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Abstract 

A generalisation of the periodic restricted exponential autoregressive model 

(PEXPAR(1)) to order p is introduced. The least squares method is used for 

estimating the parameters. The asymptotic properties of estimates for strictly 

stationary restricted PEXPAR are derived. A small simulation study is carried 

out to check the asymptotic properties. 

1. Introduction 

Periodic time series models have been extensively used in the recent 

decades to describe many series with periodic dynamics. The inability of 

SARIMA models to adequately represent many seasonal time series 

exhibiting a periodic autocovariance structure has motivated the research 

in the periodically correlated processes. This notion, introduced by 

Gladyshev [13], was exploited in a variety of new classes of time series 

models, among them, the periodic GARCH (Bollerslev and Ghysels [8]), the 

periodic bilinear (Bibi and Gautier [7]) and the mixture periodic 
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autoregressive model (Shao [29]). In this paper, we extend the class of 

periodic restricted exponential autoregressive model (PEXPAR(1)) discussed 

in Merzougui et al. [23] to order p. PEXPAR series satisfy a nonlinear 

difference equation similar to that for EXPAR models with parameters 

and white noise variances which change periodically with the season. 

The class of exponential autoregressive (EXPAR) models introduced 

by Ozaki [25] and Haggan and Ozaki [15] has shown their 

appropriateness in capturing certain well-known features of nonlinear 

vibration theory, such as amplitude dependent frequency, jump 

phenomena and limit cycle behaviour, these models are autoregressive in 

form with amplitude dependent exponential coefficients. Many results 

and methods, including the stationarity, geometrical ergodicity, 

estimation, forecasting and testing, have been studied as Ozaki [26, 27], 

Chan and Tong [10], Al-Qassam and Lane [1], Koul and Schick [19] and 

Allal and El Melhaoui [2], in addition, this class of nonlinear time series 

found successful applications in analyzing data from a wide range of 

fields, including ecology (Haggan and Ozaki [15], Priestley [28]), 

hydrology (Ozaki [27]; Gurung [14]), speech signal (Ishizuka et al. [17]) 

and macroeconomic (Terui and Van Dijk [32]; Amiri [3]; Katsiampa [18]). 

This paper deals with the least squares estimation of the periodic 

restricted EXPAR(p) model. Several methods for parameter estimation 

have been explored for the non-periodic EXPAR models, Haggan and 

Ozaki [15] proposed the faster method, it consists to fix the nonlinear 

parameter in the exponential term at one of a grid of values and then 

estimate the other parameters by the linear least squares method and use 

the AIC criterion to select the final parameters. Tjøstheim [34] treated 

the problem of estimation of nonlinear time series in a general 

framework, he gave the conditional LS and the ML estimates, Amondela 

and Francq [4] gave the QML estimator for the EXPAR(1) model, Shi and 

Aoyama [30] and Baragona et al. [5] used a genetic algorithm to estimate 

the parameters, Shi et al. [31] remarked that the objective function for 

the nonlinear coefficient is not convex and multiple local minima may 

exist and such estimation is time consuming, they proposed, when real 
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time estimation is needed, a heuristic estimate from the data for the 

nonlinear parameter. We can find an application for this method in 

Messaoud et al. [24] for modelling the vibrations and disturbances during 

the drilling process. Ghosh et al. [12] used the extended Kalman filter 

(EKF) to estimate the EXPAR models. 

The rest of this paper is organized as follows. In Section 2, we 

introduce the restricted PEXPAR(p) models and provide some basic 

notations and technical assumptions. In Section 3, we estimate the 

parameters by least squares method, consistency and asymptotic 

normality of the LS estimators are established there. The performance of 

the estimators is shown via small simulation in Section 4. Finally, some 

concluding remarks are made in Section 5. 

2. Periodic Restricted EXPAR Model 

The process { }Z∈tYt ;  is said to follow a Periodic restricted 

Exponential Autoregressive ( ),tS pPEXPAR  with period ( ),2≥SS  if it is 

a solution of a nonlinear periodic stochastic difference equation of the 

form  

( )( ) ,,exp 2
1,,

1

Z∈ε+γ−π+ϕ= −−

=
∑ tYYY tjttjtjt

p

j

t

t

 (1) 

where { }Z∈ε tt ;  is periodic i.i.d. process with continuous density ( ),.
t

fσ  

not necessarily Gaussian, with mean 0 and finite variance .2
tσ  The 

autoregressive parameters Z∈∀πϕ tjtjt ,, ,,  and ,,,1 pj …=  the order 

tp  and the innovation variance 2
tσ  are periodic, in time, with period S, 

i.e., 

and,,and,,, 22
,,,, Z∈∀σ=σ=π=πϕ=ϕ ++++ tpp tSttStjtjStjtjSt kkkkk  

.,,1 tpj …=  
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The nonlinear parameter, ,0>γ  is known. A heuristic determination 

of γ  from data is �
2

1

log
,

max t
t n

Y
≤ ≤

γ = −
�

 where �  is a small number (cf. Shi et al. 

[31]). 

Putting SiSit ,,2,1, …=+= τ  and Z∈τ  and taking 

{ }
,max

,,2,1
i

Si
pp

…∈
=  where ,0,0 ,, =π=ϕ jiji  for each ,ipj >  one can 

rewrite Equation (1) in the equivalent form: 

( )( ) .,,,1,exp 2
1,,

1

Z∈=ε+γ−π+ϕ= +−+−+

=

+ ∑ τ
ττττ

SiYYY SijSiSijiji

p

j

Si …  

(2) 

Let 

( ) ( ) .,,and,,,1,,,,, 2

1,,1,1,
pS

Spipiiii
Si R∈′ϕ′ϕ′=ϕ=′πϕπϕ=ϕ ………  

We make the following assumptions: 

A1: The periodic exponential autoregressive parameters ϕ  satisfy the 

strict stationarity periodically condition of (2). A sufficient condition is: 

All the roots of the associated characteristic equation 

0,
1

1, =−− −
pi

p
i

p czcz ⋯  

are inside the unit circle, where { } ;,,1,,max ,,,, pjc jijijiji …=π+ϕϕ=  

.,,1 Si …=  In the nonperiodic case, see, for example, De Gooijer [11], 

page 37. 

A2: The periodically ergodic process { }Z∈tYt ;  is such that ( ) ,4 ∞<tYE  

for any .Z∈t  
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3. Parameter Estimation 

We consider the problem of estimating the parameters ϕ  of the model 

(2), which is a linear optimisation problem, we can solve it using the least 

squares procedure. 

Suppose that we have observations { }NYY ,,1 …  from (2), N = mS, 

and define the conditional sum of squares 

( ) ( )ϕ=ϕ ∑
=

mi

S

i

N LL ,

1
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where ,



=
S

p
r  with [x] denotes the integer part of 1, −+iSBx

τ
 is the      

σ-algebra generated by the past of the process up to time 1−+ iSτ  and 

( )..ϕE  is the conditional expectation assuming that ϕ  is the true 

parameter. 

The estimate � ( � � � � ),1 ,1 , ,, , , , ,i i i p i pi
′ϕ = ϕ π ϕ π…  for a fixed season i, 

is a solution to the estimating equations 

( ) ( )
.,,1,0and0

,

,

,

,
pj

LL

ji

mi

ji

mi
…==

π∂

ϕ∂
=

ϕ∂

ϕ∂
 

 

 



M. MERZOUGUI and S. BECILA 

 

280 

The solution for a fixed season i is 

�
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Remark. For p = 1, we obtain the estimates of the periodic restricted 

EXPAR(1) model (cf. Merzougui [22]). 

Theorem. Suppose that { },tY  satisfying (2), is strictly stationary, 

then the least squares estimators (3) and (4) are strongly consistent as 

.∞→m  That is, 

� �ϕ → ϕ σ → σ
2. . 2 ,

a s a s
iiii

and  
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and we have 

�( ) ( )−

→∞
ϕ − ϕ → σ Γ2 1

20 , ,
D

i ipii m
m N  

where 

,

,,1,,

,1,1,1,





















ΓΓ

ΓΓ

=Γ

ppipi

pii

i

⋯

⋮⋱⋮

⋯

 

and 

( ) ( ( ))

( ( )) ( ( ))
,

2expexp

exp

2
1

2
1

2
1

,,
















γ−γ−

γ−
=Γ

−−−−−−

−−−−−

iijiiiji

iijiiji

ji

YYYEYYYE

YYYEYYE

kk

kk

k  

.,,1, pj …=k  

Proof. By replacing the lower limits of the sums in (3) and (4) by 

zero, we obtain the comparable estimators ( ) :~,~,,~,~~
,,1,1,

′πϕπϕ=ϕ pipiiii
…   

( )

( )

,

exp

exp

~

2
1

1

0

1

0

2
11

1

0

1

1

0

1

,,1,,

,1,1,1,







































γ−

γ−

×





















=ϕ

−++−+

−

=

+−+

−

=

−++−+

−

=

+−+

−

=

−

∑

∑

∑

∑

iSiSpiS

m

iSpiS

m

iSiSiS

m

iSiS

m

ppipi

pii

i

YYY

YY

YYY

YY

MM

MM

τττ

τ

ττ

τ

τττ

τ

ττ

τ

⋮

⋯

⋮⋱⋮

⋯

 

(5) 

( )( ) ,exp~~1~

2

2
1,,

1

1

0

2














γ−π+ϕ−=σ −+−+

=

+

−

=
∑∑ jiSiSjiji

p

j

iS

m

i YYY
m τττ

τ

 (6) 



M. MERZOUGUI and S. BECILA 

 

282 

where for ,,,1, pj …=k  
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as an approximation. 
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ϕ~  and �
i

ϕ  have the same limiting distribution, 

there is no difference whether or not we observe the initial values in 

addition to the data for m large. (cf. Brockwell and Davis [9]; Chapter 8 

and used in Basawa and Lund [6] for the PARMA case). Therefore, we 
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From periodic ergodicity of ,iSY +τ  we have 
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From (7), 
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are sequences of martingale differences, then we apply the central limit 

version for martingale differences (cf., Ibragimov [16]): 
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which completes the proof with Slutzky’s theorem. 
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4. Simulation Results 

The performance of the estimation is shown via small simulation.   

The restricted ( )22PEXPAR  model is used to generate time series for 

sizes    n = 200, 400, 800. We consider 1000 Monte Carlo replications and 

report the LS estimations, their bias and their standard deviations. The 

Table 1 gives the estimation with the parameters ( ,3.0,1,6.0 −=ϕ  

) 1,8.0,4.0,1,5.0;5.0 =γ′−−−  and normal white noise with ( )′σσ 2
2

2
1 ,  

( ) .1,6.0
′=  The choice of the values of the parameters was taken such 

that the model fulfill the condition A1, see Figure 1. The box plots and the 

Q-Q plots of the errors are given in Figures 2 and 3, respectively. Table 1 

show that the estimates are close to the true values and the standard 

deviation decreases when n becomes larger and we remark that the 

standard deviation of ji,ϕ  are smaller than those of ., jiπ  This is 

confirmed by the box plots where we observe that the errors are more 

consistent for ji,ϕ  and the range is larger for ,, jiπ  but in all cases the 

errors are centered on 0. On the other hand, the Q-Q plots show that the 

errors are normal. 
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Figure 1. Simulated series and inverse roots of the characteristic 

equation of restricted ( )22PEXPAR  and n = 1000. 

Table 1. Estimation results for restricted ( )22PEXPAR  

 �ϕ1,1  �π1,1  �ϕ1,2  �π1,2  �ϕ2,1  �π2,1  �ϕ2,2  �π2,2  

n = 200 0.5969 – 0.9943 0.3003 – 0.4951 – 0.5077 1.0083 – 0.3760 0.7644 

bias – 0.0030 0.0056 0.0003 0.0048 – 0.0077 0.0083 0.0239 – 0.0355 

sd 0.0954 0.3473 0.1486 0.2513 0.2003 0.5182 0.1999 0.3008 

n = 400 0.5996 – 0.9969 0.3055 – 0.5030 – 0.5013 1.0020 – 0.3901 0.7819 

bias – 0.0003 0.0030 0.0055 – 0.0030 – 0.0013 0.0020 0.0098 – 0.0180 

sd 0.0654 0.2357 0.1028 0.1778 0.1381 0.3492 0.1354 0.2031 

n = 800 0.5988 – 0.9893 0.3023 – 0.5049 – 0.5030 1.0045 – 0.3950 0.7894 

bias – 0.0011 0.0106 0.0023 – 0.0049 – 0.0030 0.0045 0.0049 – 0.0105 

sd 0.0461 0.1643 0.0723 0.1226 0.0979 0.2463 0.0959 0.1443 
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Figure 2. Box plots of the errors from estimates of 200 replications of 

restricted ( )22PEXPAR  and n = 1000. 

 

Figure 3. The Q-Q plots of the errors from estimates of 200 replications 

of restricted ( )22PEXPAR  and n = 1000. 
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5. Conclusion 

In this study, we have used the linear least squares method for the 

estimation of the periodic restricted EXPAR(p) model, consistency and 

asymptotic normality are derived and simulated series checked the 

asymptotic properties. This LS estimator can be used as an initial 

estimator in adaptive estimation. As a part of future research, the 

authors study the Nonlinear LS and Quasi ML estimation of the periodic 

(unrestricted) EXPAR(p) model. We have considered, here, a sufficient 

condition of strict stationarity but this subject merit further research. 
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