AN ASYMPTOTIC EXPANSION FOR THE GEOMETRIC MEAN OF PRIMES

RAFAEL JAKIMCZUK

División Matemática
Universidad Nacional de Luján
Buenos Aires
Argentina
e-mail: jakimczu@mail.unlu.edu.ar

Abstract

We obtain asymptotic expansions for the geometric mean of prime numbers.

1. Main Results

Let p_{n} be the n-th prime and $\pi(x)$ be the prime counting function. The following limit was proved in [2] by use of the prime number theorem $p_{n} \sim n \ln n$.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{p_{1} p_{2} \cdots p_{n}}}{p_{n}}=\frac{1}{e} . \tag{1}
\end{equation*}
$$

[^0]Almost an immediate consequence of limit (1) is the limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\left(\prod_{p \leq x} p\right)^{\frac{1}{\pi(x)}}}{x}=\frac{1}{e}, \tag{2}
\end{equation*}
$$

where p denotes a generic prime. Really limit (1) and limit (2) are equivalent, since clearly (2) implies (1) if we put $x=p_{n}$.

In this article, we obtain asymptotic expansions for (1) and (2). We have the following theorem.

Theorem 1.1. Let m be an arbitrary but fixed positive integer.
The following asymptotic expansion holds.

$$
\begin{equation*}
\frac{\left(\prod_{p \leq x} p\right)^{\frac{1}{\pi(x)}}}{x}=\frac{1}{e}+\sum_{i=1}^{m-1} \frac{b_{i}}{\ln ^{i} x}+o\left(\frac{1}{\ln ^{m-1} x}\right) \tag{3}
\end{equation*}
$$

where a method to determinate the coefficients b_{i} is given below (in the proof).

The following asymptotic expansion holds.

$$
\begin{equation*}
\frac{\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}}{p_{n}}=\frac{1}{e}+\sum_{h=1}^{m-1} \frac{f_{h}(\ln \ln n)}{\ln ^{h} n}+o\left(\frac{1}{\ln ^{m-1} n}\right) \tag{4}
\end{equation*}
$$

where the $f_{h}(x)$ are polynomials. A method to determinate the polynomials $f_{h}(x)$ is given below (in the proof).

The following asymptotic expansion holds.

$$
\begin{equation*}
\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}=\frac{n \ln n}{e}+n \sum_{h=0}^{m-2} \frac{q_{h}(\ln \ln n)}{\ln ^{h} n}+o\left(\frac{n}{\ln ^{m-2} n}\right) \tag{5}
\end{equation*}
$$

where the $q_{h}(x)$ are polynomials. A method to determinate the polynomials $q_{h}(x)$ is given below (in the proof).

Proof. We have the following Taylor's polynomial

$$
\begin{equation*}
e^{x}=1+\sum_{k=1}^{n} \frac{x^{k}}{k!}+o\left(x^{n}\right) \quad(x \rightarrow 0) . \tag{6}
\end{equation*}
$$

We also have the following well-known formula [4], where a is a positive constant.

$$
\begin{equation*}
\vartheta(x)=\sum_{p \leq x} \ln p=x+O\left(\frac{x}{e^{a \sqrt{\ln x}}}\right)=x+o\left(\frac{x}{\ln ^{m+1} x}\right) \tag{7}
\end{equation*}
$$

and the following Panaitopol's asymptotic expansion [3]

$$
\begin{equation*}
\frac{1}{\pi(x)}=\frac{\ln x}{x}-\frac{1}{x}+\sum_{k=1}^{m} \frac{a_{k}}{x \ln ^{k} x}+o\left(\frac{1}{x \ln ^{m} x}\right) \tag{8}
\end{equation*}
$$

where the coefficients a_{k} can be obtained recursively (see [3]).
We have (see (7) and (8))
$\ln \left(\frac{\left(\prod_{p \leq x} p\right)^{\frac{1}{\pi(x)}}}{x}\right)=\frac{1}{\pi(x)} \vartheta(x)-\ln x$

$$
\begin{align*}
& =\left(\ln x-1+\sum_{i=1}^{m} \frac{a_{i}}{\ln ^{i} x}+o\left(\frac{1}{\ln ^{m} x}\right)\right)\left(1+o\left(\frac{1}{\ln ^{m} x}\right)\right)-\ln x \\
& =-1+\sum_{i=1}^{m-1} \frac{a_{i}}{\ln ^{i} x}+o\left(\frac{1}{\ln ^{m-1} x}\right) \tag{9}
\end{align*}
$$

Equations (9) and (6) give

$$
\begin{align*}
& \frac{\left(\prod_{p \leq x} p\right)^{\frac{1}{\pi(x)}}}{x}=\frac{1}{e} \exp \left(\sum_{i=1}^{m-1} \frac{a_{i}}{\ln ^{i} x}\right)\left(1+o\left(\frac{1}{\ln ^{m-1} x}\right)\right) \\
& \quad=\frac{1}{e}\left(1+\sum_{i=1}^{m-1} \frac{1}{i!}\left(\sum_{i=1}^{m-1} \frac{a_{i}}{\ln ^{i} x}\right)+o\left(\frac{1}{\ln ^{m-1} x}\right)\right)\left(1+o\left(\frac{1}{\ln ^{m-1} x}\right)\right) \\
& \quad=\frac{1}{e}\left(1+\sum_{i=1}^{m-1} \frac{1}{i!}\left(\sum_{i=1}^{m-1} \frac{a_{i}}{\ln ^{i} x}\right)^{i}\right)+o\left(\frac{1}{\ln ^{m-1} x}\right) \\
& \quad=\frac{1}{e}+\sum_{i=1}^{m-1} \frac{b_{i}}{\ln ^{i} x}+o\left(\frac{1}{\ln ^{m-1} x}\right) . \tag{10}
\end{align*}
$$

Therefore Equation (3) is proved.
We have the following Taylor's formula

$$
\begin{equation*}
\frac{1}{1+x}=1+\sum_{k=1}^{n}(-1)^{k} x^{k}+o\left(x^{n}\right) \quad(x \rightarrow 0) \tag{11}
\end{equation*}
$$

Cipolla [1] proved the following asymptotic expansion for $\ln p_{n}$

$$
\begin{equation*}
\ln p_{n}=\ln n+\ln \ln n+\sum_{i=1}^{r} \frac{g_{i}(\ln \ln n)}{\ln ^{i} n}+o\left(\frac{1}{\ln ^{r} n}\right) \tag{12}
\end{equation*}
$$

where the $g_{i}(x)$ are polynomials of degree i and rational coefficients. Cipolla [1] gave a recursive method to obtain the polynomials $g_{i}(x)$.

Next, we obtain an asymptotic expansion for $\frac{1}{\ln p_{n}}$.
If we put

$$
\begin{equation*}
x=\frac{\ln \ln n}{\ln n}+\sum_{i=1}^{r} \frac{g_{i}(\ln \ln n)}{\ln ^{i+1} n}+o\left(\frac{1}{\ln ^{r+1} n}\right), \tag{13}
\end{equation*}
$$

and use Equations (11), (12) and (13) then we obtain

$$
\begin{align*}
\frac{1}{\ln p_{n}} & =\frac{1}{\ln n} \frac{1}{1+x} \\
& =\frac{1}{\ln n}\left(1-x+x^{2}-\cdots+(-1)^{r+1} x^{r+1}+(-1)^{r+2} x^{r+2}(1+o(1))\right) \\
& =\frac{1}{\ln n}\left(1-x+x^{2}-\cdots+(-1)^{r+1} x^{r+1}+o\left(\frac{1}{\ln ^{r+1} n}\right)\right) \\
& =\frac{1}{\ln n}\left(1+\sum_{i=1}^{r+1}(-1)^{i}\left(\frac{\ln \ln n}{\ln n}+\sum_{j=1}^{r} \frac{g_{j}(\ln \ln n)}{\ln ^{j+1} n}\right)^{i}\right)+o\left(\frac{1}{\ln ^{r+2} n}\right) \\
& =\frac{1}{\ln n}+\sum_{i=1}^{r+1} \frac{h_{i}(\ln \ln n)}{\ln ^{i+1} n}+o\left(\frac{1}{\ln ^{r+2} n}\right), \tag{14}
\end{align*}
$$

where the $h_{i}(x)$ are polynomials of rational coefficients. This is the asymptotic expansion for $\frac{1}{\ln p_{n}}$. That is,

$$
\begin{equation*}
\frac{1}{\ln p_{n}}=\frac{1}{\ln n}+\sum_{i=1}^{r+1} \frac{h_{i}(\ln \ln n)}{\ln ^{i+1} n}+o\left(\frac{1}{\ln ^{r+2} n}\right) \tag{15}
\end{equation*}
$$

Substituting $x=p_{n}$ into (3), we obtain

$$
\begin{equation*}
\frac{\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}}{p_{n}}=\frac{1}{e}+\sum_{i=1}^{m-1} \frac{b_{i}}{\ln ^{i} p_{n}}+o\left(\frac{1}{\ln ^{m-1} n}\right) \tag{16}
\end{equation*}
$$

since $\ln p_{n} \sim \ln n$. Substituting (15) (with $r=m-3$) into (16) we find that

$$
\begin{align*}
\frac{\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}}{p_{n}}= & \frac{1}{e}+\sum_{h=1}^{m-1} b_{h}\left(\frac{1}{\ln n}+\sum_{i=1}^{m-2} \frac{h_{i}(\ln \ln n)}{\ln ^{i+1} n}+o\left(\frac{1}{\ln ^{m-1} n}\right)\right)^{h} \\
& +o\left(\frac{1}{\ln ^{m-1} n}\right)=\frac{1}{e}+\sum_{h=1}^{m-1} b_{h}\left(\frac{1}{\ln n}+\sum_{i=1}^{m-2} \frac{h_{i}(\ln \ln n)}{\ln ^{i+1} n}\right)^{h} \\
& +o\left(\frac{1}{\ln ^{m-1} n}\right)= \tag{17}\\
e & \frac{1}{e} \sum_{h=1}^{m-1} \frac{f_{h}(\ln \ln n)}{\ln ^{h} n}+o\left(\frac{1}{\ln ^{m-1} n}\right)
\end{align*}
$$

where the $f_{h}(x)$ are polynomials. This is the asymptotic expansion (4) that we desired.

Cipolla [1] proved the following asymptotic expansion for p_{n}.

$$
\begin{equation*}
p_{n}=n \ln n+n \ln \ln n-n+n \sum_{i=1}^{r} \frac{k_{i}(\ln \ln n)}{\ln ^{i} n}+o\left(\frac{n}{\ln ^{r} n}\right) \tag{18}
\end{equation*}
$$

where the $k_{i}(x)$ are polynomials of degree i and rational coefficients. Cipolla [1] gave a recursive method to obtain the polynomials $k_{i}(x)$.

If $r=0$, then the Cipolla's formula is

$$
p_{n}=n \ln n+n \ln \ln n-n+o(n)
$$

If $r=1$, then the Cipolla's formula is

$$
\begin{equation*}
p_{n}=n \ln n+n \ln \ln n-n+\frac{n \ln \ln n-2 n}{\ln n}+o\left(\frac{n}{\ln n}\right) \tag{19}
\end{equation*}
$$

etc.

Equation (4) gives

$$
\begin{equation*}
\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}=\left(\frac{1}{e}+\sum_{h=1}^{m-1} \frac{f_{h}(\ln \ln n)}{\ln ^{h} n}+o\left(\frac{1}{\ln ^{m-1} n}\right)\right) p_{n} \tag{20}
\end{equation*}
$$

Substituting Equation (18) (with $r=m-2$) into Equation (20) we obtain Equation (5). The theorem is proved.

Example 1.2. We choose $m=3$. Equation (10) becomes

$$
\begin{align*}
\frac{\left(\prod_{p \leq x} p\right)^{\frac{1}{\pi(x)}}}{x} & =\frac{1}{e}\left(1+\sum_{i=1}^{2} \frac{1}{i!}\left(\sum_{i=1}^{2} \frac{a_{i}}{\ln ^{i} x}\right)^{i}\right)+o\left(\frac{1}{\ln ^{2} x}\right) \\
& =\frac{1}{e}\left(1-\frac{1}{\ln x}-\frac{5}{2} \frac{1}{\ln ^{2} x}\right)+o\left(\frac{1}{\ln ^{2} x}\right) \tag{21}
\end{align*}
$$

since $a_{1}=-1$ and $a_{2}=-3$ (see [3]). Equation (21) is Equation (3) for $m=3$. Equation (14) is for $r=0$.

$$
\begin{align*}
\frac{1}{\ln p_{n}} & =\frac{1}{\log n}\left(1+\sum_{i=1}^{1}(-1)^{i}\left(\frac{\ln \ln n}{\ln n}\right)^{i}\right)+o\left(\frac{1}{\ln ^{2} n}\right) \\
& =\frac{1}{\ln n}-\frac{\ln \ln n}{\ln ^{2} n}+o\left(\frac{1}{\ln ^{2} n}\right) \tag{22}
\end{align*}
$$

Equation (17) becomes (see Equations (21) and (22))

$$
\begin{align*}
\frac{\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}}{p_{n}}= & \frac{1}{e}\left(1-\left(\frac{1}{\ln n}-\frac{\ln \ln n}{\ln ^{2} n}\right)-\frac{5}{2}\left(\frac{1}{\ln n}-\frac{\ln \ln n}{\ln ^{2} n}\right)^{2}\right) \\
& +o\left(\frac{1}{\ln ^{2} n}\right)=\frac{1}{e}\left(1-\frac{1}{\ln n}+\frac{\ln \ln n-\frac{5}{2}}{\ln ^{2} n}\right)+o\left(\frac{1}{\ln ^{2} n}\right) \tag{23}
\end{align*}
$$

This is Equation (4) for $m=3$.

Finally Equations (23) and (19) give

$$
\begin{aligned}
\left(\prod_{i=1}^{n} p_{i}\right)^{\frac{1}{n}}= & \frac{1}{e}\left(1-\frac{1}{\ln n}+\frac{\ln \ln n-\frac{5}{2}}{\ln ^{2} n}+o\left(\frac{1}{\ln ^{2} n}\right)\right) \\
& \times\left(n \ln n+n \ln \ln n-n+\frac{n \ln \ln n-2 n}{\ln n}+o\left(\frac{n}{\ln n}\right)\right) \\
= & \frac{1}{e}\left(n \ln n+n \ln \ln n-2 n+\frac{n \ln \ln n-\frac{7}{2} n}{\ln n}\right)+o\left(\frac{n}{\ln n}\right) .
\end{aligned}
$$

This is Equation (5) for $m=3$.

References

[1] M. Cipolla, La determinazione assintotica dell’ $n^{\text {imo }}$ numero primo, Rend. Acad. Sci. Fis. Mat. Napoli, Ser. 3(8) (1902), 132-166.
[2] R. Jakimczuk, The ratio between the average factor in a product and the last factor, Mathematical Sciences: Quarterly Journal 1(3-4) (2007), 53-62.
[3] L. Panaitopol, A formula for $\pi(x)$ applied to a result of Koninck-Ivić, Niew Archief Voor Wiskunde 5(1) (2000), 55-56.
[4] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics 6(1) (1962), 64-94.

[^0]: 2020 Mathematics Subject Classification: 11A99, 11B99.
 Keywords and phrases: integer sequences, geometric mean, primes, asymptotic expansions. Communicated by Zhuang-Dan Daniel Guan, Editor, RCMMS.
 Received December 2, 2020; Revised March 12, 2021

