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Abstract 

In this paper, we reconsider the stability of travelling wave solutions of 

reaction-diffusion equations with time delays, where the comparison principle 

does not hold. A new method will be developed to obtain the stability. Firstly, 

we define two auxiliary functions, and then obtain the stability of travelling 

wave fronts by using the known results and weight energy method. Our results 

complement the earlier results in this field. 
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1. Introduction 

The travelling wave describes the translation between two 

equilibrium states, and thus it is worth studying it. The stability of 

travelling wave solutions is an important issue in the theory of travelling 

wave solutions. Sattinger [15] used the method of spectral analysis to 

study the travelling wave fronts of a reaction-diffusion system and 

obtained the stability in weighted ∞L  spaces. The asymptotic stability of 

travelling wave solutions to nonlocal evolution equations and delayed 

reaction-diffusion equations are studied in [2] and [16, 18], respectively. 

Mei et al. [10, 11, 12, 13] considered the following delayed equations: 

( )( ),, rtxubuduu xxt −ε=δ+−  (1.1) 

and Mei et al. [10, 11] also considered the following nonlocal time-delayed 

reaction-diffusion equation: 

( )( ) ( ) ,, dyyfrtyxubuduu xxt α−−ε=δ+− ∫
R

  (1.2) 

where constants ( ) α
−

α
πα

=>εδ 4

2

e
4

1
,0,,

y

yfd  and 

( )
qaupuub −= e or ( ) .

1 qau

pu
ub

+
=  

They first established a comparison principle and then proved that 

travelling wave fronts of Equations (1.1) and (1.2) are asymptotic stable 

in some exponentially weighted ∞L  spaces. About the asymptotic 

stability of travelling wave fronts for Nicholson’s blowflies equation, see 

Gourley-Kuang [5], Lin-Mei [7], Lv-Wang [9], Mei-Ou-Zhao [14], Zhang 

[23] and so on. 

In this paper, we shall consider the Equation (1.1) with 

( ) ( ) [ ].0,,,,, 0 rsxsxusxu −∈∈= R   (1.3) 

Throughout this paper, we always assume that ,1=ε  

( ) ,e aupuub −=  with .2e
p

e <
δ

<  
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Clearly, there are two constants 0 and 
δ

=
p

a
K ln

1
 such that ( ).ubu =δ  

Moreover, we have 

( ) ( )








><

≤<≥
−=′ −

.
1

for0

,
1

0for0
1

a
u

a
u

aupeub au  

Obviously, the comparison principle does not hold for Equation (1.1) with 

(1.3), and thus the earlier method fails. The existence, uniqueness of non-

monotone travelling wave solution was obtained by Wu et al. [19, 20] and 

Faria-Trofimchuk [1, 3]. Wu et al. [21] obtained the stability of non-

monotone travelling wave fronts by using the weight energy method and 

the method we used here is different from that in [21]. In order to obtain 

the stability of travelling wave solutions, we will define two auxiliary 

functions ( )wb±  which are non-decreasing functions. Then we obtain the 

stability of travelling wave solutions by using the known results and 

weight energy method. Although in paper [4, 6, 8] the authors considered 

the same problem as in this paper, the method we used here is different 

from those. 

Denote 
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=∗

+  and let 

( )

( ) [ ]

( ) [ ]

[ ]

( )

( ) [ ]

( ) [ ]

( ) [ ]











+ς∈

+ς−ς∈ι

−ς∈

=














+∈

+−∈π

−∈

=

∗
+

∗
+

−

∗
+

+

,,,

,,,

,,0,

;,
1

,

,
1

,
1

,

,
1

,0,

wwwb

ww

wwb

wb

w
a

w
ae

p

aa
ww

a
wwb

wb

�

��

�

�

��

�

 

(1.4) 

where ( ) ( ) ,10,,
1

0 ��<=ς<ς< ∗
+wbb

a
 and ( )wπ  and ( )wι  are   

chosen to satisfy that ( ) ([ ]) ( ) ( ) ,0,0,,02 ≤′′>′∈ ±±
∗
+± wbwbwCwb  and  

( ) ( ) ( )wbwbwb +− ≤≤  for [ ].,0 ∗
+∈ ww  Moreover, ( ) wwb δ=−  has a 
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minimal solution in [ ],,0 ∗
+w  and we denote it by ,∗

−w  see Figure 1. 

Actually, in this paper, we only use the information of ( )wb−  and we can 

assume that ( ) [ ] ( ).max: ,0 vbwb wv∈+ =  

Note that ( ) ( ( ) ) δ<−δ=′
δ

1ln
p

Kb  for ( )2, eep ∈δ  and ( ) ,lim K=ξφ
+∞→ξ

 

we deduce that there exists a constant 0>ξ∗  such that when ,∗ξ>ξ  it 

holds that ( )( ) .δ<ξφ′b  Besides that, it is easy to see that .∗
−> wK  Let 

( )

( )








ξ>ξ

ξ≤ξ
=ξ

ξ−ξλ−

,,1

,,

0

0
2 0e

w   (1.5) 

where ( ) { ( ) } ( ( )ccc 111 ,2min λλλ<λ<λ ∗  and ∗λ  are defined as in (1.6)), 

and 0ξ  satisfies ( ) ∗
−≥−ξφ wcr  and ( )( ) δ<−ξφ′ crb  for .0ξ>ξ  

 

Figure 1. ( ) ( )xbyxyxby +=δ== 321 ,,  and ( )xby −=4  with ,3 2ep =  

2,0 =δ=�  and .1=a  
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Now we state our main result. 

Theorem 1.1. Assume that 2epe <δ<  and ( ) ,,0 0
∗
+≤≤ wsxu  the 

initial perturbation ( ) ( )csxsxu +φ−,0  belongs to ([ ] ( )),,0, 1
RwHC τ−  

and the speed 

,
λ

δ−
+λ

σ
≥

pd
c  

then the solution ( )txu ,  of (1.1) with (1.3) satisfies 

( ) ( ) ([ ) ( )),;,0, 1
RwHCctxtxu ∞∈+φ−  

where the function ( )xw  and λ  are defined by (1.5). In particular, the 

solution ( )txu ,  converges to the travelling wave front ( )ctx +φ  

exponentially in time 

( ) ( ) ,e,sup t

x
Cctxtxu µ−

∈
≤+φ−

R

 

for some positive constants C  and .µ  

We give the following remarks: 

(1) Following [10], when ( )ub  is an increasing function, the author 

defined the weight function as 

( )

( )








ξ>ξ

ξ≤ξ
=ξω

ξ−ξλ−

,,1

,,

0

0
2 0e

  (1.6) 

where ( ) ( )cc 11 , λλ≤λ<λ ∗  is the smaller root of ( )( ) ( )∗∗λ=λ cccF ,0,  

satisfies ( ( ) ) 0, =λ ∗∗∗ ccF  and ( ( ) ) ,0, =λ ∗∗∗
∗ ccF

c
 and 

( )( ) ( ) .0, 2 crebdcccF λ−′ε−δ+λ−λ=λ  
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In this paper, we assume that .1=ε  It is clear that λ  in this paper 

satisfies ∗λ≥λ  and thus the λ  in this paper is smaller than that in [10]. 

On the other hand, the result of [10] also holds if we replace the weight 

function ( )xω  by ( ).xw  

(2) Note that when ( )ub  is not an increasing function, the comparison 

principle will not hold. Hence the result in this paper is non-trivial. 

Actually, whatever the restrict about the initial data and the travelling 

wave solution, we will not obtain that ( ) ( ) ,0, >φ− ztzu  where 

,ctxz +=  and thus the method of [10, 11, 14] will fail. 

(3) In the earlier results about the stability of travelling wave 

solutions, the assumption about the initial data says that ,0 +− ≤≤ uuu  

where −u  and +u  are two constant equilibria. In this paper, we assume 

that ( ) ,,0 0
∗
+≤≤ wsxu  which is different from the earlier results. 

(4) We say that .κ<δ< pe  For the value of the ,κ  we can give an 

estimation. It is easy to calculate 

( ) ,1 







δ
−=′ δ

−∗
+ e

p
pewb e

p

 

The condition ( ) δ<′ ∗
+wb  shows that 

( ) ,
1

1
e

exx x <− −   (1.7) 

where .
e

p
x

δ
=  Let ( ) ( ) ,1 xexxxf −−=  then it follows from ( ) ( −=′ xxf 3  

) 012 =− −xex  that  

( ) ( ) .52
2

53
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53
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+−
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= efxf
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Since ,52522
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+>>>
+

ee  we have ( ) δ<′ ∗
+wb  for all .1>

δe

p
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Let 0>T  be a number and B  be a Banach space. We denote by 

[ ]( )BTC ;,00  the space of the B-valued continuous function on [ ],,0 T  

and by [ ]( )BTL ;,02  the space of the B-valued functions-2L  on [ ].,0 T  

The corresponding spaces of the B-valued functions-2L  on [ )∞,0  are 

defined similarly. 

The rest of this paper is organized as follows. In Section 2, recall some 

known results and establish some property about the Cauchy problem of 

(1.1). Section 3 is concerned with the proof of the main results. 

2. Preliminaries 

In this section, we first recall some known results and then establish 

some properties about the Cauchy problem of (1.1). Now, we recall the 

existence of travelling wave solutions of (1.1) with .ep >δ  In paper [3], 

Faria-Trofimchuk considered the following delayed reaction-diffusion 

equation: 

( ) ( ) ( ) ( )( ) ( ) .,0,,,,,, m
t xtxuhtxugtxutxudtxu R∈≥−+−∆=  (2.1) 

related to the Mackey-Glass type delay differential equations 

( ) ( ) ( )( ) ( ) ,0, ≥−+−=′ tuhtugtutu   (2.2) 

where 0≥h  denotes the time delay. 

(S) Equation (2.2) has exactly two steady states ( ) 01 ≡tu  and ( ) ≡tu2  

,0>K  the second equilibrium being exponentially asymptotically stable 

and the first one being hyperbolic. Furthermore, ( )++∈ RR ,1Cg  and is 

smooth-2C  in some vicinity of the equilibria, with ( ) .10: >′= gp  The 

latter implies that the solution 01 =u  of (2.2) is unstable for all .0≥h  
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In the sequel, ( )c1λ  denotes the minimal positive root of the 

characteristic equation ( ) 01
2 =+−− −zhpezcz  for sufficiently large ,c  

and λ  the unique positive root of the equation ,01 =+−− −zhpez  where 

.1>p  As shown in [3], ( ) .lim 1 λ=λ
∞→

c
c

 Under the above assumption (S), 

they obtained the following results. 

Proposition 2.1. Assume (S) holds. If the positive equilibrium K  of 

Equation (2.2) is globally attracting, then there is ∗c  such that, for each 

,1, =∈ νν
m
R  Equation (2.1) has a continuous family of positive 

travelling waves ( ) ( ) .,, ∗>+⋅/= ccctxtxu νυ  Furthermore, for some 

( ) ,00 R∈= css  we have ( ) ( )( ) ( )( )sOsccss λ+λ=−φ 2expexp, 10  as 

,∞−→s  so that ( ) ( ) ( )( ) ( )( ) 02expexp, 110 >λ+λλ=−φ′ sOscccss  on 

some semi-axis ( ]., z−∞  Finally, if ( ) ,11 −<′ +hheKg  then the travelling 

profile ( )tφ  oscillates about K  on every interval [ )., ∞+z  

Aguerrea et al. [1] established the uniqueness of travelling wave 

solutions obtained in Proposition 2.1. It is easy to see that the existence of 

travelling wave solutions of (1.1) can be obtained by Proposition 2.1. 

Moreover, the travelling wave solution oscillates about K  on every 

interval [ ),, ∞+z  where .R∈z  Due to the continuous of the travelling 

wave solutions ( ),zφ  we see that ( )zφ  is bounded, that is, ( ) 0Mz ≤φ  for 

,R∈z  where .00 >M  

Note that Mei et al. [10] obtained the stability of travelling wave 

solutions of Equation (1.1) with increasing nonlinearity term. Now we 

recall the results of Mei et al. [14], see also [11]. In [14], they studied the 

following reaction-diffusion equations with nonlocal nonlinearity: 

( ) ( )( ) ( ) ,, dyyfrtyxubudDuu xxt α−−=+− ∫
R

  (2.3) 
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where 0>D  and the nonlinear functions ( )ud  and ( )ub  denote the 

death and birth rates of the mature population, respectively, and satisfy 

the following hypotheses: 

(H1) There exist 0=−u  and 0>+u  such that ( ) ( ) ,000 == bd  

( ) ( ),++ = ubud  and ( ) ( ) [ ];,0, 2
+∈ uCubud  

(H2) ( ) ( )00 db ′>′  and ( ) ( ),0 ++ ′<′≤ udub  and ( ) ( ) ( );0
2

++ ′′>′ ubbud  

(H3) For ( ) ( ) ( ) ( ) ,0,0,0,0,0 ≤′′≥′′≥′≥′≤≤ + ubudubuduu  but 

either ( ) 0>′′ ud  or ( ) .0>′′ ub  

They defined a weight function as (1.6), where 1λ  and ∗λ  satisfy 

( ) ( ) ,0002 =′−′+λ−λ λ− crebdDc  

and obtained the following result. 

Proposition 2.2 ([14]). Let ( )ud  and ( )ub  satisfy (H1)-(H3). For a 

given travelling wave front ( )ctx +φ  of (2.3) with ∗≥ cc  and ( ) ,±=∞±φ u  

if the initial data satisfy 

( ) ( ) [ ],0,,,,0 τ−×∈≤≤ +− Rsxusxuu  

( ) ( ) ([ ] ( ) ( )),;0,, 11
0 RR HLCcsxsxu ∩ω−∈+φ− τ  

then the solution ( )txu ,  of the Cauchy problem (2.3) with (1.3) satisfies  

( ) ( ) ,,,, ++− ×∈≤≤ RRtxutxuu  

( ) ( ) ([ ) ( ) ( )),;,0, 11
RR HLCctxtxu ∩ω∞∈+φ−  

where the weight function ω  is defined by (1.6). When ( )txucc ,,∗>  

converges to ( )ctx +φ  exponentially in time 

( ) ( ) ,e,sup t

x
Cctxtxu ν−

∈
≤+φ−

R
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for some positive constants C  and .ν  When ( )txucc ,,∗=  converges to 

( )ctx +φ  algebraically in time 

( ) ( ) .,sup 2
1−

∈
≤+φ− Ctctxtxu

x R
 

Recently, Wang et al. [17] considered a general case by using the 

method of [14] and [11]. The authors found the assumption ( ) 0>′′ ud  or 

( ) 0<′′ ub  in [14] can be removed. Hence the stability of travelling wave 

solutions of Equation (1.1) with ( )ub  replacing by ( )ub±  can be 

established by using the method [14, 17]. 

Next, we consider the following Cauchy problem: 

( )( )

( ) ( ) [ ]





−∈∈=

>∈−=δ+−

,0,,,,,

,0,,,

0 rsxsxusxu

txrtxubuduu xxt

R

R

  (2.4) 

where 0>δ  is a constant. 

We denote ( )−−
0;, utxu  and ( )++

0;, utxu  as the solution of Cauchy 

problem (2.4) with initial data −
0u  and ,0

+u  respectively, where the 

nonlinearity term ( )( )rtxub −,  is replaced by ( )( )rtxub −− ,,  and 

( )( )., rtxub −+  

Lemma 2.1. Let ( )−−
0;, utxu  and ( )++

0;, utxu  be the solution of 

Cauchy problem (2.4) with initial data −
0u  and ,0

+u  respectively. Assume 

that ,,0,0 000
∗
+

+∗
−

− ≤≤≤≤ wuuwu  and further that ( ) ( )sxusxu ,, 00 ≤−  

( )sxu ,0
+≤  for R∈x  and [ ],0,rt −∈  then the solution ( )txu ,  of (2.4) 

satisfies ( ) ( ) ( ).;,,;, 00
++−− ≤≤ utxutxuutxu  
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Proof. We only prove that ( ) ( ),,;, 0 txuutxu ≤−−  because the proof of 

( ) ( )++≤ 0;,, utxutxu  is similar. Set ( ) ( ) ( ).;,,, 0
−−−= utxutxutxv  It 

follows from ( ) ( )sxusxu ,, 00 ≤−  for [ ]0,, rtx −∈∈ R  that ( ) 0, ≥− rtxv  

for [ ].,0 rt ∈  Note that ( ) ( )ubub ≤−  and the non-decreasing of ( ),ub−  we 

have for [ ]rt ,0∈  

( )( ) ( ( ))rtxubrtxubvdvv xxt −−−=δ+− −
− ,,  

( )( ) ( ( )) .0,, ≥−−−≥ −
−− rtxubrtxub  

Noting that ( ) ( ) ( ) ,0,,, 000 ≥−= − sxusxusxv  it follows from the 

parabolic principle that ( ) 0, ≥txv  for [ ].,0 rt ∈  Repeating this 

procedure to each of the intervals ( )[ ] ,,2,1,1, ⋯=+ nrnnr  it follows 

that 0≥v  in ,+× RR  that is, ( ) ( )−−≥ 0;,, utxutxu  in .+× RR  This 

completes the proof.  � 

Lemma 2.2. Assume that ( )ub  is replaced by ( )ub−  (or ( )),ub+  and 

the initial data satisfy  

( ) ∗
−

− ≤≤ wsxu ,0 0  (or ( ) ) ( ) [ ].0,,,,0 0 τ−×∈≤≤ ∗
+

+
Rsxwsxu  

Then the Cauchy problem (2.4) has a unique solution ( )−−
0;, utxu  (or 

( ))++
0;, utxu  with respect to ( )ub−  (or ( )),ub+  which satisfies 

( ) ∗
−

−− ≤≤ wutxu 0;,0  (or ( ) ) ( ) .,,;,0 0 +
∗
+

++ ×∈≤≤ RRtxwutxu  

The proof of this lemma is standard and we omit it here. Combining 

the above two lemmas, one sees that the solution ( )txu ,  of (2.4) satisfies 

that ( ) ( ) ,,,, 0
∗
+

−− ≤≤ wtxuutxu  where ,,0,0 000
∗
+

+∗
−

− ≤≤≤≤ wuuwu  

and ( ) ( ) ( ).,,, 000 sxusxusxu +− ≤≤  
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Note that Equation (1.1) with the nonlinearity terms ( )ub−  and ( )ub+  

has the same linear equation at ,0=u  thus travelling wave solutions to 

Equation (1.1) with the nonlinearity terms ( )ub−  and ( )ub+  have the 

same minimum speed .∗c  Now, in order to use Proposition 2.2, we look 

for ( )sxu ,0
−  such that all the assumptions in Proposition 2.2 hold. By the 

assumption “ ( ) ( )csxsxu +φ−,0  belongs to ([ ] ( ))”,0, 1
RwHtC −  in 

Theorem 1.1 and the definition of ( ),xw  we claim that there exists a 

constant R∈σ0  such that ( ) ( ) ( ) ∗
−− ≤+φ++φ−≤ wcsxcsxsxu ,0 0  for 

,0σ≤x  where ( )ξφ−  is the travelling wave solution to Equation (1.1) 

with ( )ub  replaced by ( ).ub−  Indeed, by ( ) ( )csxsxu +φ−,“ 0  belongs to 

([ ] ( ))”,0, 1
RwHC τ−  and ( ) ( )02 ξ−ξλ−=ξ ew  for ,0ξ≤ξ we know that 

( ) ( ) ( )
0, 02

0 →+φ− ξ−λ− x
ecsxsxu  as ,−∞→x  i.e., ( )sxu ,0  is very close 

to ( )csx +φ  near .∞−=x  From Proposition 2.1, we know that ( )csx +φ−  

( ) ( )( ) Ccsxc →+λ− 1exp  as .∞−→+ csx  Thus, we have ( ) ( )csxsxu +φ−,0  

( ) 0≥+φ+ − csx  for 0σ≤x  provided that 0σ  is sufficiently large. And 

( ) ( ) ( ) ∗
−− ≤+φ++φ− wcsxcsxsxu ,0  for 0σ≤x  obviously holds since 

( )sxu ,0  is very close to ( )csx +φ  near .∞−=x  By the way, we can 

deduce that ( ) 0,0 >sxu  for ,∗−≤ xx  where ∗x  is large enough. Let 

( )
( ) ( ) ( ) [ ]

{ ( ) } [ ]





−∈σ>

−∈σ≤+φ++φ−

=
∗
−

σ−

−
−

,0,,,,,,min

,0,,,,

,

001

00

0
0 rsxwsxue

rsxcsxcsxsxu

sxu
x

κ

 

where 

( ) ( ) ( )., 00001 cscssu +σφ++σφ−σ= −κ  

We remark that we can choose ( )x−φ  such that ( ) ( )xx −φ≥φ  for 0σ≤x  

because of the translational invariance. Here we only consider the 

( )sxu ,0
−  and assume that ( )sxu ,0

+  satisfies the assumptions of Lemmas 
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2.1 and 2.2. It is easy to see that ( ) ( ) ( )sxusxusxu ,,, 000
+− ≤≤  for 

( ) [ ].0,, rsx −×∈ R  By using the assumption ( ) ( )csxsxu +φ−,“ 0  

belongs to ([ ] ( ))”,0, 1
RwHC τ−  and the definition of ( ),,0 sxu−  we have 

that ( )sxu ,0
−  is a continuous function and 

( ) ( ) ([ ] ( ) ( )).,0,, 11
0 RR HLrCcsxsxu ∩ω−
− −∈+φ−  

Indeed, it is easy to see that ( ) ( ) ([ ] ( ]( )0
1

0 ,,0,, σ∞−−∈+φ− ω−
− LrCcsxsxu  

( ]( ))., 0
1 σ∞−H∩  On the other hand, from the definition of ( )sxu ,0

−  and 

( ) ,,lim 0
∗
−+

∞→
>= wusxu

x
 we have, for ( ) ,,,1 0

∗
−

− = wsxux �  and by using 

the known facts that −φ  convergent ∗
−w  exponentially, we have the above 

result. It follows from Proposition 2.2 that there exists two constants 

00 >s  and R∈ξ1  such that 

( ) ∗
−

−− ≥ wutxu 10;, ε  for ,, 10 ξ>+> ctxst  (2.5) 

where 10 1 << ε  satisfies ( ) .01 <′<δ− ∗
−wb ε  We remark that 0s  

depends on the choice of .1ε  

3. Proof of Theorem 1.1 

In this section, we prove Theorem 1.1 by using weight energy method. 

Let ctx +=ξ  and 

( ) ( ) ( ) ( ) ( ) ( ),,,,,, 00 csxsxusvctxtxutv +φ−=ξ+φ−=ξ  

then v  satisfies 

( ( ) ( )) ( )( )

( ) ( ) [ ]





−∈ξ=ξ

−ξφ−−ξφ+−−ξ=δ+−+ ξξξ

.0,,,,

,,

0 rssvsv

crbcrrtcrvbvdvcvvt

  (3.1) 
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In order to obtain the element estimate, we need the following 

lemma. 

Lemma 3.1. Assume that all the assumptions in Theorem 1.1 hold. 

Then for any ,0>t  there exists a constant ( ) 0: >= tCC  such that 

( ) .2 Ctv
wL

≤  

Proof. Note that v  satisfies that 

( ( )) ( )
( )

( )

( ) ( ) [ ]







−∈ξ=ξ

−−ξ
η′′

+−−ξ−ξφ′=δ+−+ ξξξ

,0,,,,

,,
2

,

0

2

rssvsv

rtcrv
b

rtcrvcrbvdvcvvt
 

(3.2) 

where ( ) ( )rtcrvcr −−ξθ+−ξφ=η ,  and .10 ≤θ≤  

Let ( ) 0>ξw  be the weight function defined in (1.5). Multiplying the 

first equation of (3.2) by ( ) ( ),,e2 tvwt ξξµ  where 0>µ  will be specified 

later in Lemma 3.3, we have 

ξ
µ

ξ
ξ

µµµ ′+





 −+






 vvwdwvvdwv

c
wv ttt

t

t 222222 eee
2

e
2

1
 

tt wv
w

wc
vwd µ

ξ
µ







 δ+µ−

′
−+′+ 2222 e

2
e  

( )( ) ( )
( )

( ) .e,
2

e, 222 tt vwrtcrv
b

rtcrwvvcrb µµ −−ξ
η′′

+−−ξ−ξφ′=  

(3.3) 

For ( )1,21∈σ  to be chosen later, one gets from the Cauchy-Schwarz 

inequality that 

( ) .e
4

ee 2
2

2222 wv
w

wd
vwdvvwd ttt







 ′

σ
+σ≤′ µ

ξ
µ

ξ
µ  (3.4) 
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We claim that 

( ( ) ( )) .0,2 ≥ξξ
∞=ξ

−∞=ξ
tvw   (3.5) 

We only prove that ( ) ( ) 02 =∞−∞− vw  because ( ) ( ) .02 ≥∞∞ vw  Note that 

( ) ( ) ,0if,
22 ≥φ−φ−≤φ− + uuu  

( ) ( ) ,0if,
22 ≤φ−φ−≤φ− − uuu  

we have 

( ) ( ) ( )2222 φ−+φ−≤φ−= −+ uuuv  

( ) ( )22 φ−φ+φ−+φ−φ+φ−= −−
−

++
+ uu  

[( ) ( ) ( ) ( ) ].2
2222 φ−φ+φ−φ+φ−+φ−≤ −+−

−
+

+ uu  

Following [9], we have ( ) ( ( ) ( )) 0, =∞−φ−∞−∞− ±
± tuw  for all .0≥t  Note 

that ( )c12λ<λ  and ( ) ( ) ( ( ) ),12 ξλ
+ =ξφ−ξφ c

eo  we have ( ) ( ( )∞−φ∞− +w  

( )) .0=∞−φ−  Combining above discussion, we obtain ( ) ( ) .02 =∞−∞− vw  

Hence we prove (3.5). On the other hand, by using heat kernel, we can 

obtain that 

( )
(

( )
)

( ) ( )( )
( )

dye
dt

yyuetv dt

yctt
d

cd

4
0

4

1 2

2

2

4

1
,

−−ξ
−δ+

−
−

π
φ−=ξ ∫

R

 

( )

(
( )

) ( ) ( )( )
( )std

ystcst
d

cd
t

ee
std

−

−−−ξ
−−δ+

−
−

−π
+ ∫∫ 44

1

0

2

2

2

4

1

R

 

[ ( ) ( )( ) ( )( )] ,, dydscrybcryrscryvb −φ−−φ+−−×  
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which implies that 

( )
(

( )
)

( ) ( )( ) dye
dt

y

dt
yctyctuetv dt

yt
d

cd

4
0

4

1 2

2

2

24

1
,

−δ+
−

−

ξ
π

−−ξφ−−−ξ=ξ ∫
R

 

( ) ( )

(
( )

) ( )
( )std

yst
d

cd
t

ee
std

y

std

−
−−δ+

−
−

−−π
+ ∫∫ 44

1

0

2

2

2

24

1

R

 

[ ( )( ) ( )( )cryrscrystcvb −φ+−−−−−ξ× ,  

( )( )( )] .dydscrystcb −−−−ξφ−  

Let ,∞→ξ  noting that ∞<ξv  and using Fubini’s theorem, and then we 

have ( ) .0, =∞ξ tv  Therefore, we have 

( ( ) ( ) ( )) .0,, ≥ξξξ−
∞=ξ

−∞=ξξ tvtvw  (3.6) 

We first consider the case [ ].,0 rt ∈  Substituting (3.4) and (3.5)-(3.6) into 

(3.3), and integrating the results with respect to ( )t,ξ  over [ ],,0 t×R  we 

obtain 

( ) ( ) ( ) dssvdtve
ww L

s
t

L

t 22

0

22
22

e12 ξ
µµ ∫σ−+  

( ) ( ) dsdsvw
w

wd

w

w
cs

t

ξξξ









δ+






 ′

σ
−µ−

′
−+ µ∫∫ ,2

2
2e 2

2
2

0 R

 

( ) ( )( ) ( ) ( ) ( ) dsdrscrvsvwcrbv s
t

Lw

ξ−−ξξξ−ξφ′+= µ∫∫ ,,e20 2

0

2
0 2

R

 

( )
( ) ( ) ( ) .,,

2
e2 22

0
dsdsvwrscrv

bs
t

ξξξ−−ξ
η′′

+ µ∫∫
R

  (3.7) 

Here and after, 2
wL  indicates ( ).2

RwL  
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For the second term of the right side in (3.7), by using the Cauchy-

Schwarz inequality ,2 22 yxxy +≤  we can estimate that 

( )( ) ( ) ( ) ( ) dsdrscrvsvwcrbs
t

ξ−−ξξξ−ξφ′µ∫∫ ,,e2 2

0 R

 

( )( ) ( ) ( ) dsdsvwcrbs
t

ξξξ−ξφ′≤ µ∫∫ ,e 22

0 R

 

( )( ) ( ) ( ) dsdrscrvwcrbs
t

ξ−−ξξ−ξφ′+ µ∫∫ ,e 22

0 R

 

( )( ) ( ) ( ) dsdsvwcrbs
t

ξξξ−ξφ′= µ∫∫ ,e 22

0 R

 

( )( ) ( ) ( ) dsdsvcrwbs
rt

r

r ξξ+ξξφ′+ µ
−

−

µ ∫∫ ,ee 222

R

 

( )( ) ( ) ( ) dsdsvwcrbs
t

ξξξ−ξφ′≤ µ∫∫ ,e 22

0 R

 

( )( ) ( ) ( ) dsdsvcwbs
t

r ξξ+ξξφ′+ µµ ∫∫ ,ee 22

0

2
τ

R

 

( )( ) ( ) ( ) .,ee 22
0

2 dsdsvcrwbs

r

r ξξ+ξξφ′+ µ

−

µ ∫∫
R

 (3.8) 

For the last term of the right side in (3.7), by using the facts that  

( ) ( ) ( ) ,0lim,2 =′′+−=′′
∞+→

− ubaupaeub
u

au  and ,φ+≤ uv  we have 

( )
( ) ( ) ( ) dsdsvwrscrv

bs
t

ξξξ−−ξ
η′′µ∫∫ ,,

2
e2 22

0 R

 

( ) ( ) ( ) ( ) dsdwrscrvMwub s
t

u
ξξ−−ξ+′′≤ µ∗

+
> ∫∫ ,emax 22

0
0

0 R

 

( ) ,
2

0
2

0

2
dssveC

wL

s

r

µ

−

∗∫≤  
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where ( ) ( ) r
u eMwubC µ∗

+>
∗ +′′= 2

00max  and .0M≤φ  Substituting the 

above inequality and (3.8) into (3.7), we have that 

( ) ( ) ( ) dssvdtve
ww L

s
t

L

t 22

0

22
22

e12 ξ
µµ ∫σ−+  

( ) ( ) ( ) dsdsvwB w
s

t

ξξξξ+ µ
µ∫∫ ,e 2

,
2

0 R

 

( ) ( )( ) ( ) ( ) dsdsvcrwbv s

r

r

Lw

ξξ+ξξφ′+≤ µ

−

µ ∫∫ ,ee0 22
0

22
0 2

R

 

( ) dssvC
wL

s

r

2
0

2
0

2
e µ

−

∗∫+  

( ) ( ) ,0
2

0

0
2

01 22 







+≤ ∫−

dssvvC
ww LrL

  (3.9) 

where the constant ( ) 0,0 ,1 >ξ> µ wBC  (see the following Lemma 3.3) 

( ) ( ) ( )( )
( )

( )
,1e2 2

, ξ

+ξ
ξφ′−−µ−ξ= µ

µ w

crw
bAB r

ww  

( )
( )
( )

( )
( )

δ+







ξ

ξ′

σ
−

ξ

ξ′
−=ξ 2

2

2

w

wd

w

w
cAw  

( )( ) ( )( )
( )

( )
.

ξ

+ξ
ξφ′−−ξφ′−

w

crw
bcrb  

In order to prove Lemma 3.1, we must prove ( ) CB w ≥ξ,µ  for some 

positive constant .C  To do this, we need the following key lemmas. 

Lemma 3.2. There exists positive constant 2C  such that 

( ) .,2 R∈ξ≥ξ CAw  
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Proof. Case 1: .0ξ≤ξ  In this region of ( ) ( )02
e,

ξ−ξλ−=ξξ w  and 

( ) ( )
.e 22 0 crecrw λ−ξ−ξλ−=+ξ  Noting that ( )ξφ  is a nonnegative bounded 

function, we have 

( )
( )
( )

( )
( )

δ+







ξ

ξ′

σ
−

ξ

ξ′
−=ξ 2

2

2

w

wd

w

w
cAw  

( )( ) ( )( )
( )

( )ξ

+ξ
ξφ′−−ξφ′−

w

crw
bcrb  

( )zb
d

c
z

′−δ+λ
σ

−λ≥
∈R

max22
2

2 2  

( )p
d

c −δ+λ
σ

−λ= 22  

,0: 3 >= C  

where we have used the properties that ( ) 02 =′′
a

b  and ( ) ,0lim =′
∞→

ub
u

 

and fact that .
λ

δ−
+λ

σ
>

pd
c  

Case 2: .0ξ>ξ  In this case, ( ) ( ) 1=+ξ=ξ crww  and we have 

( ) ( )( ) ( )( )ξφ′−−ξφ′−δ=ξ bcrbAw 2  

,0: 4 >= C  

where we have used the facts that ( )( ) δ<−ξφ′ crb  for .0ξ>ξ  

Finally, let 

{ }.,min: 432 CCC =  

Then we have ( ) .02 >≥ξ CAw  The proof is completed.  � 
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Lemma 3.3. Let 01 >µ  be the unique root of the following equation: 

( ) .01e22 2
2 =−−µ− µrpC  

Then ( ) 0:2 52, >=≥ξµ CCB w  on R  for all .0 1µ≤µ<  

Proof. Note that ( ) pub ≤′  for R∈u  and 

( )
( )

( )













+ξ>ξ

ξ≤ξ<−ξ<

−ξ≤ξ<

=
ξ

+ξ ξ−ξλ

λ−

.,1

,,1e

,,1e

0

00
2

0
2

0

τc

cr

cr

w

crw

cr

 

It is easy to see that, for ,0 1µ≤µ<  

( ) ( ) ( ) ( )( )
( )

( )ξ

+ξ
ξφ′−−µ−ξ=ξ µ

µ w

crw
bAB r

ww 1e2
,  

( )1e2 2
2 −−µ−≥ µrpC  

.0:2 52 >=≥ CC  

The proof is completed.  � 

Using the above Lemma 3.3, it follows from (3.9) that 

( ) ( ) ( ) ( ) dssvCdssvdtv
www L

s
t

L

s
t

L

t 22

0
6

22

0

22
222

ee12e µ
ξ

µµ ∫∫ +σ−+  

( ) ( ) .0
2

0

0
2

01 22 







+≤ ∫−

dssvvC
ww LrL

 

Dropping the positive terms ( ) dssv
wL

s
t 22

0
2

e ξ
µ∫  and ( ) ,e

22

0
2

dssv
wL

s
t

µ∫  we 

obtain the basic estimate, for [ ],,0 rt ∈  

( ) ( ) ( ) .0 2
0

0
2

01
22

222 







+≤ ∫−

µ dssvvCtve
www LLL

t

τ

 (3.10) 
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We remark that the condition [ ]rt ,0∈  is only used in estimating the 

last term of (3.7), thus when we consider the case that [ ],2,0 rt ∈  we only 

estimate the last term of (3.7). Similar to the above discussion, we have 

( )
( ) ( ) ( ) dsdsvwrscrv

bs
t

ξξξ−−ξ
η′′µ∫∫ ,,

2
e2 22

0 R

 

( ) ( ) ( ) dsrsveMwub
wL

s
t

u

22

0
0

0 2
max −+′′≤ µ∗

+
> ∫  

( ) ( ) ( ) ( ) 







++′′≤ µµ

−

µ∗
+

> ∫∫ dssvedssveeMwub
ww L

s
r

L

s

r

r

u

22

0

2
0

2
0

2
0

0 22
max  

( ) ( ) ( )



+′′≤ µ

−

µ∗
+

> ∫ dssveeMwub
wL

s

r

r

u

2
0

2
0

2
0

0 2
max  

( ( ) ( ) ) ,0
2

0

0
2

01 22 



++ ∫−

dssvvC
ww LrL

 

where we have used (3.10). And then using Lemma 3.3, one can obtain, 

for [ ],2,0 rt ∈  

( ) ( ) ( ) .0e
2

0

0
2

01
22

222 







+≤ ∫−

∗µ dssvvCtv
www LLL

t

τ

 

For any ,+∈ Rt  there exists a positive integer N  such that 

( ) ,]1,[ rNNrt +∈  then repeat the above discussion and last we can 

prove that ( ) ,2 Ctv
wL

≤  where ( ).tCC =  This completes the proof of 

Lemma 3.1.  � 

Now, we rewrite (3.1) as 

( ) ( )

( ) ( ) [ ]





−∈ξ=ξ

−−ξγ′=δ+−+ ξξξ

,0,,,,

,,

0 rssvsv

rtcrvbvdvcvvt

 (3.11) 

where ( ) ( )rtcrvcr −−ξθ+−ξφ=γ ,  and .10 ≤θ≤  
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Let ( ) 0>ξw  be the weight function defined in (1.5). Multiplying the 

first equation of (3.11) by ( ) ( ),,e2 tvwt ξξµ  where 0>µ  will be defined in 

Lemma 3.3, we have 

22222222 eeee
2

e
2

1
ξ

µ
ξ

µ

ξ
ξ

µµµ +′+





 −+






 wvdvvwdwvvdwv

c
wv tttt

t

t  

twv
w

wc µ






 δ+µ−

′
−+ 22e

2
 

( ) ( ) .e, 2 trtcrwvvb µ−−ξγ′=   (3.12) 

Substituting (3.4) into (3.12), and integrating the results with respect to 

( )t,ξ  over [ ]ts ,0×R  ( 0s  is defined as (2.5)), we obtain 

( ) ( ) ( ) dssvdtv
ww L

s
t

sL

t 2222
2

0
2

e12e ξ
µµ ∫σ−+  

( ) ( ) dsdsvw
w

wd

w

w
cs

t

s
ξξξ










δ+






 ′

σ
−µ−

′
−+ µ∫∫ ,2

2
2e 2

2
2

0 R

 

( ) ( ) ( ) ( ) ( ) .,,e2e 22
0

2

0
2

0 dsdrscrvsvwbsv s
t

sL

s

w

ξ−−ξξξγ′+= µµ

∫∫
R

  

(3.13) 

Taking the similar steps to obtain (3.9) and using Lemma 3.1, we get 

( ) ( ) ( ) dssvdtv
ww L

s
t

sL

t 2222
2

0
2

e12e ξ
µµ ∫σ−+  

( ) ( ) ( ) dsdsvwD w
s

t

s
ξξξξ+ µ

µ∫∫ ,e 2
,

2

0 R

 

( ) ( )( ) ( ) ( ) dsdsvcrwrscrbesve s
s

rs

r

L

s

w

ξξ+ξ++ξγ′+≤ µ

−

µµ

∫∫ ,,e 2222
0

2 0

0
2

0

R

 

( ) ( ) dssvpsve
w

w
L

s
s

rs

r

L

s
2

0

0
2

0 222
0

2
ee µ

−

µµ

∫+≤  

,C≤  (3.14) 
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where 

( ) ( ) ( )( )
( )

( )
,,1e2 2

, ξ

+ξ
++ξγ′−−µ−ξ= µ

µ w

crw
rscrbCD r

ww  

( )
( )
( )

( )
( )

δ+







ξ

ξ′

σ
−

ξ

ξ′
−=ξ 2

2

2

w

wd

w

w
cCw  

( )( ) ( )( )
( )

( )
.,,

ξ

+ξ
++ξγ′−ξγ′−

w

crw
rscrbsb  

We remark that in the above inequality the constant C  depends on ,0s  

which is defined in (2.5). The proof of ( ) CD w ≥ξµ,  for some positive 

constant C  is similar to that ( ) ., CB w ≥ξµ  In fact, we only prove when 

( ) .,0 δ<γ′ξ≥ξ b  It follows from the Remarks 4 in the Introduction that 

( ) δ<′ ∗
+wb  for ( )., 2eep ∈δ  We divide the proof into two cases.  

Case 1: .2e
p

e ≤<
δ

 In this case, we note that ( ) ∗
+≤≤ξφ≤ wK0  

and ( ) ∗
+≤ξ wtu ,  (see Lemmas 2.1 and 2.2), and thus we have 

( ) ( ) ( ) ( ) .,1, ∗
+≤ξθ+ξφθ−=ξγ wsus  

It is easy to see that ( ) ( ).2−=′′ − auapeub au  Consequently, ( )ub′  is 

decreasing in ( ).,0 2
a

 Hence we get 

( ( )) (( ) ( ) ( )) ( ).,1, ∗
+′≥ξθ+ξφθ−′=ξγ′ wbsubsb  

On the other hand, we can prove 

.
1

2

2

a
e

ea

p
w e

p

>
δ

= δ
−∗

−  

Indeed, let 

( ) ,
2

e

x

e
e

x
xf

−
=  
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then ( ) 1=ef  and 

( ) ( ).2
e

x
e

e

x
xf e

x

−=′
−

 

It is clear that ( )xf  increases firstly and then decreases. Meanwhile, we 

remark that ( ) .
11 32

a
e

a
ef e >= −  So we get a conclusion that ( )

a
xf

1
>  

for ( )., 2eex ∈  By using (2.5) and the definition of 0ξ  (see (1.5)), we 

have 

( ) ( ) ( ) ,,1 1
∗
−≥ξθ+ξφθ− wtu ε  

where we choose ( )1,01 ∈ε  such that ( ) .1 δ<′ ∗
−wb ε  Noting that 

( ) 01 =′
a

b  and ,
1

a
w >∗

−  it is easy to show that there exists ( )1,01 ∈ε  

such that ( ) .01 <′<δ− ∗
−wb ε  Combining above discussion, we have 

( ) (( ) ( ) ( )) ( ) .0,1 1 <′≤ξθ+ξφθ−′≤′<δ− ∗
−

∗
+ wbsubwb ε  

Case 2: .2 2
e

p
e <<

δ
 When ( )ubau ′> ,1  firstly decreases and then 

increases, and obtains the local minimum at .
2

a
u =  More precisely, 

( ) ,22 δ<−=′ −peb
a

 where we used the assumption that ( )., 2eep ∈δ  

We note that 

( ) ( ) ( ) ,
2

,,1 δ<′′′ ∗
−

∗
− a

bwbwb ε  

and thus we get a conclusion that ( ( )) δ<ξγ′ sb ,  by using the property of 

( ),ub′  
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Similarly, we can prove ( )( ) ., δ<++ξγ′ rscrb  Therefore, one can 

prove that ( ) 6CCw ≥ξ  and ,7, CD w ≥µ  where 6C  and 7C  are some 

positive constants. Consequently, one can obtain that 

( ) .,e 02 stCtv t
Lw

>≤ µ−   (3.15) 

Next, differentiating (3.1) with respect to ,ξ  similar to Lemma 3.1, we 

first obtain ( ) Ctv
wL

≤ξ
2

2  for ,0>t  and then taking similar steps to get 

(3.15), we have 

( ) .,e 02 stCtv t

Lw
>≤ µ−

ξ   (3.16) 

Since ( )ub ′′′  and ( )ξφ′  are bounded functions and ( ) 1
0 wHsv ∈  for 

[ ],0,rs −∈  the proof of (3.16) is very similar to that of (3.15) and thus 

we omit it here. 

Combining (3.15) with (3.16) and noting that ( ) 1≥ξw  on ,R  we 

obtain the following decay rate. 

Lemma 3.4. It holds that 

( ) ( ) ,,e 0
22

11
stCtvtv t

HH w

>≤≤ µ−  

where .0>C  

Using Sobolev embedding theorem ( ) ( )RR
01 CH �  and Lemma 3.4, 

we get the desire result. This completes the proof of Theorem 1.1.  � 
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