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Abstract 

We study criteria for a pair { } { }( )nn YX ,  of approximating processes which guarantee 

closeness of moments by generalizing known results for the special case that YYn =  

for all n and nX  converges to Y in probability. This problem especially arises when 

working with surrogate models, e.g., to enrich observed data by simulated data, where 

the surrogates s
,

nY  are constructed to justify that they approximate the .s
,

nX  We 

first discuss that case of sequences of random variables. Since this framework does not 

cover many applications where surrogate models such as deep neural networks are 

used to approximate more general stochastic processes, we extend the results to the 

more general framework of random fields of stochastic processes. This framework 

especially covers image data and sequences of images. We show that uniform 

integrability is sufficient, and this holds even for the case of processes provided they 

satisfy a weak stationarity condition. 
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1. Introduction 

Suppose we observe a random phenomenon, ,1, ≥nXn  e.g., 

representing the outcome of a statistical experiment. Let us further 

assume that an approximation, ,nY  for nX  is available, such as a 

prediction of nX  based on a (estimated) prediction model or a computer 

simulation. The later case is receiving increasing interest in the field of 

uncertainty quantification, where observed data is enriched by data 

obtained from simulations, governed by so-called surrogate models, which 

are typically obtained from physical knowledge, by design-of-experiment 

methods, or (non-) parametric estimation from (small) random samples. 

Simulated data from surrogate models, which rely on random number 

generators as discussed in, e.g., [2], are often much cheaper to obtain 

than real data. Examples for surrogate models are linear models, 

Gaussian processes and deep learning networks. In this case, nY  

represents the (observable) output of the simulation and nX  the 

(unobserved) artificial random variable representing the outcome of the 

experiment not conducted. In such applications the connection between 

the true and the surrogate model and therefore between nX  and nY  can 

be rather loose, such that the approximation error can not be analyzed 

rigorously and assumptions about it have to be made. 

Assuming that (uniform) convergence in probability as a minimal 

requirement holds, the question arises under which conditions the 

moments of nY  are close to the moments of .nX  We study this issue for 

the case of random variables and the substantially more general 

framework of random fields of stochastic processes, i.e., families of 

random variables indexed by a parameter Λ∈λ  (such as time) and an 

index n (such as discrete spatial location). In this way, the results are 

general enough to cover various applications including high-dimensional 

settings and image data. 
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The paper is organized as follows. Section 2 reviews the basic notions 

and provides the results for sequences of random variables. The results 

are applied to autoregressive processes of order 1 as arising, for instance, 

in signal processing when filtering input signals. Here the surrogate 

model is obtained by estimating unknowns arising in the true model 

equation describing the signal processing from disturbed observables and 

truncating the infinite series, in order to obtain a simple approximation. 

In Section 3, the general framework of random fields of stochastic 

processes indexed by a normed space is studied. Provided a weak 

stationarity condition is satisfied, the sufficiency of uniform integrability 

can be established. As two applications we study in Section 4 deep 

learning neural nets and Gaussian process kriging, two popular general 

purpose frameworks to construct surrogate models. 

2. Criteria for Random Variable 

Let us first consider the case of sequences of random variables. 

2.1. Uniform integrability 

Suppose that { }1:, ≥nXX n  is a sequence of random variables 

defined on a common probability space ( ).,, PAΩ  Suppose that 

,XXn →  as ,∞→n  in probability. Then it is known that the 

convergence of the moments, 

( ) ( ) ,, ∞→→ nXEXE n  

follows, if { }nX  is uniformly integrable; this result is usually stated for 

almost sure convergence, but it holds for convergence in probability as 

well. Recall that { }nX  is called uniformly integrable, if and only if 

( )[ ] .01lim =>=∫ >∞→
AXXEdPX nnn

AXA
n

 

Here and in what follows ( )1  denotes the indicator function. Uniform 

integrability is equivalent to ∞<≥ nn XE1sup  and 
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For every 0>ε  there exists ( ) 0>εδ  such that for any 

( ) .: ε<⇒η<∈ ∫ dPXAPA n
A

A   (2.1) 

It is well known that the above characterizations are optimal in the sense 

that if nX  converges to X in probability and the r-th absolute moments, 

,
r

nXE  converge to ,0, ∞<< rXE
r

 then { }nX  is uniformly integrable, 

[1]. Uniform integrability is what is needed to make the step from 

convergence in probability to convergence of moments. It is worth 

mentioning that a straightforward way to establish uniform integrability 

is to verify the sufficient condition 

,sup
1

1
∞<δ+

≥
n

n
XE  

for some .0>δ  

There is an interesting relationship to stochastic order relations. Let 

1X  and 2X  be positive random variables. 1X  is less or equal than 2X  in 

the increasing convex order, denoted by 

,21 XX ic≤  

if 

( ) ( ),21 XEXE ϕ≤ϕ  

for all non-decreasing convex functions [ ) [ ).,0,0: ∞→∞ϕ  Equivalently, 

( ) ( )tHtH 21 ≤  for all ,0≥t  where ( ) ( )( ) ,2,1,1 =−= ∫
∞

iduuFtH i
t

i  are 

the integrated survivor functions, see [6]. A sequence { }1: ≥nXn  of 

random variables is ic-bounded by a random variable Y, if 

.1allfor ≥≤ nYX icn  

In [5], it has been shown that { }1: ≥nXn  is uniformly integrable, if and 

only if { }nX  is ic-bounded by an integrable random variable. 
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2.2. Convergence of moments for approximations 

As explained in the Introduction, it is often not realistic to assume 

that a given sequence { }nX  converges to some random variable X, but 

instead we can assume the existence of an approximating sequence 

{ }1: ≥nYn  of random variables. Then, at best, we can achieve closeness 

of the moments. Since in many present day real applications the 

connection between these sequences is somewhat loose in the sense that 

it is not possible to analyze the accuracy of the approximation rigorously, 

one has to assume appropriate conditions which allow to replace the 

moments of nX  by the moments of .nY  The question arises, whether 

uniform integrability still suffices for this purpose. 

The following result shows that the moments of nY  are close to the 

moments of ,nX  if nY  approximates nX  and both series are uniformly 

integrable. Denote ( ) rr
r

XEX
1=  for a random variable X and 

.0 ∞<< r  

Theorem 2.1. Let .0 ∞<< r  Suppose that { }1: ≥nX
r

n  and 

{ }1: ≥nY
r

n  are uniformly integrable with 

,0
P

nn YX →−  

as .∞→n  Then the following assertions hold: 

(i) .10,,0 ≤<∞→→− rfornasYXE
r

nn  

(ii) .10,,0 ≤<∞→→− rfornasYEXE
r

n
r

n  

(iii) ( ) ( ) .1,,0 =∞→→− rifnasYEXE nn  

(iv) ( ) ( ) .0,,
11 ∞<<∞→→− rfornasYEXE

rr
n

rr
n  
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Let us consider the following example where we assume concrete 

models for nX  and .nY  Suppose that nX  is a linear filter processing a 

random input sequence of i.i.d. innovations ,0, ≥tt�  with mean zero, 

finite fourth moment and common variance ( ).,02 ∞∈σ  Further suppose 

that nX  is given by an autoregressive process of order 1 with known 

autoregressive parameter ( ),1,1−∈ρ  given by 

,

0

jn
j

j

nX −

∞

=

ρ+µ= ∑ �  

where the mean µ  is unkown to us. The process ,nX  however, can only 

be observed with a (deterministic) uncertainty ,ne  i.e., we have at our 

disposal the process 

,, nnobsn eXX +=  

where ,1, ≥nen  is assumed to be a sequence of constants with 

,0
1

1
→∑ = i

n

i
e

n
 as .∞→n  Consider the approximation nY  following the 

surrogate model: 

,

0

, jn
j

q

j

obsnn

n

XY −

=

ρ+= ∑ �  

for some sequence ,1, ≥nqn  of natural numbers with ,∞→nq  where 

.
1

,1, obsi
n

iobsn X
n

X ∑ =
=  This means, the surrogate model is obtained by 

estimating the unknown mean by the average of the observed data and 

truncating the infinite sum to obtain a surrogate model from which allows 

for fast computations. Then 

.
1

1

jn
j

qj

ni

n

i

nn

n

Xe
n

YX −

>=

ρ+µ−+≤− ∑∑ �  
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The first term on the right-hand is ( )1Po  by virtue of the weak law of 

large numbers for time series, and the second term can be bounded by 

,0
2

2

2

→ρ
ε

σ
≤














ε>ρ ∑∑

>

−

>

j

qj

jn
j

qj nn

P �  

for any .0>ε  Hence, 

P
nn YX ,0→−  

as .∞→n  Further, by our moment conditions, nX  and nY  are uniformly 

integrable, and i
n

i
X

n ∑ =1

1
 is uniformly integrable, if nX  has this 

property, see, e.g., [1]. Hence, the above theorem applies. It is worth 

mentioning that the i.i.d. assumption for the s,t�  can be relaxed. 

2.3. Proof  

Proof of Theorem 2.1. By the rc -inequality (which follows from the 

inequality ( )yxyx rr +≤− 2  for real numbers yx,  and 0>r ), 

( ),2
r

n
r

n
rr

nn YXYX +≤−  

we may conclude that { }1: ≥− nYX
r

nn  is uniformly integrable. Let 

.0>ε  We have 

[ ( )],1 ε>−−+ε≤− nn
r

nn
rr

nn YXYXEYXE  

leading to 

[ ( )].1suplimsuplim ε>−−+ε≤−
∞→∞→

nn
r

nn
n

rr
nn

n
YXYXEYXE  

We will show that the second term vanishes. By uniform integrability of 

,nn YX −  there exists ( ) 0>εδ  such that for any event A with 

( ) ( )εδ<AP  we have [ ] .1 ε<− A
r

nn YXE  Since ,0
P

nn YX →−  as 

,∞→n  there exists N∈0n  such that for all 0nn ≥  
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( ) ( ).εδ<ε>− nn YXP  

Therefore, 

[ ( )] .1 ε<ε>−− nn
r

nn YXYXE  

Since 0>ε  is arbitrary, (i) follows. To show (ii), apply the inequality 

rrr
yxyx +≤+  to obtain ,

rrr
yxyx −≤−  such that −r

nXE  

,
r

nn
r

n YXEYE −≤  which establishes (ii). (iii) follows by linearity, 

( ) ( ) .nnnn YXEYEXE −≤−  Lastly, apply Minkowski’s inequality to 

obtain 

,
rnnrnrnnnrnrn YXYYYXYX −≤−+−=−  

and 

.
rnnrnrnnnrnrn XYXXXYXY −≤−+−=−  

� 

3. Criteria for Random Fields of Stochastic Processes 

In surrogate modelling applications, one often considers models for 

high-dimensional objects, e.g., images or sequences of images, stochastic 

differential equations whose numerical solution can be intractable due to 

excessive computational costs, or nonlinear regressions with a large 

number of regressors as arising in genetics and finance. Here surrogate 

models are constructed which allow for efficient computations and have 

good approximation properties. Examples are deep learning neural 

networks and the Gaussian process framework, which we discuss in the 

next section. 

Therefore, let us now study a more general theoretical framework, 

namely, random fields of stochastic processes, which covers those special 

cases. 
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3.1. Preliminaries 

Recall that a stochastic process is a family ( ){ }Λ∈λλ :X  of random 

variables ( )λX  defined on a probability space ( ).,, PAΩ  Here Λ  is an 

arbitrary index set. Such a process is called (strictly) stationary, if the 

(multivariate) distributions associated to N∈Λ∈λλ kk ,,,1 …  arbitrary, 

are shift invariant in the sense that for all h such that ,Λ∈+λ hj  

,,,1 k…=j  it holds 

( ) ( )( ) ( ) ( )( ).,,,, 11 hXhXXX PP +λ+λλλ =
kk ……  

This clearly implies stationarity of the one-dimensional marginal 

distribution ( ),λXP  but not vice-versa. 

A random field of dimension N∈q  is a family of random elements 

indexed by a multiindex ( )′= qii ,,1 …i  ranging through some set 

.qI N⊆  We assume that those random elements attain values in some 

normed space E with norm .⋅  

For example, a two-dimensional random field of random variables 

indexed by { } { },,,1,,1 21 nn …… ×∈i  i.e., a matrix of dimension 21 nn ×  

with random entries, is a natural model for an image of resolution .21 nn ×  

For two random fields { }1: ≥nnX  and { },: 1≥nnX  where 

( ) ,1,,1
′= …1  the convergence ,0

P
YX →− nn  as ,∞→n  is defined as 

follows: For every 0>ε  and every 0>δ  there exits N∈N  such that 

for all ,,,1, qjNn j …=≥  it holds ( ( ) ( ) ) .,,,, 11
δ<ε>−

qq nnnn YXP ……  

Limits such as ,0→− nn YEXE  as ,∞→n  are defined analogously. 
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3.2. Convergence of moments 

Let us assume that we are given a random field of stochastic processes, 

( ) ,,, qX N∈Λ∈λλ nn  

which can be approximated by another random field 

( ) .,, qY N∈Λ∈λλ nn  

The following theorem shows that the moments of ( )λnY  are 

uniformly close to the moments of ( )λnX  under weak assumptions, which 

only concern the (joint) marginal distribution and avoid to assume that 

nXΛ∈λsup  and nYΛ∈λsup  are uniformly integrable. 

Theorem 3.1. Fix .0 ∞<< r  Let ( ){ }Λ∈λ≥λ ,: 1nnX  and { ( )λnY  

}Λ∈λ≥ ,: 1n  be parameterized random fields satisfying the strict 

marginal stationarity condition 

( ( ) ( )) ( ( ) ( )),,, λ′λ′=λλ nnnn YXYX
d

  (3.1) 

for all Λ∈λ′λ,  and .1≥n  Suppose that { ( ) }1≥λ nn :
r

X  and { ( ) r
Y λn  

}1≥n:  are uniformly integrable, ,Λ∈λ  with 

( ) ( ) ,0sup
P

YX →λ−λ
Λ∈λ

nn  

as .∞→n  Then the following assertions hold: 

(i) .10,,0sup ≤<∞→→−Λ∈λ rforasYXE
r

nnn  

(ii) .10,,0sup ≤<∞→→−Λ∈λ rforasYEXE
rr

nnn  

(iii) ( ) ( ) .,0sup ∞→→−Λ∈λ nnn asYEXE  

(iv) .0,,0sup ∞<<∞→→−Λ∈λ rforasYX
rr

nnn  
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The condition (3.1) is automatically satisfied for a large class of cases: 

Suppose that Z=Λ  and for some sequence of i.i.d. random elements 

{ }Z∈λξλ :  taking values in some measurable space ( )E,E  we have 

( ) ( ),,, 1 ⋯−λλ ξξΨ=λ nnX  

and 

( ) ( ),,, 1 ⋯−λλ ξξΦ=λ nnY  

for all Z∈λ  and .1≥n  Then, for arbitrary Λ∈λ′λ,  and all n, 

( ( ) ( )) ( ( ) ( ))⋯⋯ ,,,,,, 11 −λλ−λλ ξξΦξξΨ=λλ nnnn YX  

( ( ) ( ))⋯⋯ ,,,,, 11 −λ′λ′−λ′λ′ ξξΦξξΨ= nn
d

 

( ( ) ( )),, λ′λ′= nn YX  

which verifies (3.1). Observe that the s,λξ  may be random variables, 

random vectors or general random elements such as random functions 

taking values in an infinite-dimensional space.  

Let us now consider parameterized models where 

( ) ( ),; ϑλ=λ nn XX  

for some parameter vector .Θ∈ϑ  It is assumed that Θ  is a subset of a 

normed space equipped with a norm .⋅  Partition ( )′ζ′η′=ϑ ,  and 

assume that the surrogate model is obtained by estimating, say, ,ζ  such 

that 

( ) ( ( � ) )′′ ′λ = λ η ζ; , ,Y Xn n n   (3.2) 

where �ζn  is a statistical estimator of ,ζ  obtained by some statistical 

method of estimation from a random sample (also called calibration to the 

sample), satisfying 

�ζ − ζ → 0,
P

n  
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as .∞→n  If the mapping ( )ϑλ;nX  is Lipschitz continuous in η  with a 

uniform Lipschitz constant L such that 

( ( ) ) ( ( ) ) ,,;,;sup 2121 ζ−ζ≤′ζ′η′λ−′ζ′η′λ
Λ∈λ

LXX nn  

for all 21,, ζζη  and all ,q
N∈n  then using (3.2) 

( ( ) ) ( ) �

λ∈Λ

′′ ′λ η ζ − λ ≤ ζ − ζ →sup ; , 0
P

X Y Ln n n  

as ,∞→n  follows. 

Putting things together and noting that the L above can be random 

without affecting the convergence, we obtain the following result. 

Theorem 3.2. Assume that ( )λnX  and ( )λnY  are parametrized by 

some parameter ( ) ,, Θ∈′ζ′η′=ϑ  for some set ,Θ  and are of the form 

( ) ( ( ) ),,;,, 1
′ζ′η′ξξΨ=λ −λλ ⋯nnX  

and 

( ) ( ( � ) )λ λ−
′′ ′λ = Ψ ξ ξ η ζ⋯1, , ; , ,Yn n n  

for all Z∈λ  and ,q
N∈n  for some sequene ( },: Λ∈λξλ  where Z⊂Λ  

and λξ  are i.i.d. and attain values in some measurable space ( )., EE  

Further suppose that the mapping nΨ  is Lipschitz continuous in ,ζ  such 

that for some random variable L 

( ( ) ) ( ) �

λ∈Λ

′′ ′λ η ζ − λ ≤ ζ − ζsup ; , ,X Y Ln n n  

.q
N∈n  If �ζn  is a consistent estimator of ,ζ  then the assumptions of 

Theorem 3.1 are satisfied. 
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3.3. Proof. We give the details of the proof of Theorem 3.1. 

Proof of Theorem 3.1. By the rc -inequality 

( ) ( ) ( ( ) ( ) ),2
rrrr

YXYX λ+λ≤λ−λ nnnn  

we may conclude that { ( ) ( ) }1: ≥λ−λ nnn
r

YX  is uniformly integrable. 

Let .0>ε  We have 

( ) ( ) [ ( ) ( ) ( ( ) ( ) )].1 ε>λ−λλ−λ+ε≤λ−λ nnnnnn YXYXEYXE
rrr

 

Fix .0 Λ∈λ  By uniform integrability, there exists ( ) 00 >λη=η  such 

that for all events A with ( ) η<AP  we have [ ( ) ( ) ] .100 ε<λ−λ A
r

YXE nn  

Since ( ) ( ) ,0sup
P

YX →λ−λΛ∈λ nn  as ,∞→n  there exists 0n  such that 

for all 0nn ≥  

( ( ) ( ) ) ( ) ( ) .sup00 η<






 ε>λ−λ≤ε>λ−λ
Λ∈λ

nnnn YXPYXP  

It follows that 

[ ( ) ( ) ( ( ) ( ) )]ε>λ−λλ−λ
Λ∈λ

nnnn YXYXE
r
1sup  

[ ( ) ( ) ( ( ) ( ) ) ]ε>λ−λλ−λ= 0000 1 nnnn YXYXE
r

 

,ε<  

where the equality is a consequence of (3.1), leading to 

( ) ( ) ,,sup 0nnnn ≥ε+ε≤λ−λ
Λ∈λ

rr
YXE  

which shows (i), since ε  is arbitrary. To show (ii), apply the inequality 

rrr
yxyx +≤+  to obtain ,

rrr
yxyx −≤−  such that 
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( ) ( ) ( ) ( ) ( ) ( ) ,sup
rrrr

YXEYXEYEXE λ−λ≤λ−λ≤λ−λ
Λ∈λ

nnnnnn  

which yields which establishes (ii). (iii) follows by linearity, Λ∈λsup  

( ) ( ) ,sup nnnn YXEYEXE −≤− Λ∈λ  and (iv) is shown as in the proof 

of Theorem 2.1.  � 

4. Applications to Surrogate Models: Deep Learning and  

Gaussian Processes 

As a surrogate model is used to generate cheap artificial data sets 

(e.g., to enrich real observed data), classes of models with convincing 

approximation properties are preferable. Deep learning neural networks 

as well as Gaussian processes are two widespread frameworks for 

surrogate modelling, as they satisfy this requirement. Deep learners are a 

popular approach for nonlinear relationships going beyond classical 

statistical regression models. Gaussian processes have gained interest to 

model curves as random trajectories. Typically, one calibrates such a 

model to a (relatively small) data set of real data and then simulates from 

the fitted model to obtain simulated data samples which should be close 

to real samples. Applications are widespread and diverse: Signal 

processing and image analysis as briefly discussed above, classification 

and pattern matching, analysis of data such as asset returns and option 

prices from financial markets [7], as well as applications to quality control 

and reliability analysis [3]. 

Deep learning networks 

A deep learning artificial neural network, see, e.g., [4], is a mapping 

,: qf R→X  which maps an input vector x of the input space ,p
R⊂X  

assumed to be a compact set, to a q-dimensional output vector 

,,, N∈qpy  and is given by the composition of H layers in the form 

( ) ( ( ( ) ) ) ,,211122 X∈++== xbbWWxy ⋯⋯ xffff H  
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where lW  are weighting matrices, lb  intercept terms, and lf  are 

activation functions, .,,1 Hl …=  The input can be a regressor of 

explanatory variables for a regression problem, log returns or prices of 

assets, options and futures contracts as in finance, a vectorized (sequence) 

of digitized images or audio signals as in classification problems, or even 

a discretized trajectory of a stochastic process. The parameter vector of 

the net is ( ) ,,,,vec,,vec 11
′′′=ϑ HH bb …… WW  where vecA denotes the 

vectorized version of a matrix A obtained by stacking columns, such that 

( ) ( ).; ϑ= xfxf  

The activation functions are typically nonlinear and always chosen as 

Lipschitz continuous functions. Clearly, the sum of two Lipschitz 

functions with Lipschitz constants 1L  and 2L  is again Lipschitz with 

Lipschitz constant ,11 LL +  and the composition gf �  of two Lipschitz 

functions f and g with constants 1L  and 2L  is again Lipschitz with 

Lipschitz constant ,21LL  because ( )( ) ( )( ) ( ) ( ) ≤−≤− ygxgLygfxgf 1  

.21 yxLL −  Therefore, such deep learning networks are Lipschitz 

continuous in the parameters. Indeed, current efforts focus on calculating 

the Lipschitz constants. It is not restrictive to assume that 

( ) ,;
1 ∞<ϑ δ+

XfE  for some ,0>δ  where X is a random input. 

Alternatively, assume that ∞<δ+1
XE  holds and the existence of some 

X∈0x  such that ( ) .0;0 =ϑxf  Then 

( ) ( ) ( ) δ+δ+ ϑ−ϑ=ϑ 1
0

1
;;; xffEfE XX  

δ+−≤ 1
0xLE X  

( ) δ+
δ+δ+ +≤ 1

101
xL X  

,∞<  

where L denotes the Lipschitz constant of the net. 



ANSGAR STELAND 272 

If a deep learning network is trained at time n, say from a data 

stream, using the most recent n data points nXX ,,1 …  with associated 

outputs ,,,1 nYY …  by estimating the parameters ,ϑ  the trained network 

is given by 

( � )ϑ; ,nf x  

where 

� � ( )ϑ = ϑ ξ ξ…1, , ,nn n  

with ( ) .,,1,, niiii …=′′′=ξ YX  

The next step is to simulate a random input ,~ GX  say for some G 

with ( ) .
1 ∞<δ+

∫ xdGx  Then the associated output, 

( � ( ) )= ϑ ξ ξ…1; , , ,n nnY f X  

is a surrogate for ( ).; ϑ= XfXn  Obviously, Theorem 3.2 applies and 

yields the convergence of moments. The simulation of inputs G~X  is 

usually based on random number generators. For algorithms and 

background, we refer to [2]. 

Gaussian processes kriging 

Let us consider the following example studied in some depth in [3] 

dealing with reliability analysis. Let X denote a d-dimensional random 

vector with density Xf  and support D. Given a performance function 

R→Dg :  a failure, e.g., of a system, can be modeled by the event 

( ){ }.0≤Xg  Conducting such experiments in practice is, however, 

sometimes expensive, whereas simulations from an appropriate 

(surrogate) model are usually cheap. Since g is unknown, a surrogate 

model for g is used, which allows to estimate (or predict) g and quantify 
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the involved uncertainty. The Gaussian process kriging approach 

assumes that g is a sample path of an underlying Gaussian process ,G  

( ) ( ) ( ) ., DxxZxfx ∈+β′=G  

Here ( ) β′xf  is the linear predictor with respect to given functions ( ),1 xf  

( )xfp,…  from a basis of, say, the function space ,2L  and a parameter 

vector ,p
R∈β  and ( )xZ  is a mean zero stationary Gaussian process 

with a stationary correlation function, often chosen in practice as 

( ) [( ) ] ,exp,,,
2

1

1 












′−−=′− ∑

=

l

d

d xxxxR ℓℓ…ℓ kk

k

 

for scaling parameters .0,,1 >pℓ…ℓ  

Given a random sample nXX ,,1 …  of size n, the best linear unbiased 

(kriging) estimator of ( )xG  at x is Gaussian and interpolates the 

observations ( ) ( ) ,β′= ii XfXg  if { },,,span 1 pffg …∈  i.e., there is no 

residual uncertainty (at the observed data points). By increasing p as n 

gets larger, any 2L -function can be estimated in this way. Note that the 

predictor depends on n. An observation ( )xYY nn =  simulated from the 

surrogate model for some { }nXXx ,,1 …∈/  is regarded as an 

approximation of an unobserved ( )xXn  (obtained in a Gedanken 

experiment which is too expensive to be carried out). 
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