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Abstract 

In this paper, the area biased Maxwell distribution is considered for Bayesian 

analysis. The expressions for Bayes estimators of the parameter have been 

derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s 

loss functions by using quasi and gamma priors. 

1. Introduction 

In science there are a lot of applications of Maxwell (or Maxwell-

Boltzmann) distribution. It was Tyagi and Bhattacharya [1, 2] who 

considered the Maxwell distribution as a lifetime model. Chaturvedi and 

Rani [3] obtained classical and Bayes estimators for the Maxwell 

distribution. Rao et al. [4, 5, 6] obtained the Bayes estimators by using 
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different loss functions. The probability density function of area biased 

Maxwell distribution (Reshi et al. [7]) is given by 
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where ( )⋅Γ  is a gamma function. 

The joint density function or likelihood function of (1) is given by 
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The logarithm likelihood function is given by 
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Differentiating (3) with respect to θ  and equating to zero, we get the 

maximum likelihood estimator of θ  which is given by 
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2. Bayesian Method of Estimation 

The Bayesian inference procedures have been developed generally 

under squared error loss function 

( ) ( ) .ˆ,ˆ
2

θ−θ=θθL  (5) 

The Bayes estimator under the above loss function, say, Sθ̂  is the 

posterior mean, i.e., 

( ).ˆ θ=θ ES   (6) 
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Zellner [8] and Basu and Ebrahimi [9] have recognized that the 

inappropriateness of using symmetric loss function. Norstrom [10] 

introduced precautionary loss function is given as 
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The Bayes estimator under precautionary loss function is denoted by pθ̂  

and is obtained by solving the following equation: 

( )[ ] .ˆ 2
1
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In many practical situations, it appears to be more realistic to express the 

loss in terms of the ratio .
ˆ

θ

θ
 In this case, Calabria and Pulcini [11] points 

out that a useful asymmetric loss function is the entropy loss 

( ) ( )[ ],1log −δ−δδ e
p pL �  

where ,
ˆ

θ

θ
=δ  and whose minimum occurs at .ˆ θ=θ  Also, the loss 

function ( )δL  has been used in Dey et al. [12] and Dey and Liu [13], in 

the original form having .1=p  Thus ( )δL  can written be as 

( ) ( )[ ] .0;1log >−δ−δ=δ bbL e   (9) 

The Bayes estimator under entropy loss function is denoted by Eθ̂  and is 

obtained by solving the following equation: 
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Wasan [14] proposed the K-loss function which is given as 
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Under K-loss function the Bayes estimator of θ  is denoted by Kθ̂  and is 

obtained as 
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Al-Bayyati [15] introduced a new loss function using Weibull distribution 

which is given as 
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θ−θθ=θθ cL   (13) 

Under Al-Bayyati’s loss function the Bayes estimator of θ  is denoted by 

Alθ̂  and is obtained as 
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Let us consider two prior distributions of θ  to obtain the Bayes 

estimators. 

(i) Quasi-prior: For the situation where we have no prior information 

about the parameter ,θ  we may use the quasi density as given by 
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  (15) 

where 0=d  leads to a diffuse prior and ,1=d  a non-informative prior. 

(ii) Gamma prior: Generally, the gamma density is used as prior 

distribution of the parameter θ  given by 
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3. Posterior Density Under ( )θ1g  

The posterior density of θ  under ( ),1 θg  on using Equation (2), is given by 
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Theorem 1. On using (17), we have 
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Proof. By definition, 
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From equation (18), for ,1=c  we have 
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From Equation (18), for ,2=c  we have 
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From Equation (18), for ,1−=c  we have 
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From Equation (18), for ,1+= cc  we have 

( )
( )

.
2

1

1
2

5

2
2

5 1

2

1

1

+−

=

+





















 +−Γ







 ++−Γ

=θ ∑
c

i

n

i

c x

d
n

cd
n

E  (22) 

 

 



BAYESIAN ESTIMATION FOR THE PARAMETER … 7 

4. Bayes Estimators Under ( )θ1g  

From Equation (6), on using (19), the Bayes estimator of θ  under 

squared error loss function is given by 
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From Equation (8), on using (20), the Bayes estimator of θ  under 

precautionary loss function is given by 
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From Equation (10), on using (21), the Bayes estimator of θ  under 

entropy loss function is given by 
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From Equation (12), on using (19) and (21), the Bayes estimator of θ  

under K-loss function is given by 
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From Equation (14), on using (18) and (22), the Bayes estimator of θ  

under Al-Bayyati’s loss function is given by 
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5. Posterior Density Under ( )θ2g  

Under ( ),2 θg  the posterior density of ,θ  using Equation (2), is 

obtained as 
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Theorem 2. On using (28), we have 
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Proof. By definition, 
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From Equation (29), for ,1=c  we have 
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From Equation (29), for ,2=c  we have 
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From Equation (29), for ,1−=c  we have 
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From Equation (29), for ,1+= cc  we have 
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6. Bayes Estimators Under ( )θ2g  

From Equation (6), on using (30), the Bayes estimator of θ  under 

squared error loss function is given by 
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From Equation (8), on using (31), the Bayes estimator of θ  under 

precautionary loss function is given by 
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From Equation (10), on using (32), the Bayes estimator of θ  under 

entropy loss function is given by 
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From Equation (12), on using (30) and (32), the Bayes estimator of θ  

under K-loss function is given by 
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From Equation (14), on using (29) and (33), the Bayes estimator of θ  

under Al-Bayyati’s loss function is given by 
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7. Conclusion 

In this paper, we have obtained a number of estimators of parameter 

of area biased Maxwell distribution. In Equation (4), we have obtained 

the maximum likelihood estimator of the parameter. In Equations       

(23)-(27), we have obtained the Bayes estimators under different loss 

functions using quasi prior. In Equations (34)-(38), we have obtained the 

Bayes estimators under different loss functions using gamma prior. In the 

above equation, it is clear that the Bayes estimators depend upon the 

parameters of the prior distribution. 
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