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Abstract
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1. Introduction

Stochastic differential equations have been extensively used in
modelling physical and engineering systems, including biological
processes, finance, management, and many more [1, 2, 3, 4]. One can find
stochastic models for population dynamics, computer communication
networks, internet traffic control and many more, see [2]. In the
literature, one can also find some stochastic models to capture the
dynamics of stock market used for portfolio management and control [3,
4, 2]. One of the most well-known model is given by the celebrated Black-
Scholes equation [3] described by a scalar stochastic differential equation

of the form,

dx = vxdt + oxdW(t), x(0) = xg, t > 0.

Its solution {x(¢), ¢ > 0} is the so called geometric Brownian motion given

by
x(t) = xo exp{(v — (1/2)6%)t + sW(t)}, ¢ > 0.

This model is used as the basis for option pricing. For valuation of the
option price one can easily derive the well known Black-Scholes partial
differential equation,
2
9 0°V oV
—

a_V 2 oV _ _ +
5 +(1/2)o“x o rx = rV=0,1(@x)e (0, T)xR",

subject to the initial boundary conditions given by
V(0, x) = max{x —s, 0}, V(t, 0) = 0, V(¢, x) = x, x — oo,

where x is the current stock price, s is the strike price of the option and r
is the annualized risk free interest rate continuously compounded and T

is the expiration date. For detailed assumptions and derivation, see [3].
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This and similar models are based on market experience, intuition,
and many apparently reasonable assumptions as seen in [4] and the
extensive references therein. The validity of this simple model for stock
price dynamics is probably questionable. Therefore, to avoid significant
errors, it is necessary to identify the drift, diffusion, jump parameters as
accurately as possible using available historical data. Recently, we
considered inverse problems for continuous drift-diffusion processes [6].
Our objective here is to generalize our previous work and develop a
method for solving stochastic inverse problem designed to determine all
the infinitesimal generators controlling the drift-diffusion-jump
processes. Inclusion of Poisson jump process in the dynamics with
appropriate Lévy measure can model jumps in the stock price as often
seen in practice. We hope the method presented here can be used to
identify or develop stochastic models on the basis of available historical
data, for example, the stock price, population process, information flow on
communication network, traffic flow, both vehicular and internet, and
many more. This has to be based on rigorous stochastic analysis. Here we
consider the general stochastic inverse problem and develop the
necessary conditions of optimality designed to determine the system
model from available data. Thus the theory developed here can be used to
construct the mathematical model for any finite dimensional stochastic

dynamic system.
2. Proposed System Model and Problem Formulation

Let (Q, F, Fis0, P) be a complete filtered probability space where
{F;, t 2 0} is an increasing family of sub-sigma algebras of the sigma
algebra F, continuous from the right and having limits from the left. Let
{W(), t = 0} be an F,-adapted R™(m € N) valued standard Brownian
motion, and p(d€ x dt) denote a random measure defined on the sigma

algebra of subsets of the set V5 x I, where I = [0, T'] is the time interval
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and Vs = R%\ By with B; denoting the open ball in R of radius & > 0
and centered at the origin. The measure p is said to be a Poisson random
measure or a counting measure if for each time interval I' ¢ I and any
Borel set S ¢ Vg the probability that there are exactly n jumps of sizes
(or with range) confined in the set S 1is given by

((SIMT)"

P{p(S xT) = n} = E22

exp — {n(S)MI)},

where A denotes the Lebesgue measure on I and © denotes the Lévy

(jump) measure on the sigma algebra of Borel subsets of the set V5. The
term 7(S) (the Lévy measure of the set S) denotes the mean rate of

jumps of sizes confined in the set S. We note that the measure © can be
chosen according to the specific needs of applications. Define the random

measure
q(SxT) = p(SxTI)-nm(S)MI)

with mean zero and variance 7(S)MI"). The process q(d§ x dt) is called

the compensated Poisson random measure.

For illustration, let us consider n different interacting randomly

fluctuating entities defined on the time interval I = [0, 7] and taking

values in R" and denoted by {x(¢), ¢t € I}. For example, the process x

may represent the price fluctuation of n different stocks around a

reference vector such as the mean flow.

In general, the dynamics of the process x can be modelled by a

stochastic differential equation of the form,

dx = a(x)dt + b(x)dW(t)
+ I clx, €)q(dEx dt), x(0) = xo, t € I =[0, T, 1)
Vs

given that the generating operators (or the elements of the vector field)
{a, b, ¢} are known. Generally, the infinitesimal mean vector
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a : R" — R", the diffusion matrix b : R" — L(R™, R") and the jump

kernel ¢: R" x R®—s R" are unknown. These are the fundamental

parameters or generators that determine the dynamics of the system. In
many physical problems the triple {a, b, ¢} is unknown and may be

determined on the basis of basic sciences. For stock market there is no
such basic science available. It is almost impossible to determine the
dynamics of individual or even the mass phycology and use it to
determine the drift-diffusion-jump triple {a, b, c}. So one must use

available market data {y(f),te I} and find a way to determine the
generating triple {a, b, ¢} so that the solution of Equation (1) is as close
as possible to the observed data {y(f), ¢t € I} in some sense. This is the

essence of inverse problem. Note that the Black-Scholes model is a scalar
stochastic differential equation with the assumption that a(x) = 1x and

b(x) = ox and ¢ = 0. This appears to be a very simple model for a rather

complex system. In order to consider the general problem we have to be
more precise; we must specify the function space from which we can
choose the triple, and also we must specify the measure of closeness. Let
P,q denote the admissible class of drift-diffusion-jump triples and let the

measure of closeness be given by mean square error. So we introduce the
functional

T
J(a, b, ¢) = (1/2)E “O (@) = @)%, dt + [£(T) - y(T)||;n},
and find {a’, b°, ¢’} e P,y that minimizes the functional J. In fact, we

can consider a more general performance functional such as
T
T(a, b, c) = E{j e, x(0))dt + @(x(T))}, (@)
0

where 7/ : Ix R" — R and ® : R" — R. Since the data y is fixed, it is
contained in the definition of the functions ¢ and & though not shown
explicitly. The objective is to find a generating triple {a’, b°, ¢’} e Py
at which J attains its minimum. The model so obtained may be useful to

capture the dynamics of unknown stochastic systems.
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3. Admissible Drift-Diffusion-Jump Triples

To solve the above inverse problem it is necessary to give a more

precise characterization of the admissible set P,;. Let Ly(Vs, ©) = Ly(n)
denote the class of real valued Borel measurable functions defined on Vj
which are square integrable with respect to the Lévy measure 7 and let
L5 (m) denote class of nonnegative members of Lo(rw). Let C(Vs) denote

the space continuous real valued functions defined on Vy. Let {a, K} be

any pair of positive numbers and (B, y) € L (n) N C(Vs). We introduce the

class of functions Ay g, By g and Cp y given by
(A1)
Ao g ={a:R" - R"| (i): [ja(0)|zr < @, and
(ii) : Ja(xy) = alxg)|gn < Klxy = x9[|pn ¥V %9, x5 € R"},  (3)
(A2)

By g =1{b: R" - L(R™, R")| (i): ||b(0)||£(Rm’ gy < @, and

(ii) = [b(x1) = bxa)| o pm gry < K%y — X9 pnV %1, x9 € R"},
(R™, R")

(4)
(A3)

Cp,y ={c: R" x Vs — R"(continuous)|
(i) : [0, E)lzn < BE), & e V5, and

(i) : fe(x, &) = c(y, E)|gn < VE)|x = Hgn}, VEE V5, x, y € R". (5)



INVERSE PROBLEM FOR STOCHASTIC SYSTEMS ... 45
Clearly, the class of maps {Aa, K> Bq, K} are Lipschitz whose values at

zero vector do not exceed the number o, and the Lipschitz coefficients do

not exceed K. The larger the parameters {a, K} are, the larger are these
classes {4y x, By, k). Similarly, if the pair {8, ¥ LimMNC(V5) and we

have B() <B(E), ¥(E) < ¥() for n—ae e Vs, then Gy y = C .

Let Z=R"xVs and Y = R" x L(R™, R")x R" with their natural

metric topologies. Consider the function space F(Z,Y)=Y?%, denoting

the set of all maps from Z to Y. The natural topology on this function
space is the Tychonoff product topology. For any z = (x, §)e Z, let

Hx ¢ denote the projection map from Y% to Y in the sense that for

any (a, b, ¢) e YZ,
[1. (@b 0 =ta@), bto), c(x, &)

Clearly, for each x € R", the x-projections Hx of Ay x and By g are
bounded convex subsets of the finite dimensional (topological) vector
spaces R"™ and L(R™, R"), respectively and hence relatively compact.
Similarly, the (x, §)-projection of the set Cg , is a bounded convex subset
of R" and hence also relatively compact. We define Ppq = Ay g X Bo g X

Cp,y and endow this with the product topology. We use the notation of

Willard [5] and consider the function space Y% = F(Z,Y). The set P,y

is a subset of the function space Y? , and it is given the point wise

topology T, (topology of point wise convergence), see Willard [5].
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Lemma 3.1. The set P,;, a subset of the function space Y%, is

compact in the T, topology.

Proof. This is a special case of Theorem 42.3, [5, p.278]. Since Y is a
metric space, it is clearly Hausdorff (uniform) space. So according to this

theorem, it suffices to verify that (i) the set P,; is point wise closed and
(i) each z = (x, &) projection of P,4, denoted by Hx &(Pa ), has

compact closure in Y. To prove that the set is point wise closed, it suffices
to show that the point wise limit of any generalized sequence (net) from

P,q belongs to P,;. We verify that each component of the product space

is point wise closed. Consider the component A, g and the sequence
{ak hs1 € Aq gk and suppose it converges point wise to a’. We show

that a® € Aq g. Clearly, [a®(0)] <[a®(0) - a”(0)] +[a*(0)|. Hence for

any € > 0 there exists n, € N such that
la®(0)] < [a°(©0) - a*©)] + [a* 0)] < e+ & ¥ k > g
Since this holds true for arbitrary € > 0, we have ||a’(0)| < o. Similarly,
for any pair {x;, x9} € R", using triangle inequality we obtain
la®(x1) = @ (xo)| < [l (x1) = @ (x| + [ @* (1) = @* (2]
+ o’ (x5) - a®(x5).-

Again, for any € > 0, there exists n;, ng € N such that ||a®(x;) - ak(xl)"

<¢/2 for all k> n; and |a®(xy) — a¥(xy)| < €/2 for all k > ny. Thus for

all k > max{n;, ny}, we have

a®(xr) —a®(xg)]| < &+ ||ak(x1) - ak(xz)" < e+ Klxg — x5.
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Since € > 0 is otherwise arbitrary we conclude that a° is Lipschitz. Thus
we have proved that a® € Ay g and hence A, g is point wise closed.
Following similar procedure one can easily verify that any point wise

limit b° of any generalized sequence {b" his1 € Bg g is an element of
Bg, k- Similarly one can verify that the set Cg , is also point wise closed.

Thus the set P,y is point wise closed. To prove (ii), let (x, §) e Z and

consider the projection

[1. . Pa) = {(a@), bx), e(x, )|(@, b, ) € Poq}.
Using the properties (3)-(5) characterizing the set P,; one can easily
verify that for all (a, b, ¢) € P,4, we have

la(@)lgn < o+ Klalgn. 66 pm gry < 0+ Kl

lleCe, E)llgn < BE) + VE)x | -
Since this holds uniformly with respect to the set P,;, and also the
functions B, y € C(Vs) N L5 (%), we conclude that the set Hx g(Pad) isa

bounded subset of Y. Since Y is a finite dimensional Hausdorff space,

the closure of Hx ¢ (P,q) is compact. This completes the proof. O

Throughout the rest of the paper we assume, without further notice,

that the initial state xy, the Wiener process W, and the compensated

Poisson random measure g are stochastically independent.

4. Existence of Optimal Drift-Diffusion-Jump Triples

Consider the system (1) with (a, b, ¢)e P,; and the objective

functional (2). First, we present the following result on existence,

uniqueness, and regularity properties of solutions of Equation (1). For
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this we introduce the following spaces of random processes. Throughout
the rest of the paper, we let I = [0, T'] denote the closed bounded interval
and B_(I, R") the Banach space of R" valued bounded measurable

functions endowed with the sup-norm topology. In the study of stochastic
differential equations subject to both Wiener process and Poisson random
process (or Lévy process) we expect the solution trajectories to have

discontinuities at most of the first kind. In order to include such processes
we may introduce the space B%(I, R") consisting of F, adapted R"

valued random processes having bounded second moments. Here we

introduce the norm topology given by

el = Sup{(Ellx(t)";n W2 4 e 1}

With respect to this norm topology, BZ(I, R") is a Banach space.

We consider the system governed by the stochastic differential

equation (1) with the infinitesimal generators given by (a, b, ¢) € Py.

We present briefly a proof of existence and uniqueness of solutions.

Theorem 4.1. For each initial state xy € Ly(F o, R™) (having finite

second moment) and each drift-diffusion-jump triple (a, b, ¢) € P,q, the
stochastic differential equation (1) has a unique solution x € B(I, R").

Proof. The proof is standard see [1, 2]. We present a brief outline.
Define the operator A given by

t

(Ax) () = xg +j a(x(s))ds + I ; b(x(s))dW(s)

0

t
[ [ clalo), Datexds), te L ©)
0JVs
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We show that A : B2(I, R")— BZ(I, R"). Taking the expected value

of the norm square and using Fubini’s theorem and the properties of It

integrals we obtain

t
BJA)0)[2, < 4Elxo|?, + 4] Elatx(s)[?, ds

" 4jt E[b(x(s))|? ds
0 L(R™, R")

t
* 4JO JVBE le(x(s), a)";n n(d)ds, t e 1. (7)

Using the properties (3)-(5) of the triple (a, b, ¢) € P,y, in the above

inequality one can easily verify that

E| (Ax)(t)llzn < Cy(t)+ Cz(t)sup{E”x(S)”Zn, 0 <s <t} ®)
where
Ci(t) = (4B |xo |, +8at(1 + 1) + 8UBI7, x)):
and

Co(t) = (8K2t(1 +¢t) + 8t||y||?32(n) ).
Thus, for x € B2(I, R"), we have
sup{E| (Ax)(t)||;n, te I} < C(T)+ C2(T)sup{E||x(s)||Zn, 0<s<T}

9)
and hence we conclude that Ax € BZ(I, R") whenever x € BZ(I, R")

proving that A maps BZ(I, R") in to itself. Following similar steps, one

can verify that
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E[Ax)(©) - A0, < {K>@+1)

t
; ||y||iz(n)}jOE|| x() = 3|, ds, t e I (10)

Define pZ(x, y) = sup {E| x(s) - y(s)||2, 0<s<t} and C = 4{K*(T +1)+
||y||%2(n)}, and denote pZ(x, y) by o;(x, y) for all ¢te I. Using these

notations in the above inequality we obtain

t
0;(Ax, Ay) < CI 0s(x, y)ds, t € I. (11)
0

Let A™ denote the m-fold composition of the operator A. For m = 2, it

follows from the above expression that

t t
Qt(A2x, AZy) < CJO 0s(Ax, Ay)ds < c? Jo spg(x, y)ds

< C*(t%/2 gy (x, y), t e 1. (12)
Repeating this iterative process m-times one finds that
e (A™x, Ay) < C™(t™ /m! )y (x, ¥), t € I,

and hence pp(A™x, A"y) < C™(T™/m! )pr(x, y). In terms of the norm

of the Banach space BZ(I, R"), this inequality is equivalent to the

following inequality:

e

where v,, = JC™(T™/m!). It is clear that for mg e N sufficiently

large, vp, <1. Thus A™ is a contraction and hence it follows from

Banach fixed point theorem that it has a unique fixed point
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x° € B2(I, R"). This implies that the operator A itself has x° as the
unique fixed point. Hence the system (1) has a unique solution in

BZ(I, R"). This completes the outline of our proof. O

As indicated earlier, our objective is to solve the inverse problem. The
problem is to find a drift-diffusion-jump triple (a®, b°, ¢®)e P,y for

system (1) that minimizes the functional (2). For this we must be assured
that an optimal triple exists. Before we consider the question of existence,

we prove a result on continuity of the solution map (a, b, ¢) — x(a, b, ¢)
of the stochastic differential equation (1). We present this in the following
theorem.

Theorem 4.2. Consider the system (1) with the admissible set of drift-
diffusion-jump triples P,y, and suppose the assumptions of Theorem 4.1
hold. Then the solution map (a, b, ¢) — x(a, b, ¢) is continuous with

respect to the T, topology on P,; and norm topology on the space

p

BY(1, R").

Proof. Let (af,d*, cf)e P,q be any sequence converging to
(a®, % c°)e Pyqg in the 7, topology. Let x* € BX(I, R") be the
solution of Equation (1) corresponding to the triple (ak, b* , ck), and
x° € B2(I, R") the solution corresponding to the triple (a’, b°, ¢®). We

2 . Tp
show that x* 5 x° in the Banach space B%(I, R") as (a*, b*, ¢f) =

k

(a®, b°, c°). Clearly the pair (x", x°) satisfies the following stochastic

integral equations:

) = xg + jt ok (x* (5))ds + j; b (" (5))dW(s)

0

+ ItI F(x*(s), €)q(dE x ds), t e I, (13)
0J Vs
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t

t
2°(t) = xq +I a®(x°(s))ds + jo b0 (x°(s))dW(s)

0
¥ Itj c®(x°(s), &)q(dE x ds), t e I. (14)
0J Vs

Subtracting Equation (14) from Equation (13) term by term we obtain the
following identity:

0 -0 = [ [0 (6D - a* (v (5D

ot
|, [a*(x%(5)) - a®(x°(s))]ds

+ Ot [6 (" (5)) — bF (x°(5))]dW(s)

+ Ot [6 (x°(5)) - b°(x°(5))]dW(s)

ot

[ ] Ik, ) - a(6), B)la(de x ds)
Vs

40

el

+ j [*(x°(s), &) = c®(x°(s), €)]q(dE x ds), t < 1.
Vs

40

(15)

Computing the expected value of the norm square of the fifth term on the
right hand side of the above expression using the Lipschitz property of
the elements of the set Cp,y and the properties of the compensated

Poisson random measure ¢ and Fubini’s theorem we obtain

B, [, ¢+ 0). ©) - ¢ (+7(0). Dlataz < as)

<2 o [ Eat(s) - 222 ds, te T
’Y LQ(R) 0 Rn > N
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Using this fact and computing the norm square of [x*(t) — x°(¢)] given by

Equation (15) and keeping in mind the properties of stochastic integrals
and Fubini’s theorem and using the Lipschitz property and triangle

inequality, we obtain the following inequality:
t
E|xF () - x°@)|* < 8([T +1]K? + ||v||%2(n))j0 E <" (s) - x°(s)|*ds
t
+ 8TI E||ak(x°(s)) - ao(xo(s))"ien ds
0
+8j E |65 (x°(s)) - b°(x°(s))|2 ds

L(R™, R™)

+ 8_[; IVBE | ¥ (x(s), &) = c®(x°(s), (:)"ie” n(de)ds, t € 1.

(16)
Define
: k(.0 0(,.0 2
t) = BTIO E|a"(x°(s)) - a’(x (S))"R” ds, te I, 17)
t [
= 8J.OE||bk(x° (s)) - "ﬁ(R’” ds tel, (18)
= 8J‘tj' E"Ck:(xo(s) (“;)_CO(xO(S) &,)"2 TC(dE,)ds te I (19)
- 0JVs ’ ’ Rr" ) )
and
¢ (t) = E|x" (¢ "Rn’ ©0)

eFt)=eft)+est)+eb(t), te I (21)
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Using the expressions (20) and (21) in the inequality (16), we obtain the

following inequality:

ok (1) < cjot oF(s)ds + &5 (1), t e I, 22)

where C = 8((T +1)K? + ||y||i2(n)). It follows from Grénwall inequality

applied to (22) that

o@ <@ c Ot fexp C(t — s)lek (s)ds. ¢ < 1. 23)

Since a* — a° in Aq k and b¥ — b° in By x point wise, it is clear
that a®(x°(s)) = a°(x°(s)) in R", and b*(x°(s)) - b°(x°(s)) in
L(R™, R™) for almost all se I, P - a.s. Further, it follows from the
Lipschitz and growth properties of the elements of P,; that both

a*(x°(s)) and b*(x°(s)) are dominated in their respective norms by

norm square integrable random processes. Hence, by virtue of Lebesgue

dominated convergence theorem, it follows from the expressions (17)-(18)

that both ef () — 0 and eé () — 0 for each t e I. Considering the

third component eg(t) for any t € I, we recall that ¥ — ¢ in Cp,y

point wise. Hence it is clear that ¢*(x°(s), &) — ¢®(x°(s), &) in R" for
dt xdn almost all (s, &) e I x Vs, P — a.s. Further, it follows from the

properties (1) and (i1) of C B,y that
"), ©)IE, < 262 + PO G)IE, ), ¥ ke N, (5,8 Tx Vs,

Since x° € BZ(I, R"), it follows from the above inequality that the

sequence {c*(x°, &)} is dominated by norm square integrable random

process. Hence it follows from the expression (19) and Lebesgue
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dominated convergence theorem that e§(t) —> 0 for each t € I. Thus, it

follows from the expression (21) that ek (¢) - 0 for each t e I and, by

virtue of the estimates as seen above, it is uniformly bounded on I.

Hence by virtue of Lebesgue bounded convergence theorem it follows
from the inequality (23) that ¢*(t) — O for all ¢ € I. This proves that the
map (a, b, ¢) — x(a, b, ¢) from P,; to BE(I, R") is continuous with
respect to their distinct topologies. This completes the proof. O

Now we are prepared to prove existence of optimal drift-diffusion
pair.

Theorem 4.3. Consider the system (1) with the objective functional (2)
and admissible set of drift-diffusion-jump triples P,q. Suppose the
assumptions of Theorem 4.2 hold and that ¢ is a real valued Borel

measurable function on Ix R" and lower semi-continuous on R" (the

state variable), and ® is also a Borel measurable real valued function

and lower semi-continuous on R" satisfying the following growth

properties:

|0z, x)| < oy () + agx|?, (24)
|D(x)] < otg + oyl |, (25)

for o € I (I), and o9, 03, 0y > 0. Then there exists an optimal triple

(a?, b°, ¢°) e P,y that minimizes the cost functional (2).

Proof. Since the set P,4 is compact in the T, topology, it suffices to

p

show that </ is lower semicontinuous in this topology. Let (ak, b*, c* )€ Pud

be a generalized sequence converging to (a”, b%, c¢) e Pyq in the T,

topology. Let (x*, x°)e B%(I, R") denote the corresponding solutions of
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Equation (1). It follows from Theorem 4.2 that x* 25%° in BZ(I, R™).

Since ¢ is lower semicontinuous in the state variable it is clear that

o(t, x°(t)) < lim ¢(¢, x*(t)) forae. t € I, P — as. (26)

oo
The set I is a finite interval and the elements of P,; have at most linear
growth and therefore the solutions {(x*, x°)} are contained in a bounded
subset of BZ(I, R"). Thus it follows from the growth property of ¢ as

described by the inequality (24), that ¢(¢, x"(¢)), t € I, is dominated from
bellow by an integrable random process. Thus it follows generalized

Fatou’s Lemma that

T T T
EIO e, x°())dt < EJ lim (¢, x"(0)de < lim B [ (¢, x"())d.

0 koo k—o0 0
(27)

Since ® is also lower semicontinuous on R"™ and has the growth
property as represented by the inequality (25), it follows from similar
argument that

E®(x°(T)) < E lim ®(x*(T)) < lim E®(x"(T)). (28)

k—>oo0 k—>oo0

It 1s well known that sum of lower semi continuous functionals is lower

semi continuous. Thus by adding (27) and (28) we obtain

J(a’, b°, c°) < lim J(a¥, b, c*),

k—o0

proving lower semicontinuity of J on P,; in the 7, topology. Hence it

p
follows from compactness of the set P, in this topology that J attains
its minimum on P,;. This completes the proof of existence of an optimal

drift-diffusion-jump triple. O
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5. Necessary Conditions of Optimality
In this section, we present the necessary conditions of optimality

characterizing the optimal drift-diffusion-jump triple whereby one can

determine the optimal triple from the admissible set P,; and hence
determine the stochastic dynamic model. We recall that BZ(I, R") c
L2 (1, Ly(Q, R™)) denotes the space of F,-adapted Lo(Q, R") valued
norm bounded measurable processes defined on I. Similarly,
BZ(I, L(R™, R")) c LL(I, Ly(Q, L(R™, R"™))) denotes the space of
F,-adapted Ly(Q, L(R™, R")) valued norm bounded measurable

processes on I. Let Lo(m, R") denote the Hilbert space of measurable

functions defined on the set Vs with values in R" having norms square

integrable with respect to the L’evy measure =, that is, for

f e Ly(n, R™) we have
2
J|, QI ) < =

For convenience of notation we use {Da, Db, Dc} to denote respectively,

the Gateaux differentials (directional derivatives) of {a, b, c} in the state
variable x € R".

Theorem 5.1. Consider the system given by Equation (1) with
(a, b, ¢) € P,y and the cost functional given by (2). Suppose the assumptions
of Theorem 4.3 hold and that the elements of P,; are once continuously
Gateaux differentiable in the state variable with the Gateaux derivatives

uniformly bounded. Then, in order for the triple (a’, b°, ¢°)e P,y with
the corresponding solution x° € B2(I, R"™) to be optimal, it is necessary

that there exists a triple (v, @, ©)e BZ(I, R")x L (I, L(R™, R"))x
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L2 (1, Ly(m, R™)) satisfying the inequality (29) and the stochastic adjoint

and state differential equations (30)-(31) as presented below:

EJ <alx®)—a®(x®), v > di + EJ Tr[(b(x°) - b°(x°)) Q" |dt
1 1

+EJ J <e(x% 8) = c®(x°, &), ¢ > n(dE)dt 2 0V (a, b, ¢) € Py,
1JVy

(29)

where Q(t) =— Db° (x°(1); 1(t)), 9(t, &) = — (D’ (x°(t), §)) p(t), (¢, &) e Ix Vs,
with {Db°, Dc°} denoting the Gateaux derivatives of {b°, c°} with

respect to the state variable evaluated at x°. The function y denotes the

solution of the following adjoint equation:

—dyp = (Da®(x°(t))) pdt + Vi (x°(t))pdt + Vo (x(t))pdt + £,.(t, x°(t))dt

+ Db°(x°(t); »(t))dW + _[V (Dc®(x°, €)) pa(dgx dt), t e 1,
S

P(T) = @, (x°(T)); (30)

where V1(x°(t)), t € I, is a symmetric n x n negative semi-definite matrix
valued random process given by the bilinear form - Tr(Db°(x°; y)

(Db°(x°; )" ) =< Vi(x°)y, v > and Vy(x°(t)),te I, is another
symmetric nXxn negative semi-definite matrix valued random process

given by the bilinear form

- Iv < Dc%(x°, &)y, (D (x°, €)' p > m(dE) =< Vo(x°())y, v >,
)

with x° € BE(I, R™) being the solution of the state equation
dx® = a®(x°)dt + b°(x°)dW

+ J. c®(x°, €)q(dE x dt), x°(0) = xg, t € L. (31)
Vs
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Proof. Let (a’, b°, ¢°) e P,y be the optimal drift-diffusion-jump triple

with the corresponding solution of Equation (1) denoted by x° € BZ(I, R").

Let (a, b, ¢c)e P,y be an arbitrary element and € e [0, 1]. Define the

triple (af, b%, c®) as follows
a® =a’+e(a-a®),b® =b° +e(b-0°),c® =c® +e(c-c?), ee 0, 1].

It follows from convexity of the set P,; that (af, b%, c®) e P,4, and by

virtue of optimality of the triple (a?, b°, ¢°), we have
J(a®, b8, c®) > J(a’ b° c°)Vee [0,1] and (a, b, ¢) € Pyy. (32)

Let x® € B%(I, R") denote the solution of Equation (1) corresponding to
the triple (a®, b%, c®). Clearly, the processes {x%, x°} satisfy respectively,
the following stochastic integral equations:

t

t
x8() = x + IO a®(x%(s))ds + IO bE(x5(s)) AW (s)

t
[ [ efs). Batae xds), te I, (33)
0JVs

t

t
2°(t) = xg +I a®(x°(s))ds + jo b0 (x°(s))dW(s)

0
N H *(x°(s), £)q(de x ds), t e 1. (34)
0JVs

T

and they are elements of BZ(I, R"). Clearly (af, b, c%) N (a?, b°, c?)

and hence it follows from Theorem 4.2 that x& —»x° in B%(I, R™). As

justified below, the process y given by the following limit:

y(t) = lifg(l/s)(x"’(t) -x%(t)), t e I,
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exists. Subtracting Equation (34) from Equation (33) term by term and
dividing by € and letting € | 0 one can easily verify that y satisfies the

following stochastic integral equation:

50 = [ Da(a(6)3(6)ds + [ [alx?(6) - (=7 ()]s
t t
+ [ Db(x"(6)s 3(s)AW(s)+ [ [b(x"(5)) = b°(x"(6)]dW(s)
0 0

+ J‘t Dc?(x°(s), &)y(s)q(dE x ds)

0dVs
t

+j j [e(x°(s), &) — ®(x°(s), &)]q(dE x ds), t € I, (35)
0JVy

where for any u, v e R", Da°(u)v denotes the Gateaux differential of a°
evaluated at » in the direction v with Da®(u) e L£(R"), and Db°(u; v)
denotes the Gateaux differential of b° evaluated at u in the direction v,
with Db°(u; ) e L(R", L(R™, R")); and for any &e R%, Dc°(u, &))v
denotes the Gateaux differential of ¢® evaluated at u in the direction v.
Note that for each fixed u € R", v — Db(u; v) is a continuous linear

map from R" to L(R™, R"™). It follows from the integral equation (35)
that y is the solution (if one exists) of the following linear stochastic

differential equation (SDE):

dy = Da®(x°(t))y(t)dt + Db°(x°(t); y(t))dW(t)

], Dc(x°(t), €))y(t)q(de x dt) + dM®5¢, y(0) =0, t e 1. (36)
S
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It is driven by the process M®*% ¢ = {Mta’b’c, t € I} which is given by
aM"¢ = [a(x° (1) - a° (= ()]de + [b(x° (1)) - b (x° () |dW(2)

¥ [ [c(x°(t), €) - c°(x°(t), E)g(dExdt), te I.  (37)
Vs

Let SMy denote the Hilbert space of norm square integrable R" valued

F,-adapted semi martingales starting from the origin, that is
Mg’b’c = 0. Since (a, b, ¢), (a’, b°, ¢°) e Pyq and x° e BL(I, R"), it
is straightforward to verify that the drift (vector) [a(x°()) - a®(x°())],
the diffusion (matrix) [b(x°())-b°(x°())], and the jump kernel
[e(x°(), €)= c®(x°(), E)], E € RY, are F;-adapted random processes

having square integrable norms. Hence M @b,¢ ¢ SMy and therefore, as
a special case, it follows from Theorem 4.1 that Equation (36) has a
unique solution y € B%(I, R"). Thus M%%¢ — y is a bounded linear

map, denoted by Y, from the Hilbert space SMsy to the Banach space
B%(I, R") and hence continuous. We denote this by y = Y(M®?¢).
Using the inequality (32) and dividing the following expression:

J(at, b, ct)—dJ(a’, b°,c°) >0, Vee [0, 1],

by e and letting € | 0 we obtain the Gateaux differential of J at
(a?, b°, ¢°) e P,y in the direction (a —a®, b—b°, ¢ — ¢°) satisfying the

following inequality:

dJ((a®, b°,¢%), (a-a’, b-0° c—-c”))

T
= E{IO < Lo (t, x°(@)), ¥(@t) > prdt + < @ (x°(T)), ¥(T) >Rn}

>0 V(a, b, c)e Pyy. (38)
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For notational convenience, we introduce the following linear functional:

T
L(y) = E{ [ < e x20), 50> ot + < @, (D)), (D) R}

(39)
Since /,(-,x°(-))e L{(I, Ly(Q, R™)), ye BE(I, R") c L% (I, Ly(Q, R™)),
®,(x°(T)) e Ly(Q, Fp, R") and y(T)e Ly(Q, Fp, R"), we conclude
that y — L(y) is a continuous linear functional on B%(I, R"). Hence it

follows from the above analysis that the functional L given by the

composition map,
M@%¢ —y — L(y) = (LoT) (M®*) = L(M®>°), (40)

is a continuous linear functional on the Hilbert space of semi-martingales

SMsy. Thus it follows from representation of semi-martingales and Riesz

representation theorem for Hilbert spaces that there exists a triple
{r, @ ote L3(I, Ly(Q, R™))x L3(I, Ly(Q, L(R™, R"™)))

x L3(1, Ly(m, Lo(Q, R™)))

such that

L(M*b%¢)=E JOT <a(x°(s))—a® (x°(s)), v(s) >ds
T
B[ Tr{(b((6) - 6 (=)@ ())}els

T
+E j j < e(x°(s), &) — c®(x°(s), &), s, &) > n(dE)ds.
0 JVs

(41)
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Hence, it follows from (38), (39), (40) and (41) that

dJ((ao’ bo’ Co)’ (a - a05 b _b0> C— CO ))

B OT Tr{(b(x°(s)) - b°(x°(5)))@"(s))]ds

T
+Ej j < e(x°(s), &) — c®(x°(s), &), s, &) > n(dE)ds
0 JVs

>0,V (a,b, c)e Pyy. (42)

This proves the necessary condition (29). We show that the triple
(v, @, @) is given by the solution of the adjoint equation (30). Since

ye BL(I, R") c LL(I, Ly(Q, R")) and wve L3(I, Ly(Q, R")) c L}

(I, Ly(Q, R™)), the scalar product < y, v > is well defined for almost all
te I, P—-a.s. Computing the Ité6 differential of this scalar product we

have

d<y p>=<dyp>+<ydp>+<<dy, dp >>, (43)

where the third term on the right hand side of the above equation denotes
the quadratic variation. Using the stochastic variational equation (36) in

the first term on the right hand side of the above expression we obtain

<dy, v >+ <y, dp>={< Da’(x°)ydt + Db°(x°; y)dW

+ | Dc%(x°, E)yq(dg x dt), p >}+ < dAM®%¢ p >+ <y, dp >
Vs

=<y, dp+(Da®(x°)) pdt + Db°(x°; p)dW

+ jv (Dc(x°, €)Y pq(dE x dt) > + < p, AMPbC 5. (44)
S
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In order to consider the quadratic variation term << dy, dp >>, let us
note that the variational equation for y given by (36)-(37) contains (the

sum of) four martingale terms as follows,

Db°(x°; y)dW +[b(x°) - b°(x°)]dW
+ | Dc®(x?, @)yCI(dQthHJ. [e(x?, &) = c®(x?, &)]q(dE x dt).
Vs Vs

In contrast, it follows from the expression (44) that the equation for p

contains the sum of only two martingale terms given by — Db°(x°; v)dW —

IV (Dc®(x°, €)) pg(dE x dt). Hence it follows from stochastic
5

independence, as stated at the end of Section 3, that the quadratic

variation term is given by

<< dy, dp >>=<< dy, dp >>1 + << dy, dp >>9,
where << dy, dy >>1= — << Db°(x°; y)dW + [b(x°) - b°(x°)]dW, Db°

(x°, p)dW >>. Integrating this we obtain

EI << dy, dp >>= EI — Tr{(Db%(x%; y))* Db (x%; p)}dt
1 I
- EL Tr{[b(x®) - b°(x°)] (DB° (x°, p))}dt

_ EJ < 3, Vi(x°)p > di - EJ Tr{[b(x®) - b°(x )] (Db° (x%; »))}dt.
I I

(45)

Note that V;(x°(t)), t € I, is a negative semi definite symmetric nxn

matrix valued essentially norm bounded random process following from
the first component. Considering the second quadratic variation we

obtain
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<< dy, dp >>9= — << IV Dc?(x°, &) yq(dE x dt),
)
j (De®(x°, &) pq(de x dt) >> — << j [e(x°, &)
Vs Vs

- (e, E)la(dex dt), [ (De"(x°, €)' valdE x di) >>.
Vs
Integrating this we have

E[ <<dydp>>=-E[ Iv; De°(x%, &)y, (De(x°, £))"# > n(de)dt
- Ej j < e(x, &)= ¢°(x, &), (Dc®(x°, €)'y > n(dE)dt
1JVs
= EL< y, Vo(x°(t))y > dt

—Ej j < e(a® &)= ®(x°, £), (De°(x, &))" p > n(dE)dt,  (46)
1JVs

where Vy(x°(t)),t e I, is a negative semi-definite symmetric nxn

matrix valued essentially norm bounded random process following from
the first component of the above quadratic variation term. Integrating the
identity (43) and substituting the expressions (44), (45) and (46) we arrive
at the following expression:

EI d<y p>= EJ (< y, dp + (Da(x°)) pdt
1 1
+ Vi(x®)pdt + Vo(x°(2))pdt >}

+ EI (< y, Db°(x% )dW +I (Dc®(x°, &))" pq(dE x df) >}
I Vs

+ EL (< p, dM®C > — Tr{[b(x°) - b°(x°)] (DB (x°; ) }dit}

- EI j < o(x®, E) = c®(x°, E), (Dc°(x°, E)'p > m(dE)dt.  (47)
I1JVs
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Then setting

dy + (Da®(x°)) pdt + Vi (x°)pdt + Vo (x°)pdt + Db°(x°; p)dW

+ I (De®(x°, €)Y pqldE, dt) = — £,(t, x°)dt, t e 1, (48)
Vs

in the expression (47) we obtain

ELd <y, Pp>= EL— <y, l,(t x°)dt >
+ EL{< P, AMSYC s — Tri[b(x°) - b°(x°)] (Db (x°; p))* i}

- EI I < o(x®, E) = (x°, €), (Dc(x%, £))'p > n(dE)dt.  (49)
1JVs

Next, using the identity (37) (characterizing the semi martingale M C”b’c)

in the above expression we obtain

E < y(T), p(T) > + EIOT < y(t), £,(¢, 2°0)) > dt
T
= EIO {< p, [a(x®) = a®(x®)] > = Tr{[b(x°) - b°(x°)](Db°(x?; ¥))"},
[ < el 8) ==, E)). (De*(x, 8))'p > wldB) s
)
T
; EJO <, [b(x°(2)) - 6°(x°(2))]dW(2) >

T
+Ej j < [e(x, &) = (22, )] > q(dE x dt). (50)
0 JVy

Using stopping time argument one can verify that the last two stochastic
integrals in Equation (50) vanish. Hence, for w(T)= ®,(x°(T)), the
identity (50) reduces to
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E < y(T), ®,(x°(T)) > + EIOT < y(t), £,(t, x°(@)) > dt
T ES
- EJO {< v, [a(x®) = a®(x°)] > — Tr([b(x°) - b°(x°)] (DB (2 »))")

- jV < [e(x®, &)= c®(x°, &)], (De®(x°, &) s > n(dE)}dL. (51)
)

Denoting — Db (x°(t); %(t)) = Q(t), t € I, and — (Dc®(x°(t), &))" = (¢, §),

(¢, &) € I x Vs, and using this in the above expression, one can observe

that the right hand member equals I:(Ma’ b’c) as seen in equation (41),
while the left hand member equals L(y) as seen in (39), thereby

satisfying the required identity (40). As seen above in equation (42), this

gives the necessary condition (29). Thus equation (48) with the terminal
condition y(T) = ®,(x°(T)) is a necessary condition. Hence equation

(30), being identical to equation (48) with the terminal condition as stated
above, is a necessary condition giving the adjoint equation. Necessary

condition (31) needs no proof since it is the system equation (1) corresponding
to the optimal drift-diffusion-jump triple (a’, b°, ¢°) with x° being the
corresponding solution. This proves all the necessary conditions of

optimality. It remains to verify that the {p, @, ¢} € BZ(I, R")x LL(I, L
(R™, R"))x LL(I, Ly(m, R")). This follows from the fact that the

adjoint system (30) has a unique solution p € BZ(I, R") and that the
Gateaux differentials of {a, b, ¢} € P,y are uniformly bounded. Hence it
follows readily from the expressions for @ and ¢, as presented after
Equation (29), that @ € LY (I, L(R™, R")) and ¢ e LL(I, Ly(w, R")).

This completes the proof. O
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6. Convergence of Numerical Algorithm

Here we present an algorithm whereby one can construct the optimal

drift-diffusion-jump triple.
Proposition 6.1. Suppose the assumptions of Theorem 5.1 hold. Then

there exists (and one can construct) a sequence {(a”*, b*, ¢*)} e Poq along

which the sequence of cost functionals {J(a*, b*, c*)} converge

monotonically to a (possibly) local minimum.

Proof. Step 1: Choose a triple (a!, b', ¢!)e P,; and consider the
system equation (31) with (a, b°, ¢°) replaced by the triple (a!, b', ¢!)

and let x! denote the corresponding solution.

Step 2: Use the quadruple (a',bd!,¢', ') in place of
(a®, b°, ¢°, x°) in the adjoint equation (30) with V;(x!(t)) and Vi (x!(z))

given by
< Vi Oy, mg >= - Tr{Db (a1 ) (DB (x5 12))' ]

Vn,me e R, tel,

< Vol (O, mg >= —jV < Det(xh, &y, (Dl (2, &)y > m(de),
)

Vn,mg e R, tel,
and solve the adjoint equation giving p'. Then define
Q) = Q'(t) = - Db (x'(1); »'(®), t e I,
ot, &) = ¢'(t, &) = — (D! (x'(2), §))" ' (), (¢, &) € T x V.

This step yields the septuple (a', b%, ¢!, x!, p*, @', ¢').
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Step 3: At this step, replace the septuple (a?, b°, c°, x°, v, @, ¢) by

the septuple (a!, b, ¢!, x%, »!, @, ') in the inequality (29) giving

E IOT < alx () - a (x1(t)), p' () > dt

+E jOT Tri(b(x' (1)) - b (x' (1))@ (¢)" }dt

¥ Ej < [e(x'(2), &) = (= 2), )], 0'(t, &) > n(dE)dt
IxVy

>0V(a, b c)e Py. (52)

If this inequality holds the septuple (a',d',c!, b, v, @', @') is

optimal. Since an arbitrary choice of the triple (al, bl, cl) is not

expected to be optimal we ignore this and proceed to the next step.

Step 4: Here we choose a new triple (a2, b2, c? ) as follows:
a® Eal—ewl,bz Ebl—eQ1,02 :cl—a(pl, (53)

where € > 0 is chosen sufficiently small so that (a2, b2, ¢2 ) € Pyq- Then
the Gateaux differential of the cost functional J evaluated at
(al, b, ¢!) in the direction — (p', @', ¢') with step size € > 0 is given

by

dJ((a', b, c'); —e(v', @', 9')) = — eE IOT ROIRE

— ¢E IOT Tr(Q' (1) (Q'(¢)")dt - ¢ E j lo'(t. &I, n(dE)dz.  (54)

IxVy
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For notational convenience let us define

T T
GO Q' o) =E [ o @ dt + B[ 7@ 0@ 1) )ds

+E[ ol ). (55)
IxVy

Using Lagrange formula and the expressions (54) and (55), the cost

functional evaluated at (a2, b2, 2 ) can be approximated as follows:
J(a® b7, ¢*) = J(a', b, ) —eG(v', @', ¢1) + ofe). (56)

Since G(qbl, Ql, (pl) 1s positive, it is clear from the above expressions

that for € > 0 sufficiently small
J(at, b, ') > J(a?, b2, ).
Step 5: Returning to (stepl) with the triple (a2, b2, ¢?) and
repeating the process, one generates the sequence {(a”, bF, c* Vst

including the corresponding sequence {J(a’, b*, c* )his; that satisfies

the following train of inequalities:
J(ab, oY, cl) 2 J(a?, b2, %) = - = J(a¥, bF, o)
> J(ak+l bk+1 ck+l ).
Further, it follows from the assumptions of Theorem 4.3 that

inf{J(a, b, ¢), (a, b, c) € Pyg} > —co.

Thus the sequence {J(a, b, ¢ )}i>1 is @ monotone decreasing sequence
bounded away from -« and hence it converges possibly to a local

minimum. This completes the proof. O
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Remark 6.2. The results presented in this paper also hold for drift-
diffusion-jump triples which are functions of both time and space,

{a(t, x), bz, x), c(t, x, )}, under the assumption that the family of
functions {Aq g, By k> Cp,y} satisfy the properties (3), (4) and (5) for
each ¢t € I and that they are also uniformly Hélder continuous exponent
0<B6<linte I

7. An Alternative Approach

An alternative approach to the inverse problem considered in this
paper is to follow Bellman’s principle of optimality leading to HJB
(Hamilton-Jacobi-Bellman) equation. We present this briefly and discuss

the merits and demerits of the two approaches.
Choose any drift-diffusion-jump triple (a,b,c)e P,y and
(t, x) € I x R" and let the process {&; ,(s), s € (¢, T]} denote the solution

of the following SDE corresponding to the triple (a, b, c)

d&t,x(s) = a(s’ &t,x(s))ds + b(s’ gt,x(s))dW(s)
+ [ cls & ao) matanxds), & () = x5 € (. T) 6D
Vs

Let ¥(¢, x) denote the value function defined as follows:

T
w(t, x) = infE“ s, & .(s))ds + (&, x(T))}, (58)
Pad t ’ ’
and let D¥ ={(d,.¥),i=1,2 -, n} and D*¥ ={(d2 _W),i,j=1,
i xj, Xj

2, 3, ---, n} denote the first and second partials of ¥ with respect to the

state variables. Following the principle of optimality and using the
properties of the Wiener process and the Poisson random measure one
can verify that ¥ satisfies the following backward integro-partial

differential equation,
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- % W(t, x) = Hy(t, x, ¥, DY, D?>®), (t, x) e [0, T)x R"

Y(T, x) = ®(x), x € R, (59)
where the function H, is given by

H,(t, x, ¥, DY, D*¥)

- (a,b,icr’l)gpad{g(t’ x)+ < alt, x), DY, x) >0

T+ /2)Tr(b" (¢, x)D2W(E, %)b(t, x)) + IV (W, x + ct, x, M)
)

- ¥(¢, x) — < DY(t, x), c(t, x, M) > pn )n(dn)}. (60)

It is very satisfying to note that a complex inverse problem is transformed
into an elegant and apparently simple problem requiring only the
solution of a partial differential equation. But, in fact it is a formidable
problem requiring proof of existence of solution of a highly nonlinear
second order integro-partial differential equation on unbounded domain
I x R". With substantial efforts one may be able to prove existence of a
viscosity solution generalizing the notion of classical solution. Given that
such a solution exists, the next problem is to solve this equation
numerically on an unbounded domain I x R" giving W°. This is also a
very challenging numerical problem. Using this solution one has to

determine the triple (a,, b,, c,) € P,q that satisfies the following

identity:

Ut x) + < a,, D¥° >, + (Tr(b;D*¥b,)) + L, (¥°)

Rn

= Hy(t, x, ¥°, D¥°, D*¥°), (¢, x) e I x R", (61)
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where

L, (%) = IV (PO, x + ¢yt x, M) = PO, x)
)

- < D¥°(t, x), ¢,(t, x, M) > pn )n(dn).

With little reflection, one will notice that this last step is also not so
trivial. The optimal cost is given by ¥°(0, x) provided the initial state x
is deterministic. In case the initial state is random with probability

measure uo, the optimal cost is given by
(g by ¢) = [ 200, x)u°(dx).
Rn

Briefly this is the HJB approach presenting significant theoretical and

numerical challenges.

In contrast, based on the theory developed in this paper one can

determine the optimal (a,, b,, ¢,) following the numerical steps

presented in Proposition 6.1. This is a successive approximation
technique and not too difficult to program on computers using Matlab.
The necessary steps are clearly outlined in the Proposition mentioned
above. While carrying out these steps one has to solve a pair of stochastic
differential equations forward and backward in time and use this solution
to determine the optimal direction of decent which is given by the
directional derivative of the cost functional evaluated at the preceding

choice of (a, b, c)e P,y. Using this direction one constructs a new
element (a, b, ¢) which guarantees reduction of the cost functional. This

new element is then used to repeat the steps from the beginning thereby
reducing the cost functional at every stage. Numerical techniques based
on Monte Carlo scheme for solving stochastic differential equations are
well known. This technique requires programs generating standard

Brownian motion and the Poisson random process having Lévy measure
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. The method is computationally intensive as it requires solving the

state and the adjoint system repeatedly for a great number of times to

achieve a desired accuracy. Though numerically intensive it is practically

feasible and relatively simpler.
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