THE GENERALIZATIONS OF LOCAL FRACTIONAL HILBERT-TYPE INEQUALITIES

PREDRAG VUKOVIĆ and GUANG-SHENG CHEN

Faculty of Teacher Education
University of Zagreb
Savska Cesta 77
10000 Zagreb
Croatia
e-mail: predrag.vukovic@ufzg.hr
College of Mathematics and Computer Science
Guangxi Science \& Technology Normal University
Laibin, Guangxi 546199
P. R. China
e-mail: cgswavelets@126.com

Abstract

The main objective of this paper is to prove local fractional Hilbert-type inequalities with a general homogeneous kernel. Special attention is given to conditions under which the constant involved in inequalities are the best possible. Some particular cases of local fractional Hilbert-type inequalities are presented.

[^0]
1. Introduction

Suppose that $p>1, \frac{1}{p}+\frac{1}{q}=1, f(\geq 0) \in L_{p}\left(\mathbb{R}_{+}\right), g(\geq 0) \in L_{q}\left(\mathbb{R}_{+}\right)$, we have the celebrated Hilbert inequality and its equivalent form (see [5]) as follows:

$$
\begin{gather*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y \leq \frac{\pi}{\sin \frac{\pi}{p}}\left[\int_{0}^{\infty} f^{p}(x) d x\right]^{\frac{1}{p}}\left[\int_{0}^{\infty} g^{q}(y) d y\right]^{\frac{1}{q}} \tag{1}\\
\int_{0}^{\infty}\left[\int_{0}^{\infty} \frac{f(x)}{x+y} d x\right] d y \leq\left(\frac{\pi}{\sin \frac{\pi}{p}}\right)^{p} \int_{0}^{\infty} f^{p}(x) d x \tag{2}
\end{gather*}
$$

where the constants $\pi / \sin \frac{\pi}{p}$ and $\left[\pi / \sin \frac{\pi}{p}\right]^{p}$ are optimal. Although there have been many results on the study of inequalities (1) and (2), these inequalities are still topic of interest to numerous authors. For a starting development of inequalities (1) and (2) the reader can be referred to [5, 7], while some recent results are found in [1, 2, 8].

In recent years, the fractal theory has attracted the attention of many researchers, local fractional calculus (also called fractal calculus) has applied to solve some problems not only in mathematics but also in physics and engineers $[3,4,6,9,10,11,12,13,14,15,16,17,19]$.

The aim of this paper is to present some new Hilbert-type inequalities via local fractional integrals established by Yang [18]. In the beginning, we give basic definitions and properties of the local fractional calculus (see [18] and [19]). First, we recall Yang's fractal set Ω^{α}, where the set Ω is called base set of fractional set, and α denotes the dimension of cantor set, $0<\alpha \leq 1$. The α-type set of integers \mathbb{Z}^{α} is defined by

$$
\mathbb{Z}^{\alpha}:=\left\{0^{\alpha}\right\} \cup\left\{ \pm m^{\alpha}: m \in \mathbb{N}\right\}
$$

The α-type set of rational numbers \mathbb{Q}^{α} is defined by

$$
\mathbb{Q}^{\alpha}:=\left\{q^{\alpha}: q \in \mathbb{Q}\right\}=\left\{\left(\frac{m}{n}\right)^{\alpha}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

The α-type set of irrational numbers \mathbb{J}^{α} is defined by

$$
\mathbb{J}^{\alpha}:=\left\{r^{\alpha}: r \in \mathbb{J}\right\}=\left\{r^{\alpha} \neq\left(\frac{m}{n}\right)^{\alpha}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}
$$

The α-type set of real line numbers \mathbb{R}^{α} is defined by

$$
\mathbb{R}^{\alpha}:=\mathbb{Q}^{\alpha} \cup \mathbb{J}^{\alpha}
$$

Recall basic operation rules on $\mathbb{R}^{\alpha}:$ If $a^{\alpha}, b^{\alpha}, c^{\alpha} \in \mathbb{R}^{\alpha}$, then
(1) $a^{\alpha}+b^{\alpha} \in \mathbb{R}^{\alpha}, a^{\alpha} b^{\alpha} \in \mathbb{R}^{\alpha}$.
(2) $a^{\alpha}+b^{\alpha}=b^{\alpha}+a^{\alpha}=(a+b)^{\alpha}=(b+a)^{\alpha}$.
(3) $a^{\alpha}+\left(b^{\alpha}+c^{\alpha}\right)=(a+b)^{\alpha}+c^{\alpha}$.
(4) $a^{\alpha} b^{\alpha}=b^{\alpha} a^{\alpha}=(a b)^{\alpha}=(b a)^{\alpha}$.
(5) $a^{\alpha}\left(b^{\alpha} c^{\alpha}\right)=\left(a^{\alpha} b^{\alpha}\right) c^{\alpha}$.
(6) $a^{\alpha}\left(b^{\alpha}+c^{\alpha}\right)=a^{\alpha} b^{\alpha}+a^{\alpha} c^{\alpha}$.
(7) $a^{\alpha}+0^{\alpha}=0^{\alpha}+a^{\alpha}=a^{\alpha}$ and $a^{\alpha} 1^{\alpha}=1^{\alpha} a^{\alpha}=a^{\alpha}$.
(8) For each $a^{\alpha} \in \mathbb{R}^{\alpha}$, its inverse element ($-a^{\alpha}$) may be written as $-a^{\alpha}$; for each $b^{\alpha} \in \mathbb{R}^{\alpha} \backslash\left\{0^{\alpha}\right\}$, its inverse element $(1 / b)^{\alpha}$ may be written as $1^{\alpha} / b^{\alpha}$ but not as $1 / b^{\alpha}$.
(9) $a^{\alpha}<b^{\alpha}$ if and only if $a<b$.
(10) $a^{\alpha}=b^{\alpha}$ if and only if $a=b$.

Further, we give a brief overview of the local fractional derivative and integral.

Definition 1. A non-differentiable function $f(x)$ is said to be local fractional continuous at $x=x_{0}$ if for each $\varepsilon>0$, there exists for $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon^{\alpha}
$$

holds for $0<\left|x-x_{0}\right|<\delta$. If a function f is local continuous on the interval (a, b), we denote $f \in C_{\alpha}(a, b)$.

Definition 2. Let $f(x) \in C_{\alpha}[a, b]$. Local fractional derivative of the function $f(x)$ at $x=x_{0}$ is given by

$$
f\left(x_{0}\right)=\left.\frac{d^{\alpha} f(x)}{d x^{\alpha}}\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{\Gamma(1+\alpha)\left(f(x)-f\left(x_{0}\right)\right)}{\left(x-x_{0}\right)^{\alpha}}
$$

Definition 3. Let $f(x) \in C_{\alpha}[a, b]$ and let $P=\left\{t_{0}, t_{1}, \ldots, t_{N}\right\}, N \in \mathbb{N}$, be a partition of interval $[a, b]$ such that $a=t_{0}<t_{1}<\cdots<t_{N-1}<t_{N}=b$. Further, for this partition P, let $\Delta t_{j}=t_{j+1}-t_{j}, j=0, \ldots, N-1$, and $\Delta t=\max \left\{\Delta t_{1}, \Delta t_{2}, \ldots, \Delta t_{N-1}\right\}$. Then the local fractional integral of f on the interval $[a, b]$ of order α (denoted by $\left.{ }_{a} I_{b}^{\alpha} f(x)\right)$ is defined by

$$
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(t)(d t)^{\alpha}=\frac{1}{\Gamma(1+\alpha)} \lim _{\Delta t \rightarrow 0} \sum_{j=0}^{N-1} f\left(t_{j}\right)\left(\Delta t_{j}\right)^{\alpha}
$$

The above definition implies that ${ }_{a} I_{b}^{(\alpha)} f(x)=0$ if $a=b$, and ${ }_{a} I_{b}^{(\alpha)} f(x)=$ $-{ }_{b} I_{a}^{(\alpha)} f(x)$ if $a<b$.

At the end of this overview, we give some useful formulas:

$$
\begin{equation*}
\frac{d^{\alpha} x^{k \alpha}}{d x^{\alpha}}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k-1) \alpha)} x^{(k-1) \alpha} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d^{\alpha} E_{\alpha}\left((c x)^{\alpha}\right)}{d x^{\alpha}}=c^{\alpha} E_{\alpha}\left((c x)^{\alpha}\right), \tag{2}
\end{equation*}
$$

where $E_{\alpha}(\cdot)$ denotes the Mittag-Leffler function given by

$$
E_{\alpha}\left(x^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{x^{k \alpha}}{\Gamma(1+k \alpha)}
$$

$$
\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} E_{\alpha}\left(x^{\alpha}\right)(d x)^{\alpha}=E_{\alpha}\left(b^{\alpha}\right)-E_{\alpha}\left(a^{\alpha}\right) .
$$

$$
\begin{equation*}
\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} x^{k \alpha}(d x)^{\alpha}=\frac{\Gamma(1+k \alpha)}{\Gamma(1+(k+1) \alpha)}\left(b^{(k+1) \alpha}-a^{(k+1) \alpha}\right) . \tag{4}
\end{equation*}
$$

Throughout the paper, we denote by ${ }_{a} I_{b}^{(\alpha)} f(x)$ and ${ }_{a} I_{b}^{(\alpha)}\left[{ }_{a} I_{b}^{(\alpha)} h(x, y)\right]$ local fractional integrals

$$
{ }_{a} I_{b}^{(\alpha)} f(x)=\frac{1}{\Gamma(1+\alpha)} \int_{a}^{b} f(x)(d x)^{\alpha},
$$

and

$$
{ }_{a} I_{b}^{(\alpha)}\left[{ }_{a} I_{b}^{(\alpha)} h(x, y)\right]=\frac{1}{\Gamma^{2}(1+\alpha)} \int_{a}^{b} \int_{a}^{b} h(x, y)(d x)^{\alpha}(d y)^{\alpha} .
$$

For the reader's convenience, from now on we use the following abbreviations:

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad(d x)^{\alpha}=\prod_{i=1}^{n}\left(d x_{i}\right)^{\alpha} .
$$

Recall that the function $K: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\alpha}$ is homogeneous of degree $-\alpha \lambda$, $\lambda>0$, if $K(t \mathbf{x})=t^{-\alpha \lambda} K(\mathbf{x})$ holds for all $t>0$. Further, for $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$, we define

$$
\begin{equation*}
k_{i}(\mathbf{a})={ }_{0} I_{\infty}^{((n-1) \alpha)} K\left(\hat{\mathbf{u}}^{i}\right) \prod_{j=1,}^{n} u_{j \neq i}^{\alpha a_{j}}, i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

where $\hat{\mathbf{u}}^{i}=\left(u_{1}, \ldots, u_{i-1}, 1, u_{i+1}, \ldots, u_{n}\right)$. If nothing else is explicitly stated, we assume that the integral defined by (3) converges for all considered values.

Our result will be based on the following result of Krnić and Vuković from [10].

Theorem A. Let $\sum_{i=1}^{n} \frac{1}{p_{i}}=1, p_{i}>1, i=1,2, \ldots, n$. Further, suppose that $A_{i j}, i, j=1,2, \ldots, n$, are real parameters such that $\sum_{i=1}^{n} A_{i j}=0$, for $j=1,2, \ldots, n, \quad$ and let $\quad \beta_{i}:=\sum_{j=1}^{n} A_{i j}, \quad$ for $\quad i=1,2, \ldots, \quad n$. If $f_{i} \in C_{\alpha}\left(\mathbb{R}_{+}\right), i=1,2, \ldots, n$, are non-negative functions and $K \in C_{\alpha}\left(\mathbb{R}_{+}^{n}\right)$ is a non-negative homogeneous function of degree $-s, s>0$, then holds the inequality

$$
\begin{align*}
{ }_{0} I_{\infty}^{(n \alpha)} K(\mathbf{x}) & \prod_{i=1}^{n} f_{i}\left(x_{i}\right) \\
& \leq \prod_{i=1}^{n} k_{i}^{\frac{1}{p_{i}}}\left(p_{i} \mathbf{A}_{i}\right) \prod_{i=1}^{n}\left[{ }_{0} I_{\infty}^{(\alpha)} x_{i}^{(n-1) \alpha-\alpha s+\alpha p_{i} \beta_{i}} f_{i}^{p_{i}}\left(x_{i}\right)\right]^{\frac{1}{p_{i}}} \tag{4}
\end{align*}
$$

where $\quad p_{i} \mathbf{A}_{i}=\left(p_{i} A_{i 1}, p_{i} A_{i 2}, \ldots, p_{i} A_{i n}\right), i=1,2, \ldots, n, \quad$ and $\quad k_{i}(\cdot)$ is defined by (3).

2. Main Results

By applying Theorem A, we get the following result:
Theorem 1. Let $K \in C_{\alpha}\left(\mathbb{R}_{+}^{n}\right)$ and $A_{i j}, \beta_{i}, i, j=1,2, \ldots, n$, be as in Theorem A. Suppose that for every $i=1,2, \ldots, n, u_{i}:\left(a_{i}, b_{i}\right) \rightarrow \mathbb{R}_{+}$, is a strictly increasing differentiable function such that $u_{i}\left(a_{i}\right)=0$ and $u_{i}\left(b_{i}\right)=\infty$. If $f_{i} \in C_{\alpha}\left(\mathbb{R}_{+}\right), i=1,2, \ldots, n$ are non-negative functions, then holds the inequality

$$
\begin{align*}
& \frac{1}{\Gamma^{n}(1+\alpha)} \int_{a_{1}}^{b_{1}} \ldots \int_{a_{n}}^{b_{n}} K\left(u_{1}\left(t_{1}\right), \ldots, u_{n}\left(t_{n}\right)\right) \prod_{i=1}^{n} f_{i}\left(t_{i}\right)\left(d t_{1}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha} \\
& \quad \leq \prod_{i=1}^{n} k_{i}^{\frac{1}{p_{i}}}\left(p_{i} \mathbf{A}_{i}\right) \prod_{i=1}^{n} \\
& \quad \times\left(\frac{1}{\Gamma(1+\alpha)} \int_{a_{i}}^{b_{i}}\left(u_{i}\left(t_{i}\right)\right)^{\alpha(n-1)-\alpha s+\alpha p_{i} \beta_{i}} \times\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha\left(1-p_{i}\right)} f_{i}^{p_{i}}\left(t_{i}\right)\left(d t_{i}\right)^{\alpha}\right)^{\frac{1}{p_{i}}} \tag{5}
\end{align*}
$$

where $p_{i} \mathbf{A}_{i}=\left(p_{i} A_{i 1}, p_{i} A_{i 2}, \ldots, p_{i} A_{\text {in }}\right), i=1,2, \ldots, n$, and $k_{i}(\cdot)$ is defined by (3).

Proof. The proof follows directly from Theorem A. Namely, setting the functions $h_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\alpha}, i=1,2, \ldots, n$, such that $f_{i}\left(t_{i}\right)=h_{i}\left(u_{i}\left(t_{i}\right)\right)\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha}$, the inequality (4) with the functions h_{i} takes the following form:

$$
\begin{align*}
& { }_{0} I_{\infty}^{(n \alpha)} K(\mathbf{x}) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) \\
& \quad \leq \prod_{i=1}^{n} k_{i}^{\frac{1}{p_{i}}}\left(p_{i} \mathbf{A}_{i}\right) \prod_{i=1}^{n}\left[{ }_{0} I_{\infty}^{(\alpha)} x_{i}^{\alpha(n-1)-\alpha s+\alpha p_{i} \beta_{i}} h_{i}^{p_{i}}\left(x_{i}\right)\right]^{\frac{1}{p_{i}}} . \tag{6}
\end{align*}
$$

By using the substitutions $x_{i}=u_{i}\left(t_{i}\right),\left(d x_{i}\right)^{\alpha}=\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha}\left(d t_{i}\right)^{\alpha}$, $i=1,2, \ldots, n$, the left-hand side of the inequality (6) becomes

$$
\begin{align*}
& \frac{1}{\Gamma^{n}(1+\alpha)} \int_{a_{1}}^{b_{1}} \ldots \\
& \int_{a_{n}}^{b_{n}} K\left(u_{1}\left(t_{1}\right), \ldots, u_{n}\left(t_{n}\right)\right) \tag{7}\\
& \times \prod_{i=1}^{n} h_{i}\left(u_{i}\left(t_{i}\right)\right)\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha}\left(d t_{1}\right)^{\alpha}\left(d t_{2}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha}
\end{align*}
$$

where we used the facts $u_{i}\left(a_{i}\right)=0$ and $u_{i}\left(b_{i}\right)=\infty, i=1,2, \ldots, n$.
Similarly, the right-hand side of the inequality (6) becomes

$$
\begin{align*}
J= & \prod_{i=1}^{n} k_{i}^{\frac{1}{p_{i}}}\left(p_{i} \mathbf{A}_{i}\right) \prod_{i=1}^{n}\left(\frac{1}{\Gamma(1+\alpha)} \int_{a_{i}}^{b_{i}}\left(u_{i}\left(t_{i}\right)\right)^{\alpha(n-1)-\alpha s+\alpha p_{i} \beta_{i}}\right. \\
& \left.\times\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha\left(1-p_{i}\right)} h_{i}^{p_{i}}\left(u_{i}\left(t_{i}\right)\right)\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha p_{i}}\left(d t_{i}\right)^{\alpha}\right)^{\frac{1}{p_{i}}} . \tag{8}
\end{align*}
$$

Now, from (6), (7), (8) and the fact $f_{i}\left(t_{i}\right)=h_{i}\left(u_{i}\left(t_{i}\right)\right)\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha}$, follows the inequality (5).

In the following, we analyze the conditions which yield the best possible constants in obtained inequalities. More precisely, we introduce the following conditions on the parameters $A_{i j}$:

$$
\begin{equation*}
p_{j} A_{i j}=s-n-p_{i}\left(\beta_{i}-A_{i i}\right), i, j=1,2, \ldots, n, \quad i \neq j \tag{9}
\end{equation*}
$$

where $\beta_{i}=\sum_{j=1}^{n} A_{i j}$. In that case the constant $\prod_{i=1}^{n} k_{i}^{\frac{1}{p_{i}}}\left(p_{i} \mathbf{A}_{i}\right)$ from Theorem 1 can be transformed to the form:

$$
\begin{equation*}
L^{*}:=k_{1}(\tilde{\mathbf{A}}) \tag{10}
\end{equation*}
$$

where $\widetilde{\mathbf{A}}=\left(\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots, \widetilde{A}_{n}\right)$,

$$
\widetilde{A}_{i}=p_{1} A_{1 i}, \quad \text { for } \quad i \neq 1, \quad \text { and } \quad \widetilde{A}_{1}=p_{n} A_{n 1}
$$

Using (10), the inequality (5) becomes

$$
\begin{aligned}
& \frac{1}{\Gamma^{n}(1+\alpha)} \int_{a_{1}}^{b_{1}} \cdots \int_{a_{n}}^{b_{n}} K\left(u_{1}\left(t_{1}\right), \ldots, u_{n}\left(t_{n}\right)\right) \prod_{i=1}^{n} f_{i}\left(t_{i}\right)\left(d t_{1}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha} \\
& \quad \leq L^{*} \prod_{i=1}^{n}\left(\frac{1}{\Gamma(1+\alpha)} \int_{a_{i}}^{b_{i}}\left(u_{i}\left(t_{i}\right)\right)^{-\alpha-\alpha p_{i} \tilde{A}_{i}} \times\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha\left(1-p_{i}\right)} f_{i}^{p_{i}}\left(t_{i}\right)\left(d t_{i}\right)^{\alpha}\right)^{\frac{1}{p_{i}}} .
\end{aligned}
$$

Further, we can prove that, if the parameters $A_{i j}$ satisfy the condition (9), then one obtains the best possible constant.

Theorem 2. Let $K \in C_{\alpha}\left(\mathbb{R}_{+}^{n}\right)$ and $u_{i}:\left(a_{i}, b_{i}\right) \rightarrow \mathbb{R}_{+}, i=1,2, \ldots, n$, be as in Theorem 1. If the parameters $A_{i j}, i=1,2, \ldots, n$, satisfy conditions (9), then the constant L^{*} is the best possible in inequality (11).

Proof. Let $h_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{\alpha}, i=1,2, \ldots, n$, be the functions such that $f_{i}\left(t_{i}\right)=h_{i}\left(u_{i}\left(t_{i}\right)\right)\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha}$. By using the substitutions $x_{i}=u_{i}\left(t_{i}\right), i=1,2$, \ldots, n, the inequality (11) with the functions h_{i} defined above becomes

$$
\begin{equation*}
{ }_{0} I_{\infty}^{(n \alpha)} K(\mathbf{x}) \prod_{i=1}^{n} h_{i}\left(x_{i}\right) \leq L^{*} \prod_{i=1}^{n}\left[{ }_{0} I_{\infty}^{(\alpha)} x_{i}^{-\alpha-\alpha p_{i} \tilde{A}_{i}} h_{i}^{p_{i}}\left(x_{i}\right)\right]^{\frac{1}{p_{i}}} \tag{12}
\end{equation*}
$$

where the constant L^{*} is defined by (10).
Suppose that the constant factor L^{*} is not the best possible in the inequality (12). Let $0<L_{1}<L^{*}$ such that the inequality (12) is still valid when L^{*} is replaced by L_{1}. Specially, we define

$$
\widetilde{h}_{i}\left(x_{i}\right)=\left\{\begin{array}{ll}
0, & x \in(0,1) \\
x_{i} \widetilde{A}_{i}-\frac{\alpha \varepsilon}{p_{i}}, & x \in[1, \infty)
\end{array}, i=1,2, \ldots, n\right.
$$

where $\varepsilon>0$ is small enough. Setting these functions in the inequality (12), the right-hand side of the inequality (12) becomes

$$
\begin{equation*}
L_{1} \prod_{i=1}^{n}\left[\int_{0}^{\infty} x_{i}^{-\alpha-\alpha \varepsilon}\left(d x_{i}\right)^{\alpha}\right]^{\frac{1}{p_{i}}}=\frac{L_{1}}{\varepsilon^{\alpha} \Gamma(1+\alpha)} \tag{13}
\end{equation*}
$$

By using the substitution $u_{i}=\frac{x_{i}}{x_{1}}, i=2,3, \ldots, n$, and the Fubini theorem, we find that the left-hand side of inequality (12) takes form

$$
\begin{aligned}
& I:=\frac{1}{\Gamma^{n}(1+\alpha)} \int_{[1, \infty)^{n}} K(\mathbf{x}) \prod_{i=1}^{n} x_{i}^{\alpha \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}(d \mathbf{x})^{\alpha} \\
& =\frac{1}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\varepsilon \alpha}\left(\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\left[1 / x_{1}, \infty\right)} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha}\right)\left(d x_{1}\right)^{\alpha} .
\end{aligned}
$$

It is evident that the following inequality holds:

$$
\begin{gather*}
I \geq \frac{1}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\varepsilon \alpha}\left(\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha \widetilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha}\right)\left(d x_{1}\right)^{\alpha} \\
-\frac{1}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\varepsilon \alpha} \sum_{j=2}^{n} I_{j}\left(x_{1}\right)\left(d x_{1}\right)^{\alpha} \tag{14}
\end{gather*}
$$

where $I_{j}\left(x_{1}\right)$ and $D_{j}, j=2,3, \ldots, n$, are defined by

$$
I_{j}\left(x_{1}\right)=\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{D_{j}} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha \widetilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha}
$$

and $\quad D_{j}=\left\{\left(u_{2}, u_{3}, \ldots, u_{n}\right): 0<u_{j} \leq \frac{1}{x_{1}}, u_{i}>0, i \neq j\right\}$. By using the integral formula (3), the above inequality can be rewritten as

$$
\begin{align*}
I \geq & \frac{1}{\varepsilon^{\alpha} \Gamma(1+\alpha)} k_{1}(\tilde{\mathbf{A}}-\varepsilon \alpha \mathbf{1} / \mathbf{p}) \\
& -\frac{1}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\varepsilon \alpha} \sum_{j=2}^{n} I_{j}\left(x_{1}\right)\left(d x_{1}\right)^{\alpha} \tag{15}
\end{align*}
$$

where $\frac{\mathbf{1}}{\mathbf{p}}=\left(\frac{1}{p_{1}}, \ldots, \frac{1}{p_{n}}\right)$. Without losing generality, here we only estimate the integral $I_{2}\left(x_{1}\right)$. Since $1^{\alpha}-u_{2}^{\alpha \varepsilon} \rightarrow 1^{\alpha}\left(u_{2} \rightarrow 0^{+}\right)$, there exists $M \geq 0$ such that $1^{\alpha}-u_{2}^{\alpha \varepsilon} \leq M^{\alpha}\left(u_{2} \in(0,1]\right)$. By using the Fubini's theorem, it follows that

$$
\begin{aligned}
& 0 \leq \frac{\varepsilon^{\alpha}}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\alpha \varepsilon} I_{2}\left(x_{1}\right)\left(d x_{1}\right)^{\alpha} \\
&= \frac{\varepsilon^{\alpha}}{\Gamma(1+\alpha)} \int_{1}^{\infty} x_{1}^{-\alpha-\alpha \varepsilon}\left(\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-2}} \int_{0}^{1 / x_{1}} K\left(\hat{\mathbf{u}}^{1}\right)\right. \\
&\left.\times \prod_{i=2}^{n} u_{i}^{\alpha} \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha}\right)_{\left(d x_{1}\right)^{\alpha}}^{=} \\
& \frac{\varepsilon^{\alpha}}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-2}} \int_{0}^{1} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}} \\
&=\left.\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{0}^{1 / u_{2}} x_{1}^{-\alpha-\alpha \varepsilon}\left(d x_{1}\right)^{\alpha}\right)\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha} \\
& \leq \frac{M^{\alpha}}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-2}} \int_{0}^{1} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} \prod_{0}^{\alpha} u_{i}^{\alpha \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}\left(\frac{1}{\varepsilon}\left(1^{\alpha}-u_{2}^{\alpha}\right)\right)\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha} \\
& \leq\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha} \\
&= \frac{M^{\alpha}}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} K\left(\hat{\mathbf{u}}^{1}\right) \prod_{i=2}^{n} u_{i}^{\alpha} \tilde{A}_{i}-\frac{\varepsilon \alpha}{p_{i}}\left(\hat{d}^{1} \mathbf{u}\right)^{\alpha} \\
&=(\widetilde{\mathbf{A}}-\varepsilon \mathbf{1} / \mathbf{p})<\infty . \\
&=
\end{aligned}
$$

Hence, by (15), one has

$$
\begin{equation*}
I \geq \frac{1}{\varepsilon^{\alpha} \Gamma(1+\alpha)} k_{1}(\tilde{\mathbf{A}}-\varepsilon 1 / \mathbf{p})-O(1) \tag{16}
\end{equation*}
$$

In view of (13) and (16), we conclude that $L^{*} \leq L_{1}$ when $\varepsilon \rightarrow 0^{+}$, which is an obvious contradiction. Hence, the constant L^{*} in the inequality (11) is the best possible.

3. Applications

As applications, we will build some new inequalities. First, we proceed with a function $K_{1}\left(x_{1}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{n} x_{i}^{s(\lambda-1)}\right)^{\alpha} /\left(\sum_{i=1}^{n} x_{i}^{\lambda}\right)^{\alpha s}$, where $s>0$, and $\lambda>1$. It is easy to see that $K_{1} \in C_{\alpha}\left(\mathbb{R}_{+}^{n}\right)$ and its degree of homogeneity is $-\alpha s$.

To obtain the Hilbert-type inequality with the kernel K_{1}, we need an extension of the usual Gamma function. The local fractional Gamma function $\Gamma_{\alpha}(\cdot), 0<\alpha \leq 1$, can be expressed as

$$
\Gamma_{\alpha}(x)={ }_{0} I_{\infty}^{(\alpha)} E_{\alpha}\left(-t^{\alpha}\right) t^{\alpha(x-1)}
$$

First, we need some technical lemmas.
Lemma 1 (see [10]). If $n \in \mathbb{N}, r_{i}>0, i=1,2, \ldots, n$, then holds the relation (17)
$\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{\prod_{i=1}^{n-1} x_{i}^{\alpha\left(r_{i}-1\right)}}{\left(1+\sum_{i=1}^{n-1} x_{i}\right)^{\alpha} \sum_{i=1}^{n} r_{i}}\left(d x_{1}\right)^{\alpha} \ldots\left(d x_{n-1}\right)^{\alpha}=\frac{\prod_{i=1}^{n} \Gamma_{\alpha}\left(r_{i}\right)}{\Gamma_{\alpha}(s)}$.
Applying Lemma 1 we obtain the next result.

Lemma 2. Suppose that $n \in \mathbb{N}, s, \lambda>0$. If $\gamma_{i}>-1, i=1,2, \ldots, n-1$, and $\sum_{i=1}^{n-1} \gamma_{i}<\lambda s-n+1$, then

$$
\begin{align*}
I & :=\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{\prod_{i=1}^{n-1} t_{i}^{\alpha \gamma_{i}}}{\left(1+\sum_{i=1}^{n-1} t_{i}^{\lambda}\right)^{\alpha s}}\left(d t_{1}\right)^{\alpha} \ldots\left(d t_{n-1}\right)^{\alpha} \\
& =\frac{1}{\Gamma_{\alpha}(s) \lambda^{\alpha(n-1)}}\left(\prod_{i=1}^{n-1} \Gamma_{\alpha}\left(\frac{\gamma_{i}+1}{\lambda}\right)\right) \Gamma_{\alpha}\left(s-\frac{1}{\lambda} \sum_{i=1}^{n-1}\left(\gamma_{i}+1\right)\right) . \tag{18}
\end{align*}
$$

Proof. The substitution $u_{i}=t_{i}^{\lambda}, i=1,2, \ldots, n-1$, yields

$$
I=\frac{1}{\lambda^{\alpha(n-1)} \Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{\prod_{i=1}^{n-1} u_{i}^{\alpha\left(\frac{\gamma_{i}+1}{\lambda}-1\right)}}{\left(1+\sum_{i=1}^{n-1} u_{i}\right)^{\alpha s}}\left(d u_{1}\right)^{\alpha} \ldots\left(d u_{n-1}\right)^{\alpha} .
$$

By using Lemma 1, we get

$$
I=\frac{1}{\Gamma_{\alpha}(s) \lambda^{\alpha(n-1)}} \prod_{i=1}^{n} \Gamma_{\alpha}\left(r_{i}\right)
$$

where $r_{i}=\frac{\gamma_{i}+1}{\lambda}, i=1,2, \ldots, n-1$, and $r_{n}=s-\frac{1}{\lambda} \sum_{i=1}^{n-1}\left(\gamma_{i}+1\right)$. In this way we obtained (18).

Further, we define the parameters $A_{i j}, i, j=1,2, \ldots, n$, by

$$
\begin{equation*}
A_{i j}=\frac{s-p_{j}}{p_{i} p_{j}}, i \neq j, \text { and } A_{j j}=\frac{\left(s-p_{j}\right)\left(1-p_{j}\right)}{p_{j}^{2}} . \tag{19}
\end{equation*}
$$

Then,

$$
\sum_{i=1}^{n} A_{i j}=\sum_{i \neq j} \frac{s-p_{j}}{p_{i} p_{j}}+\frac{\left(s-p_{j}\right)\left(1-p_{j}\right)}{p_{j}^{2}}=\frac{s-p_{j}}{p_{j}}\left(\sum_{i=1}^{n} \frac{1}{p_{j}}-1\right)=0
$$

for $j=1,2, \ldots, n$. Similarly, we obtain $\beta_{i}=1-\frac{n}{p_{i}}, i=1,2, \ldots, n$. Now, it is easy to see that the parameters $A_{i j}$ defined by (19) satisfy the condition (9).

Our next result is a consequence of Theorem 2.
Corollary 1. Let $\sum_{i=1}^{n} \frac{1}{p_{i}}=1, p_{i}>1, i=1,2, \ldots, n$, and let $\lambda>1$ and $s>0$. If $a>1$ and $f_{i} \in C_{\alpha}(\mathbb{R}), i=1,2, \ldots, n$, are non-negative functions, then holds the inequality

$$
\begin{gather*}
\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}^{n}} \frac{\left(\sum_{i=1}^{n} a^{s(\lambda-1) t_{i}}\right)^{\alpha}}{\left(\sum_{i=1}^{n} a^{\lambda t_{i}}\right)^{\alpha s}} \prod_{i=1}^{n} f_{i}\left(t_{i}\right)\left(d t_{1}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha} \\
\quad \leq M^{*} \prod_{i=1}^{n}\left(\frac{1}{\Gamma(1+\alpha)} \int_{\mathbb{R}} a^{-\alpha s t_{i}} f_{i}^{p_{i}}\left(t_{i}\right)\left(d t_{i}\right)^{\alpha}\right)^{\frac{1}{p_{i}}}, \tag{20}
\end{gather*}
$$

where the constant

$$
\begin{equation*}
M^{*}=\frac{(\lambda \ln \alpha)^{\alpha(1-n)}}{\Gamma_{\alpha}(s)} \sum_{j=1}^{n}\left[\left(\prod_{i=1, i \neq j}^{n} \Gamma_{\alpha}\left(\frac{s}{p_{i} \lambda}\right)\right) \cdot \Gamma_{\alpha}\left(\frac{s p_{j}(\lambda-1)+s}{p_{j} \lambda}\right)\right] \tag{21}
\end{equation*}
$$

is the best possible.
Proof. We put $K_{1}\left(x_{1}, \ldots, x_{n}\right)$, the parameters $A_{i j}$ defined by (19) and $u_{i}\left(t_{i}\right)=a^{t_{i}}, i=1,2, \ldots, n$, in Theorem 2. By using the definition of \tilde{A}_{i}, we have $\tilde{A}_{i}=\frac{s-p_{i}}{p_{i}}, i=1,2, \ldots, n$. Taking into account $u_{i}\left(t_{i}\right)=a^{t_{i}}$, we obtain

$$
\left(u_{i}\left(t_{i}\right)\right)^{-\alpha-\alpha p_{i} \tilde{A}_{i}}\left[u_{i}^{\prime}\left(t_{i}\right)\right]^{\alpha\left(1-p_{i}\right)}=(\ln \alpha)^{\alpha\left(1-p_{i}\right)} a^{-\alpha s t_{i}} .
$$

Now, it is enough to calculate the constant $(\ln a)^{\alpha(1-n)} \cdot M$, where

$$
M:=k_{1}\left(1, \frac{s-p_{2}}{p_{2}}, \ldots, \frac{s-p_{n}}{p_{n}}\right) .
$$

Applying the definition of function $k_{1}(\cdot)$ given by (3), we find that

$$
\begin{equation*}
M=\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{\left(1+\sum_{j=2}^{n} t_{j}^{s(\lambda-1)}\right)^{\alpha}}{\left(1+\sum_{j=2}^{n} t_{j}^{\lambda}\right)^{\alpha s}} \prod_{i=2}^{n} t_{i}^{\alpha\left(\frac{s}{p_{i}}-1\right)}\left(d t_{2}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha}=\sum_{k=1}^{n} I_{k}, \tag{22}
\end{equation*}
$$

where

$$
I_{1}=\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{\prod_{i=2}^{n} t_{i}^{\alpha\left(\frac{s}{p_{i}}-1\right)}}{\left(1+\sum_{j=2}^{n} t_{j}^{\lambda}\right)^{\alpha s}}\left(d t_{2}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha}
$$

and

$$
I_{k}=\frac{1}{\Gamma^{n-1}(1+\alpha)} \int_{\mathbb{R}_{+}^{n-1}} \frac{t_{k}^{\alpha s(\lambda-1)+\alpha\left(\frac{s}{p_{k}}-1\right)} \prod_{i=2, i \neq k}^{n} t_{i}^{\alpha\left(\frac{s}{p_{i}}-1\right)}}{\left(1+\sum_{j=2}^{n} t_{j}^{\lambda}\right)^{\alpha s}}\left(d t_{2}\right)^{\alpha} \ldots\left(d t_{n}\right)^{\alpha},
$$

for $k=2,3, \ldots, n$. By using Lemma 2, we obtain

$$
I_{1}=\frac{1}{\Gamma_{\alpha}(s) \lambda^{\alpha(n-1)}} \Gamma_{\alpha}\left(\frac{s p_{1}(\lambda-1)+s}{p_{1} \lambda}\right) \prod_{i=2}^{n} \Gamma_{\alpha}\left(\frac{s}{p_{i} \lambda}\right)
$$

and similarly

$$
I_{k}=\frac{1}{\Gamma_{\alpha}(s) \lambda^{\alpha(n-1)}} \Gamma_{\alpha}\left(\frac{s p_{k+1}(\lambda-1)+s}{p_{k} \lambda}\right) \prod_{i=1, i \neq k}^{n} \Gamma_{\alpha}\left(\frac{s}{p_{i} \lambda}\right),
$$

for $k=2, \ldots, n$. Finally, from (22) we get (21).

References

[1] Ts. Batbold, M. Krnić, J. Pečarić and P. Vuković, Further Development of HilbertType Inequalities, Element, Zagreb, 2017.
[2] H. Budak, M. Z. Sarikaya and H. Yildirim, New inequalities for local fractional integrals, Iranian Journal of Science and Technology, Transactions A: Science 41(4) (2017), 1039-1046.

DOI: https://doi.org/10.1007/s40995-017-0315-9
[3] G.-S. Chen, Generalizations of Hölder's and some related integral inequalities on fractal space, Journal of Function Spaces and Applications (2013); Article ID 198405, 9 pp.

DOI: https://doi.org/10.1155/2013/198405
[4] G.-S. Chen, J. M. Srivastava, P. Wang and W. Wei, Some further generalizations of Hölder's inequality and related results on fractal space, Abstract and Applied Analysis (2014); Article ID 832802, 7 pp.

DOI: https://doi.org/10.1155/2014/832802
[5] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Second Edition, Cambridge University Press, Cambridge, 1967.
[6] G. Jumarie, Fractional Euler's integral of first and second kinds: Application to fractional Hermite's polynomials and to probability density of fractional order, Journal of Applied Mathematics and Informatics 28(1-2) (2010), 257-273.
[7] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities Involving Functions and their Integrals and Derivatives, Kluwer Academic Publishers, Boston, 1991.

DOI: https://doi.org/10.1007/978-94-011-3562-7
[8] M. Krnić, J. Pečarić, I. Perić and P. Vuković, Recent Advances in Hilbert-Type Inequalities, Element, Zagreb, 2012.
[9] Ts. Batbold, M. Krnić and P. Vuković, A unified approach to fractal Hilbert-type inequalities, Journal of Inequalities and Applications (2019); Article 117, pp. 13.

DOI: https://doi.org/10.1186/s13660-019-2076-9
[10] M. Krnić and P. Vuković, Multidimensional Hilbert-type inequalities obtained via local fractional calculus, Acta Applicandae Mathmaticae 169(1) (2020), 667-680.

DOI: https://doi.org/10.1007/s10440-020-00317-x
[11] Yingdi Liu and Qiong Liu, The structural features of Hilbert-type local fractional integral inequalities with abstract homogeneous kernel and its applications, Fractals 28(4) (2020); Article 2050111.

DOI: https://doi.org/10.1142/S0218348X2050111X
[12] Q. Liu, A Hilbert-type fractional integral inequality with the kernel of MittagLeffler function and its applications, Mathematical Inequalities and Applications 21(3) (2018), 729-737.

DOI: https://doi.org/10.7153/mia-2018-21-52
[13] Q. Liu and D. Chen, A Hilbert-type integral inequality on the fractal spaces, Integral Transforms and Special Functions 28(10) (2017), 772-780.

DOI: https://doi.org/10.1080/10652469.2017.1359588
[14] Q. Liu and W. Sun, A Hilbert-type fractal integral inequality and its applications, Journal of Inequalities and Applications (2017); Article 83, pp. 8.

DOI: https://doi.org/10.1186/s13660-017-1360-9
[15] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, Proceedings of the American Mathematical Society 145(4) (2017), 1527-1538.

DOI: https://doi.org/10.1090/proc/13488

[16] M. Z. Sarikaya, T. Tunc and H. Budak, On generalized some integral inequalities for local fractional integrals, Applied Mathematics and Computation 276(5) (2016), 316-323.

DOI: https://doi.org/10.1016/j.amc.2015.11.096
[17] X. J. Yang, Local Fractional Functional Analysis and its Applications, Asian Academic Publisher Limited, Hong Kong, 2011.
[18] X. J. Yang, Advanced Local Fractional Calculus and its Applications, World Science Publishers, New York, 2012.
[19] X. J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and their Applications, Elsevier Ltd., 2016.

[^0]: 2020 Mathematics Subject Classification: 26D15.
 Keywords and phrases: local fractional integral, conjugate parameters.
 Communicated by Suayip Yuzbasi.
 Received January 31, 2021; Revised March 7, 2021

