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Abstract 

The main objective of this paper is to prove local fractional Hilbert-type 

inequalities with a general homogeneous kernel. Special attention is given to 

conditions under which the constant involved in inequalities are the best 

possible. Some particular cases of local fractional Hilbert-type inequalities are 

presented. 
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1. Introduction 

Suppose that ( ) ( ) ( ) ( ),0,0,1
11

,1 ++ ∈≥∈≥=+> RR qp LgLf
qp

p  we 

have the celebrated Hilbert inequality and its equivalent form (see [5]) as 

follows: 
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where the constants 
p

π
π sin  and [ ]p

p

π
π sin  are optimal. Although 

there have been many results on the study of inequalities (1) and (2), 

these inequalities are still topic of interest to numerous authors. For a 

starting development of inequalities (1) and (2) the reader can be referred 

to [5, 7], while some recent results are found in [1, 2, 8]. 

In recent years, the fractal theory has attracted the attention of many 

researchers, local fractional calculus (also called fractal calculus) has 

applied to solve some problems not only in mathematics but also in 

physics and engineers [3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19]. 

The aim of this paper is to present some new Hilbert-type inequalities 

via local fractional integrals established by Yang [18]. In the beginning, 

we give basic definitions and properties of the local fractional calculus 

(see [18] and [19]). First, we recall Yang’s fractal set ,αΩ  where the set Ω  

is called base set of fractional set, and α  denotes the dimension of cantor 

set, .10 ≤α<  The type-α  set of integers α
Z  is defined by 

{ } { }.:0: NZ ∈±= ααα mm∪  
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The type-α  set of rational numbers α
Q  is defined by 

{ } .,:::
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NZQQ nm
n

m
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The type-α  set of irrational numbers α
J  is defined by 

{ } .,:::
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The type-α  set of real line numbers α
R  is defined by 

.: ααα = JQR ∪  

Recall basic operation rules on :α
R  If ,,, αααα ∈ Rcba  then 

(1) ., αααααα ∈∈+ RR baba  

(2) ( ) ( ) .
αααααα +=+=+=+ abbaabba  

(3) ( ) ( ) .ααααα ++=++ cbacba  

(4) ( ) ( ) .
αααααα === baababba  

(5) ( ) ( ) .αααααα = cbacba  

(6) ( ) .ααααααα +=+ cabacba  

(7) .11and00 αααααααααα ===+=+ aaaaaa  

(8) For each ,αα ∈ Ra  its inverse element ( )α− a  may be written as 

;α− a  for each { },0\ ααα ∈ Rb  its inverse element ( )α
b1  may be 

written as αα b1  but not as .1 αb  

(9) αα < ba  if and only if .ba <  

(10) αα = ba  if and only if .ba =  
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Further, we give a brief overview of the local fractional derivative and 

integral. 

Definition 1. A non-differentiable function ( )xf  is said to be local 

fractional continuous at 0xx =  if for each ,0>ε  there exists for 0>δ  

such that 

( ) ( ) ,0
αε<− xfxf  

holds for .0 0 δ<−< xx  If a function f is local continuous on the 

interval ( ),, ba  we denote ( )., baCf α∈  

Definition 2. Let ( ) [ ]., baCxf α∈  Local fractional derivative of the 

function ( )xf  at 0xx =  is given by 

( )
( ) ( ) ( ) ( )( )

( )
.

1
lim

0

0
0

0
0
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=

α

α

−

−α+Γ
==

xx
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dx

xfd
xf
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xx

 

Definition 3. Let ( ) [ ]baCxf ,α∈  and let { } ,,,,, 10 N∈= NtttP N…  

be a partition of interval [ ]ba,  such that .110 btttta NN =<<<<= −⋯  

Further, for this partition ,P  let ,1,,0,1 −=−=∆ + Njttt jjj …  and 

{ }.,,,max 121 −∆∆∆=∆ Ntttt …  Then the local fractional integral of f on 

the interval [ ]ba,  of order α  (denoted by ( )xfIba
α ) is defined by 

( ) ( )
( )

( ) ( )
( )

( ) ( ) .lim
1

1

1

1
1
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αα ∆
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j
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b

a
ba ttfdttfxfI  

The above definition implies that 
( ) ( ) 0=α xfI
ba  if ,ba =  and 

( ) ( ) =α xfI
ba  

( ) ( )xfIab
α−  if .ba <  
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At the end of this overview, we give some useful formulas: 

(1)                          
( )

( )( )
( ) .

11

1 1 α−

α

αα

α−+Γ

α+Γ
= k

k

k

k
x

dx

xd
   

(2)                             
(( ) )

(( ) ),α
α

α
α

α
α

α

= cxEc
dx

cxEd
   

where ( )⋅αE  denotes the Mittag-Leffler function given by 

( )
( )

.
1

0
α+Γ

=
α∞

=

α
α ∑ k

k

k

x
xE  

(3)                 
( )

( ) ( ) ( ) ( ).
1

1 α
α

α
α

αα
α −=

α+Γ ∫ aEbEdxxE
b

a
  

(4)       
( )

( )
( )

( )( )
( ( ) ( ) ).

11

1

1

1 11 α+α+αα −
α++Γ

α+Γ
=

α+Γ ∫ kkk

k

k
abdxx

b

a
  

Throughout the paper, we denote by 
( ) ( )xfI
ba
α  and 

( )[ ( ) ( )]yxhII
baba ,αα  

local fractional integrals 

( ) ( )
( )

( ) ( ) ,
1

1 αα

∫α+Γ
= dxxfxfI

b

a
ba  

and 

( )[ ( ) ( )]
( )

( ) ( ) ( ) .,
1

1
,

2

αααα ∫∫α+Γ
= dydxyxhyxhII

b

a

b

a
baba  

For the reader’s convenience, from now on we use the following 

abbreviations: 

( ) ( ) ( ) .,,,,

1

21
α

=

α ∏== i

n

i

n dxdxxxx …x  
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Recall that the function α→ RR
nK :  is homogeneous of degree ,αλ−  

,0>λ  if ( ) ( )xx KttK αλ−=  holds for all .0>t  Further, for 

( ,,, 21 …aa=a  ) ,n
na R∈  we define 

( ) ( )( ) ( ) ,,,2,1,ˆ

,1

1
0 niuKI ja

j

n

ijj

in
i …==

α

≠=

α−
∞ ∏uak   (3) 

where ( ).,,,1,,,ˆ 111 nii
i uuuu …… +−=u  If nothing else is explicitly 

stated, we assume that the integral defined by (3) converges for all 

considered values. 

Our result will be based on the following result of Krnić and Vuković 

from [10]. 

Theorem A. Let .,,2,1,1,1
1

1
nip

p i
i

n

i
…=>=∑ =

 Further, suppose 

that ,,,2,1,, njiAij …=  are real parameters such that ,0
1

=∑ = ij
n

i
A    

for ,,,2,1 nj …=  and let ,:
1 ij

n

ji A∑ =
=β  for ,,2,1 …=i  .n  If 

( ) ,,,2,1, niCfi …=∈ +α R  are non-negative functions and ∈K  ( )nC +α R  

is a non-negative homogeneous function of degree ,0, >− ss  then holds the 

inequality 

( ) ( ) ( )ii

n

i

n xfKI ∏
=

α
∞

1

0 x  

( ) ( ) ( ) ( )[ ] ,
11

1
0

11

ipiiiip
i

p
i

psn
i

n

i

iii

n

i

xfxIp
βα+α−α−α

∞

==
∏∏≤ Ak  (4) 

where ( ) ,,,2,1,,,, 21 niApApApp iniiiiiii …… ==A  and ( )⋅ik  is 

defined by (3). 
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2. Main Results 

By applying Theorem A, we get the following result: 

Theorem 1. Let ( )nCK +α∈ R  and ,,,2,1,,, njiA iij …=β  be as in 

Theorem .A  Suppose that for every ( ) ,,:,,,2,1 +→= Riii bauni …  is    

a strictly increasing differentiable function such that ( ) 0=ii au  and  

( ) .∞=ii bu  If ( ) niCfi ,,2,1, …=∈ +α R  are non-negative functions, then 

holds the inequality 

( )
( ) ( )( ) ( ) ( ) ( )αα

=
∏∫∫α+Γ
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′×

α+Γ
× α−αβα+α−−α

∫  

(5) 

where ( ) ,,,2,1,,,, 21 niApApApp iniiiiiii …… ==A  and ( )⋅ik  is defined 

by (3). 

Proof. The proof follows directly from Theorem A. Namely, setting the 

functions ,,,2,1,: nihi …=→ α
+ RR  such that ( ) ( )( ) ( )[ ] ,

α′= iiiiiii tutuhtf  

the inequality (4) with the functions ih  takes the following form: 

( ) ( ) ( )ii

n

i

n xhKI ∏
=

α
∞

1

0 x  

( ) ( ) ( ) ( )[ ] .
11

1
0
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ipiiiip
i

p
i
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i

xhxIp
βα+α−−αα

∞

==
∏∏≤ Ak   (6) 
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By using the substitutions ( ) ( ) ( )[ ] ( ) ,,
ααα ′== iiiiiii dttudxtux  

,,,2,1 ni …= the left-hand side of the inequality (6) becomes 

( )
( ) ( )( )nn

b

a

b

an
tutuK

n

n

,,
1

1
11

1

1

…⋯ ∫∫α+Γ
 

( )( ) ( )[ ] ( ) ( ) ( ) ,21

1

αααα

=

′× ∏ niiiii

n

i

dtdtdttutuh …  (7) 

where we used the facts ( ) 0=ii au  and ( ) .,,2,1, nibu ii …=∞=  

Similarly, the right-hand side of the inequality (6) becomes 

( )
( )

( )( ) ( )
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( )[ ] ( ) ( )( ) ( )[ ] ( ) .

1

1 ip
iii

i
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iiii
p
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p
ii dttutuhtu 


′′× αα−α

  (8) 

Now, from (6), (7), (8) and the fact ( ) ( )( ) ( )[ ] ,
α′= iiiiiii tutuhtf  follows 

the inequality (5).  � 

In the following, we analyze the conditions which yield the best 

possible constants in obtained inequalities. More precisely, we introduce 

the following conditions on the parameters :ijA  

( ) ,,,,2,1,, jinjiApnsAp iiiiijj ≠=−β−−= …  (9) 

where .
1 ij

n

ji A∑ =
=β  In that case the constant ( )iii

n

i
pip

A

1

1
k∏ =

 from 

Theorem 1 can be transformed to the form: 

( ),
~

: 1 Ak=∗L   (10) 

where ( ),
~

,,
~

,
~~

21 nAAA …=A  

.
~

and,1for,
~

1111 nnii ApAiApA =≠=  
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Using (10), the inequality (5) becomes 

( )
( ) ( )( ) ( ) ( ) ( )αα

=
∏∫∫α+Γ
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′×

α+Γ
≤ α−αα−α−

=

∗ ∫∏  

(11) 

Further, we can prove that, if the parameters ijA  satisfy the 

condition (9), then one obtains the best possible constant. 

Theorem 2. Let ( )nCK +α∈ R  and ( ) ,,,2,1,,: nibau iii …=→ +R  

be as in Theorem 1. If the parameters ,,,2,1, niAij …=  satisfy 

conditions (9), then the constant ∗L  is the best possible in inequality (11). 

Proof. Let ,,,2,1,: nihi …=→ α
+ RR  be the functions such that 

( ) ( )( ) ( )[ ] .
α′= iiiiiii tutuhtf  By using the substitutions ( ) ,2,1, == itux iii  

,, n…  the inequality (11) with the functions ih  defined above becomes 

( ) ( ) ( ) ( ) ( ) ,

1~

0

11

0
ipiii

i
p
i

Ap
i

n

i

ii

n

i

n xhxILxhKI




≤

α−α−α
∞

=

∗

=

α
∞ ∏∏x  (12) 

where the constant ∗L  is defined by (10). 

Suppose that the constant factor ∗L  is not the best possible in the 

inequality (12). Let ∗<< LL10  such that the inequality (12) is still valid 

when ∗L  is replaced by .1L  Specially, we define 

( )
( )

[ )





=

∞∈

∈

= αε−α ,,,2,1,

,1,

1,0,0
~

~ ni

xx

x

xh
ipiA

i

ii …  
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where 0>ε  is small enough. Setting these functions in the inequality 

(12), the right-hand side of the inequality (12) becomes 

( )
( )

.
1

1

0
1

1

1

α+Γε
=








α

ααε−α−
∞

=
∫∏

L
dxxL

ip

ii

n

i

  (13) 

By using the substitution ,,,3,2,
1

ni
x

x
u i

i …==  and the Fubini 

theorem, we find that the left-hand side of inequality (12) takes form 

( ) [ )
( ) ( )α

−α

=
∞

εα

∏∫α+Γ
= xx dxKI ipi

n

A

i

n

i
n

~

1
,11

1
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( ) ( ) [ )
( ) ( ) ( ) .ˆˆ

1

1

1

1
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1

~

2
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,111
1 1
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α+Γα+Γ
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εα

∏∫∫ dxduKx ipiA

i

n

i
xn

uu  

It is evident that the following inequality holds: 

( ) ( )
( ) ( ) ( )αα

−α

=
−

εα−α−
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εα

−
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∏∫∫ 1
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1
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dxduKxI ipi
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i
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( ) ( ) ,

1

1
11

2

1
1

α

=

εα−α−
∞

∑∫α+Γ
− dxxIx j

n

j

 (14) 

where ( )1xI j  and ,,,3,2, njD j …=  are defined by 

( )
( )

( ) ( ) ,ˆˆ
1

1 1

~

2

1

11
α

−α

=
−

εα

∏∫α+Γ
= uu duKxI ipi

j

A

i

n

i
Dnj  

and {( ) }.,0,
1

0:,,,
1

32 jiu
x

uuuuD ijnj ≠>≤<= …  By using the 

integral formula (3), the above inequality can be rewritten as 

( )
( )p1A εα−

α+Γε
≥

α

~

1

1
1kI  

( )
( ) ( ) ,

1

1
11

2

1
1

α

=

εα−α−
∞

∑∫α+Γ
− dxxIx j

n

j

  (15) 
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where ( ).
1

,,
1

1 npp
…=

p

1
 Without losing generality, here we only 

estimate the integral ( ).12 xI  Since ( ),011 22
+ααεα →→− uu  there 

exists 0≥M  such that ( ]( ).1,01 22 ∈≤− ααεα uMu  By using the 

Fubini’s theorem, it follows that 

( )
( ) ( )ααε−α−

∞α

∫α+Γ

ε
≤ 1121

11
0 dxxIx  

( ) ( )
( )
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ε
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1
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R

 

( ) ( )αα
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u  
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i
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ε
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1 2
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=
−

α
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ε
=
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−
+

∏∫∫ uu 1
2

~
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1
1

01
ˆ1

1
ˆ

1 2
duuK ipi

n
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i
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i
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( ) ( )α

−α

=
−

α εα

−
+

∏∫∫α+Γ
≤ uu 1

~

2

1
1
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ˆˆ

1 2
duK

M ipi

n
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i
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( )
( ) ( )α

−α
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−

α εα

−
+

∏∫α+Γ
≤ uu 1

~

2

1

1
ˆˆ

1 1
duK

M ipi
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A

i

n

i
n

R
 

( ) .
~

1 ∞<ε−= α p1AkM  

Hence, by (15), one has 

( )
( ) ( ).11
~

1

1
1 OI −ε−

α+Γε
≥

α
pAk   (16) 
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In view of (13) and (16), we conclude that 1LL ≤∗  when ,0+→ε  which 

is an obvious contradiction. Hence, the constant ∗L  in the inequality (11) 

is the best possible.  � 

3. Applications 

As applications, we will build some new inequalities. First, we 

proceed with a function ( ) ( ( ) ) ( ) ,,,
1

1

111
s

i
n

i

s
i

n

in xxxxK
αλ

=

α−λ

= ∑∑=…  

where ,0>s  and .1>λ  It is easy to see that ( )nCK +α∈ R1  and its 

degree of homogeneity is .sα−  

To obtain the Hilbert-type inequality with the kernel ,1K  we need an 

extension of the usual Gamma function. The local fractional Gamma 

function ( ) ,10, ≤α<⋅Γα  can be expressed as 

( ) ( ) ( ) ( ).1
0

−αα
α

α
∞α −=Γ xttEIx  

First, we need some technical lemmas. 

Lemma 1 (see [10]). If ,,,2,1,0, nirn i …=>∈ N  then holds the 

relation (17) 

( )

( )

( )
( ) ( )

( )

( )
.

11

1 1
11

1

1

1

11

1
1 1 s

r
dxdx

rx

x i

n

i
n

i

n

i
i

n

i

r
i

n

i
n

i

n
α

α
=α

−
α

=

α−

=

−α−

=
− Γ

Γ
=

+α+Γ

∏
∑∑

∏
∫ −

+

…
R

 

Applying Lemma 1 we obtain the next result. 
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Lemma 2. Suppose that .0,, >λ∈ sn N  If ,1,,2,1,1 −=−>γ nii …  

and ,1
1

1
+−λ<γ∑

−

=
nsi

n

i
 then 

( ) ( )
( ) ( )α

−
α

αλ−

=

αγ−

=
−

∑
∏

∫
+α+Γ

=
−

+
111

1

1

1
1
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1
:

1 n
s

i

n

i

i

n

i
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t

t
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i

n
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1
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Γ

λΓ
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=

αα

−
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α
i

n

i

i
n

i
n

s
s

 (18) 

Proof. The substitution ,1,,2,1, −== λ nitu ii …  yields 

( ) ( ) ( )
( ) ( ) .
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1
111

1
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1
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1

1

α
−

α
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∑
∏

∫
+α+Γλ

=

λ
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−
+

n
s

i

n

i

i

n

i
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u

u
I

i

n
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By using Lemma 1, we get 

( ) ( )
( ),

1

1
1 i

n

i
n

r
s

I α

=
−α

α

Γ
λΓ

= ∏  

where ,1,,2,1,
1

−=
λ
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for .,,2,1 nj …=  Similarly, we obtain .,,2,1,1 ni
p

n

i
i …=−=β  Now, 

it is easy to see that the parameters ijA  defined by (19) satisfy the 

condition (9). 

Our next result is a consequence of Theorem 2. 
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where the constant 
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is the best possible. 

Proof. We put ( ),,,11 nxxK …  the parameters ijA  defined by (19) 

and ( ) ,,,2,1, niatu it
ii …==  in Theorem 2. By using the definition      

of ,
~

iA  we have .,,2,1,
~
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i
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Now, it is enough to calculate the constant ( ) ( )
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Applying the definition of function ( )⋅1k  given by (3), we find that 
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for .,,3,2 n…=k  By using Lemma 2, we obtain 
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for .,,2 n…=k  Finally, from (22) we get (21). 
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