla [1] proved the following asymptotic expansion for npln  
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where the ( )xgi  are polynomials of degree i and rational coefficients. 

Cipolla [1] gave a recursive method to obtain the polynomials ( ).xgi  
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Next, we obtain an asymptotic expansion for .
ln

1

np
 

If we put 
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and use Equations (11), (12) and (13) then we obtain 
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where the ( )xhi  are polynomials of rational coefficients. This is the 

asymptotic expansion for .
ln

1

np
 That is, 
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Substituting npx =  into (3), we obtain 
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since .ln~ln npn  Substituting (15) (with 3−= mr ) into (16) we find that 
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where the ( )xfh  are polynomials. This is the asymptotic expansion (4) 

that we desired. 

Cipolla [1] proved the following asymptotic expansion for .np  
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where the ( )xik  are polynomials of degree i and rational coefficients. 

Cipolla [1] gave a recursive method to obtain the polynomials ( ).xik  

If ,0=r  then the Cipolla’s formula is 
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If ,1=r  then the Cipolla’s formula is 
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Equation (4) gives 
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Substituting Equation (18) (with 2−= mr ) into Equation (20) we obtain 

Equation (5). The theorem is proved. 

Example 1.2. We choose .3=m  Equation (10) becomes 
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since 11 −=a  and 32 −=a  (see [3]). Equation (21) is Equation (3) for 

.3=m  Equation (14) is for .0=r  
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Equation (17) becomes (see Equations (21) and (22)) 
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This is Equation (4) for .3=m  
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Finally Equations (23) and (19) give 
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This is Equation (5) for .3=m  
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