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Abstract 

Ethiopian Airline is playing a leading role in transforming Ethiopia into a world 

class aviation hub of the African continent not only for trade and business but 

also for the tourism. For the continual of its success, forecasting air travel 

demand may play a crucial role for an overall effective planning. 

The present article has utilized a monthly data from January 2009 up to 

December 2013 to build vector autoregression (VAR) and VECM models, and 

also to know the effect of a study target variable Load Factor (LF) to Passenger 

Revenue (PR), Block Hours (BH), and Distance Flown (DF) at international 

level. 
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The VECM (1) shown that the Load Factor (as a measure of travel demand) is 

Granger caused by all variables in the short-run except Passenger Revenue and 

significantly explained by all variables in the long-run. 

1. Introduction 

Ethiopian Airline (Ethiopian) is the flag carrier of Ethiopia. It is 

founded in December 21, 1945 and became operational in April 08, 1946. 

It is under complete government ownership. During the past sixty five 

plus years, Ethiopian has become one of the continent’s leading carriers, 

unrivalled in Africa for efficiency and operational success, turning profits 

for almost all the years of its existence. Accordingly, air travel demand 

can be considered as the customers (air passengers’) degree of response 

(utilization) to the total transportation services provided by an airline. 

A review of the available literatures on air travel demand reveal that 

the building of models to estimate demand for air-passengers can take 

many forms, each depending on the objective of the model being 

developed. Ippotito [10] used a cross-sectional model to estimate the 

origin and destination’s demand for airlines (US domestic) at each end of 

the route that incorporated a measure of service. The results of his study 

confirmed the long held belief that demand is sensitive to flight frequency 

and availability of “excess” seats, and that the quantity of seats offered is 

positively and significantly affected by regulated price. It also confirmed 

that the price elasticity of demand increases with flight distance. 

Kumar and Stephanedes [16] studied the impact of air travel supply 

on the demand and vice-versa between Twin Cities and Chicago. They 

used a time series analysis as a tool for estimating the impact of air travel 

supply on the demand and vice-versa on non-stop air routes. Another 

study by Ghobrial [6] presents an econometric model that estimates the 

aggregate demand for an airline. The demand is expressed in terms of 

airline network structure, operating characteristics and firm-specific 

variables. Poore [25] has conducted a study to test the hypothesis that 

forecasts of the future demand for air transportation offered by airplane 

manufacturers and aviation regulators are reasonable and representative 

of the trends implicit in actual experience. The test compared forecasts 
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issued by Boeing, McDonnell Douglas, Airbus Industry and the 

International Civil Aviation Organization with actual experience and the 

results of a baseline model of the demand for revenue passenger 

kilometers (RPKs). The model is the combination of two equations 

describing the RPKs demanded by the high- and the low income groups, 

respectively. Seraj et al. [26] developed several models for the air travel 

demand with different combinations of fourteen explanatory variables 

utilizing stepwise regression technique. Among all candidate models, the 

model obtained by using least square technique      i-th the two variables, 

(i.e., total expenditures and population size) for international air travel 

demand models in Saudi Arabia was the most appropriate model to 

represent the demand for international air travel in Saudi Arabia. 

Kulendran and Witt [15] generated one, four and six quarter ahead 

forecasts of international business passengers to Australia from the 

following four countries: Japan, New Zealand, the United Kingdom and 

the United States. They considered various forecasting models: the error 

correction model (ECM), the structural time series model (STSM), the 

basic structural model (BSM), and ARIMA model. They concluded that 

forecasting performance varies with the forecasting horizon and depends 

on the adequate detection of seasonal unit roots. Consequently, ARIMA 

and BSM models are the most accurate for short term forecasting (one-

quarter ahead) whereas ECM outperforms for medium term forecasting 

(four and six quarters ahead). 

Another study for air travel demand forecasting is done by Grosche et 

al. [8]. According to their research, there are some variables that can 

affect the air travel demand, including population, GDP and buying 

power index. They considered GDP as a representative variable for the 

level of economic activity. 

Tsekeri [28] has also estimated the short and long-term response of 

air passengers to change in relative air-sea travel cost components in 

competitive markets using a dynamic demand model. The model 

demonstrated the importance of considering the past volumes of air 

passengers and relative travel cost components to explain current air 

travel demand. 
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Constantinos [2] examined whether or not combining forecasts from 

autoregressive-integrated-moving average (ARIMA) and seasonal 

autoregressive-integrated-moving average (SARIMA) models helps to 

improve the forecasting accuracy of Canadian air transportation sector in 

domestic, transborder (US) and international flights. His study also 

provided forecasts of air passengers in Canada based on various time 

series forecasting models. 

This article utilized a monthly data from January 2009 up to 

December 2013 to build vector autoregression (VAR) model. Each series 

are found to be integrated of order one (I(1)). The three information 

criteria AIC, SC, and HQ recommended one lag length. Johansen 

cointegration test indicated only one long-term equilibrium relationship 

occurred between the variables. This immediately implied the legitimacy 

of vector error correction (VEC) model of order one to be fitted than a 

pure VAR (1) model for the time series data. As one footstep before out-of-

sample forecasting, the VECM (1) model has been checked for its 

accuracy with the aid of RMSE, MAE, MAPE, and Theil-U statistics. The 

summary result of VECM (1) shown that Load Factor (as a measure of 

travel demand) is Granger caused by all variables in the short-run except 

Passenger Revenue and significantly explained by all variables in the 

long-run. At last, forecasting is made for Ethiopian International air 

travel demand (Load Factor). 

2. Data and Statistical Methodology 

2.1. Data source 

This study considered a monthly Ethiopian airline’s data for 

international flights over the time period January 2009 – December 2013 

which have been obtained from the Head Quarter Office of Ethiopian 

Airline located in Bole sub-city, Addis Ababa, Ethiopia. 

2.2. Definition and variables of the study 

The incorporated variables are somewhat technical and need a brief 

description as follows. 
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(1) International load factor (LF): is the target variable of the 

study, which describes the percentage of actual air seats purchased out of 

the total (available) seats, provided per month by an airline for 

international flight. Mathematically, it is expressed as 

.
NumberSeatConfiguredAircraft

PassengersofNumber
 

(2) International passenger revenue (PR): is the monthly 

aggregate revenue that would be earned from each individual 

international flight in millions of USD. 

(3) International block hours (BH): describes monthly flight 

duration and is a summation of each individual international flight’s time 

difference between engine on and engine off. It is measured by thousands 

of hours. 

(4) International distance flown (DF): is a monthly distance 

covered by all international flights. It is cumulative kilometers flown by 

each international flight. The study measures this variable in millions of 

kilometers. 

2.3. Statistical methodology 

This section deals with the Vector Autoregressive (VAR) models for 

stationary and cointegrated variable(s). We have also discussed model 

specification and parameter estimation. In other section, we discuss with 

Structural Vector Autoregressive (SVAR) Analysis (i.e., Granger 

Causality, Impulse Response Functions (IRF), and Forecast Error 

Variance Decomposition (FEVD)). 

2.3.1. Vector autoregressive (VAR) models 

We have applied Vector Autoregression (VAR) model, proposed by 

Sims [27]. Forecasts from VAR models are quite flexible because they can 

be made conditional on the potential future paths of specified variables in 

the model. 
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2.3.2. Integration (I(d)) 

If a series is stationary without any differencing it is designated as I(0). A 

series that has stationary first difference is designated I(1). In general if a 

non-stationary time series has to be differenced d times to make it 

stationary, that time series is said to be integrated of order d and denoted 

as I(d) (Gujarati [9]; Pole et al. [24]; Weigend and Gershenfeld [29]). 

2.3.3. Stationary vector autoregressive model 

Let ( )′= ntttt YYYY ,,, 21 …  denote a ( )1×n  vector of time series 

variables. A VAR model with p lags can then be expressed as follows: 

,,,1,2
2

1
1

TtYYYcY tpt
p

ttt …⋯ =ε+++++= −−− ∏∏∏  (2.1) 

where c denotes an ( )1×n  vector of constants and ,∏i
 for ,,,2,1 pi …=  

is an ( )nn ×  coefficient matrix of autoregressive coefficients. tε  is an 

( )1×n  unobservable zero mean white noise vector process (serially 

uncorrelated) with time invariant covariance matrix ,∑  i.e., 

( ) ( ) ( )
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with ∑ an ( )nn ×  symmetric positive definite matrix. 
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ntt YY ,,2 …  can also be written in the same manner as .1tY  

In lag operator notation, the VAR(p) is written as 

( ) ,tt cYL ε+=∏   (2.4) 

where ( ) .
1 ppn LLIL ∏∏∏ −−−= ⋯  The VAR(p) is stable if the 

roots of 

( )[ ] 0detdet
1

=





 −−−= ∏∏∏ p

p
n LLIL ⋯  (2.5) 

lie outside the complex unit circle (have modulus greater than one), or, 

equivalently, if the eigenvalues of the companion matrix 
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have modulus less than one. Assuming that the process has been 

initialized in the infinite past, then a stable VAR(p) process is stationary 

and ergodic (i.e., if sample mean, sample autocovariance, and sample 

autocorrelation converge in probability to their respective population 

moments) with time invariant means, variances, and autocovariances. 

If tY  in (2.1) is covariance stationary, then the unconditional mean is 

given by 

.
1

1
cI

p
n

−







 −−−=µ ∏∏ ⋯   (2.6) 

The mean-adjusted form of the VAR(p) is then 

( ) ( ) ( ) .2
2

1
1

tpt
p

ttt YYYY ε+µ−++µ−+µ−=µ− −−− ∏∏∏ ⋯  (2.7) 

The basic VAR(p) model may be too restrictive to represent sufficiently 

the main characteristics of the data. In particular, other deterministic 
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terms (for instance, a linear time trend) and stochastic exogeneous 

variables may be required to represent the data properly. The general 

form of the VAR(p) model with deterministic terms and exogeneous 

variables is given by 

,2
2

1
1

tttpt
p

ttt GXDYYYY ε++Φ++++= −−− ∏∏∏ ⋯  (2.8) 

where tD  represents an ( )1×l  matrix of deterministic components, tX  

represents an ( )1×m  matrix of exogeneous variables, and Φ  and G are 

parameter matrices. 

2.3.4. Testing stationarity 

To test stationarity of the series we have applied Augmented Dickey- 

Fuller (ADF) test due to Dickey and Fuller [3, 4], and the Phillip-Perron 

(PP) test due to Phillips [22] and Phillips and Perron [23]. 

2.3.5. Specification of VAR order 

The general approach is to fit VAR models with orders ,,0 …=m  

maxp  and choose the value of m which minimizes some model selection 

criteria (Lütkepohl [17]). 

The general model selection criteria have the form: 

( ) ( ) ( ),,ln pncppIC T ϕ⋅+= ∑   (2.9) 

where ( ) tt
T

t
Tp ε′ε= ∑∑ =

− ˆˆ
1

1  is the residual covariance matrix without a 

degrees of freedom correction from a VAR(p) model, Tc  is a sequence 

indexed by the sample size T, and ( )pn,ϕ  is a penalty function which 

penalizes large VAR(p) models. In this paper, we considered Akaike 

information criterion (AIC), Schwartz (SC) information criterion, and 

Hannan-Quinn (HQ) information criterion to pick out an optimal lag 

order for the VAR t: 

( ) ( ) ,
2

ln 2pn
T

ppAIC += ∑  (2.10) 
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( ) ( ) ,
ln

ln 2pn
T

T
ppSC += ∑  (2.11) 

( ) ( )
( )

.
lnln2

ln 2pn
T

T
ppHQ += ∑  (2.12) 

The AIC criterion asymptotically overestimates the order with positive 

probability, whereas the SC and HQ criteria estimate the order 

consistently under fairly general conditions if the true order p is less than 

or equal to .maxp  

2.3.6. Cointegration analysis 

Engle and Granger [5] developed the theory that there exists the 

special case where linear combinations of nonstationary processes are 

stationary. Consider two I(1) processes, tX1  and ,2tX  if there exists a 

linear combination of the two processes the two I(1) processes are 

considered to be CI(1, 1). Broadly, contegrating relationships can be 

either single or multiple as follows. 

2.3.6.1. Single cointegration relationship 

Let ( )′= ntttt YYYY ,,, 21 …  denote an ( )1×n  vector of I(1) time 

series. tY  is said to be cointegrated if there exists an ( )1×n  vector 

( )′βββ=β n,,, 21 …  such that 

( ).0~2211 IYYYY ntnttt β++β+β=β′ ⋯   (2.13) 

In words, the non-stationary time series in tY  are cointegrated if there is 

a linear combination that is stationary or I(0). If some elements of β  are 

equal to zero then only the subset of the time series in tY  with non-zero 

coefficients is cointegrated. 
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Normalization 

The cointegration vector β  in (2.13) is not unique since for any scalar 

c the linear combination ( ).0~ IYYc tt

′
β=β′ ∗  Hence, some normalization 

assumption is required to uniquely identify .β  A typical normalization is 

( ) .,,,1 2
′β−β−=β n…  

So that the cointegration relationship may be expressed as 

( ),0~221 IYYYY ntnttt β−−β−=β′ ⋯  

or 

,221 tntntt UYYY +β++β= ⋯   (2.14) 

where ( ).0~ IUt  In (2.14), the error term tU  is often referred to as the 

disequilibrium error or the cointegrating residual. In long-run 

equilibrium, the disequilibrium error tU  is zero and the long-run 

equilibrium relationship is 

.221 ntntt YYY β++β= ⋯   (2.15) 

2.3.6.2. Multiple cointegration relationships 

If the ( )1×n  vector tY  is cointegrated, there may be ,0, nrr <<  

linearly independent cointegrating vectors. For example, let 3=n  and 

suppose there are 2=r  cointegrating vectors ( )′βββ=β 1312111 ,,  and 

( ) .,, 2322212
′βββ=β  Then ( ),0~3132121111 IYYYY tttt β+β+β=β′  

( )0~3232221212 IYYYY tttt β+β+β=β′  and the ( )32 ×  matrix 















βββ

βββ
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β′

β′

=′

232221

131211

2

1

B  (2.16) 

forms a basis for the space of cointegrating vectors. The linearly 

independent vectors 1β  and 2β  in the cointegrating basis B are not 

unique unless some normalization assumptions are made. Furthermore, 

any linear combination of 1β  and ,1β  e.g., ,22113 β+β=β cc  where 1c  

and 1c  are constants, is also a cointegrating vector. 
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2.3.6.3. Testing for cointegration using Johansen’s methodology 

We applied the Johansson’s procedure [12]. The procedure begins 

with unrestricted VAR involving potentially non-stationary variables. 

The starting point of Johansen’s procedure [11, 12] in determining the 

number of cointegrating vectors is the VAR representation of .tY  It is 

assumed a vector autoregressive model of order p and is expressed as 

follows in (2.17). 

,2211 ttptpttt BXYAYAYAY ε+++++= −−− ⋯  (2.17) 

where tY  is an n-vector of non-stationary I(1) variables (i.e., the non-

stationary series variables in tY  are differenced once to achieve 

stationarity, then tY  is said to be integrated of order one). This would be 

then written as ( )1~ IYt ), tX  is a d-vector of deterministic (other 

exogeneous) variables, and tε  is a vector of innovations. 

(2.17) can be re-written as: 

,
1

1
1 ttiti

p

i
tt BXYYY ε++∆Γ+=∆ −

−

=
− ∑∏  (2.18) 

where 

.,
11

j

p

ij
ii

p

i
AIA ∑∑∏ +==

−=Γ−=  (2.19) 

Granger’s representation theorem asserts that if the coefficient matrix 

∏ has reduced rank ,nr <  then there exist rn ×  matrices α  and β  

each with rank r such that β′α=∏  and tYβ′  is ( ),0I  where r is the 

number of cointegrating relations (the cointegrating rank) and each 

column of it represent the cointegrating vector. The elements of α  are 

known as the adjustment parameters in the VEC model. It can be shown 

that for a given r, the maximum likelihood estimator of β  defines the 

combination of 1−ty  that yields the r largest canonical correlations of tY∆  

with 1−tY  after correcting for lagged differences and deterministic 

variables when present. 
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Johansen [11] proposed two tests for estimating the number of 

cointegrating vectors: the trace statistic and maximum eigenvalue 

statistic tests. 

Then the trace statistic is computed as 

( ) [ ].ˆ1logˆ
1

i

n

ri
trace Tr λ−−=λ ∑ +=

 (2.20) 

The maximum eigenvalue statistic tests the null hypothesis of r 

cointegrating relations against the alternative of 1+r  cointegrating 

relations for .1,,2,1,0 −= nr …  This test statistic is computed as 

( ) [ ],ˆ1log1,ˆ
1max +λ−−=+λ rTrr  (2.21) 

where 1
ˆ

+λr  is the ( ) th-1+r  ordered eigenvalue of ,∏  and T is the 

sample size. The critical values tabulated by Johansen and Juselius [14] 

will be used for these tests. 

2.4. Vector error correction (VEC) models 

The following equation 

ttiti

p

i
tt BXYYY ε++∆Γ+=∆ −

−

=
− ∑∏

1

1
1  

is known as a vector error correction model (VECM), where nI−=∏  

ni
p

i
IA ,

1∑ =
+  is the identity matrix, and .

1 j
p

iji A∑ +=
−=Γ  

The above specification of VECM contains information on both the 

short and the long-run adjustment to changes in tY  via estimating Γ  and 

,∏  respectively. Matrix ∏ can be decomposed as ,β′α=∏  where α  is 

rn ×  matrix of speed of adjustments towards the long-run equilibrium, 

and β  is an rn ×  matrix of parameters which determines the 

cointegrating relationships of long-run coefficients such that ntY −β′  

represent the multiple cointegration relationships. The columns of β  are 

interpreted as long-run equilibrium relationships between variables. 
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Values of α  close to zero imply slow convergences and ,0, nrr ≤≤  is 

the rank of the matrix ∏ and represents the number of cointegrating 

vectors in the system which can be determined using the Johansen 

Maximum Likelihood method. 

2.5. Model checking 

It is an obligatory activity to investigate validity and reliability of all 

inference procedures made by VARs and VECMs before one is going to 

use these models to forecast future patterns of series. There are several 

tests for checking forecasting capability (adequacy) of these models. 

2.5.1. Test of residual autocorrelation 

We applied two most popular tests for autocorrelation of residuals, 

i.e., Breusch-Godfrey LM tests and Portmanteau tests. 

2.5.2. Normality of the residuals 

We checked the normality of residuals from VAR and VECM, using 

Jarque and Bera’s test [1]. 

2.5.3. Forecasting 

The ultimate goal of estimating VAR and VECM is forecasting. 

Consider first the problem of forecasting future values of TY  when the 

parameters ∏ of the VAR(p) process are assumed to be known and 

there are no deterministic terms or exogeneous variables. The best linear 

predictors, in terms of minimum mean squared error (MSE), of 1+TY  or   

1-step forecast based on information available at time T is 

,1
1

1 +−+ ∏∏ +++= pT
p

TTT YYcY ⋯   (2.22) 

for .pT ≥  
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Forecasts for longer horizons h (h-step forecasts) can be obtained 

using the chain-rule of forecasting as 

,1
1

TphT
p

ThTThT YYcY −+−++ ∏∏ +++= ⋯   (2.23) 

where jTTjT YY ++ =  for .0≤j  The h-step forecast errors may be 

expressed as 

,
1

0
shTs

h

s
ThThT YY −+

−

=
++ εΨ=− ∑  (2.24) 

where the matrices sΨ  are determined by recursive substitution, 

,
1

1 ∏∑ −

−

=
Ψ=Ψ

j
js

p

j
s  (2.25) 

with nI=Ψ0  and nnj ×=∏ 0  for .pj >  The forecasts are unbiased 

since all of the forecast errors have expectation zero, and the MSE matrix 

for ThTY +  is 

( ) ( )ThThT YYMSEh ++ −=∑  

( ) 






 εΨ= −+

−

=∑∑ shTs

h

s
MSEh

1

0
 

.
1

0
ss

h

s
Ψ′Ψ= ∑∑

−

=
 (2.26) 

Now consider forecasting hTY +  when the parameters of the VAR(p) 

process are estimated using multivariate least squares. The best linear 

predictor of hTY +  is now 

� � � � �
1

1
,T h T T h T T h p T

p
Y Y Y+ + − + −= + +∏ ∏⋯   (2.27) 

where 
�
∏ j

 are the estimated parameter matrices. The h-step forecast 

error is given by 

� ( � )
−

+ ++ + − +
=

− = Ψ ε + −∑
1

0
,

h
T h T T h TT h s T h s T h T

s
Y Y Y Y  (2.28) 
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and the term �
T h TT h TY Y ++ −  captures the part of the forecast error due 

to estimating the parameters of the VAR. The MSE matrix of the h-step 

forecast is then, 

�
( ) ( ) �( ).T h TT h Th h MSE Y Y ++= + −∑ ∑   (2.29) 

In practice, the second term �( )T h TT h TMSE Y Y ++ −  is often ignored and 

� ( )h∑  is computed using (2.27) as: 

�
( ) � ��

−

=

′
= Ψ Ψ∑ ∑ ∑

1

0
,

h
s s

s
h  (2.31) 

with � � �

1
.

s
s s j

j j
−

=
Ψ = Ψ∑ ∏  Lütkepohl [17] gave an approximation to 

�( )T h TT h TMSE Y Y ++ −  which may be interpreted as a finite sample 

correction to (2.31). 

2.5.4. Measures of forecasting accuracy 

We evaluated the forecasting performance of a VEC model, ranging 

from mean error (ME) measures to Theil’s U statistic measure. 

2.6. Structural vector autoregressive (SVAR) analysis 

We will interpret a VAR model in the following ways. 

2.6.1. Granger causality test 

Granger [7] has defined a concept of causality that if a variable x 

affects a variable z, the former should help improving the predictions of 

the latter variable. 

For instance, in a bivariate VAR(p) model for ( ) 221 ,, YYYY ttt
′=  fails 

to Granger-cause 1Y  if all of the p VAR coefficient matrices 

∏∏ p
,,

1
…  are lower triangular. That is, the VAR (p) model has the form 
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(2.32) 

So that all of the coefficients on lagged values of 2Y  is zero in (2.32) for 

.1Y  Similarly, 1Y  fails to Granger-cause 2Y  if all of the coefficients on 

lagged values of 1Y  are zero in the equation for .2Y  

2.6.2. Impulse response functions 

Impulse response function is an important tool in a VAR system in 

revealing the direction and magnitude at which one variable (especially 

the target variable) reacts to the change (shock) applied on the other 

exogeneous variables in the system. 

3. Statistical Results and Discussions 

3.1. Descriptive analysis and time plot 

Table 3.1 exhibits the mean, minimum, maximum, standard 

deviation, coefficient of variation (CV), Jarque-Bera statistics, and the 

corresponding probability values (P-values). From Table 3.1, the Load 

Factor and Passenger Revenue are the lowly and highly scattered series 

in the study with a CV of 5.312% and 26.383%, respectively. Block hours 

and Distance flown series are almost equally dispersed. Regarding 

normality, all the P-values of the Jarque-Bera statistic in the Table 3.1 

are greater than 5% suggesting that initially all the series are normally 

distributed. 
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Table 3.1. Summary of descriptive statistics for all original series 

Series Mean Minimum Maximum Std. Dev. CV Jarque-Bera Probability 

Load factor 71.19722 64.35880 78.9056 3.782256 0.05312 1.139294 0.565725* 

Block hours 14.20452 7.995810 19.3971 3.031984 0.21350 2.527538 0.282587* 

Distance  

flown 
9.667997 5.398781 13.4377 2.125080 0.21981 2.469979 0.290838* 

Passenger  

revenue 
77.494972 41.566976 122.0000 20.445475 0.26383 2.907045 0.233746* 

*P-values < 0.05: Statistically significant    

On its part, Table 3.2 below presents the correlation matrix for the 

four series and all are significantly inter-correlated as the figures tend to 

one in magnitude. Accordingly, Load factor of the aviation is highly 

correlated with Passenger revenue, Block hours, and Distance flown. 

Table 3.2. Correlation matrix of the variables 

Variables Load factor Block hours Distance flown Passenger 

revenue 

Load factor 1.000000 0.876008 0.873992 0.899532 

Block hours 0.876008 1.000000 0.999878 0.991071 

Distance flown 0.873992 0.999878 1.000000 0.990727 

Passenger  

revenue 
0.899532 0.991071 0.990727 1.000000 

From Figure 3.1, it can be seen that there is a clear seasonality and a 

general upward trend in all the series. This implies that all the data are 

not stationary. But it should be strongly noticed that only graph 

inspections are not enough to conclude the series are seasonal and 

patterned. There are standard tests for both seasonality and stationarity 

which has been discussed previously in methodology and will be applied 

in analysis of the data as follow. 
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Figure 3.1. Time plots of each original series. 
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3.2. Seasonality test 

When using X-12 ARIMA for seasonal adjustment, two diagnostics 

commonly used to determine seasonality are M7, a diagnostic developed 

at Statistics Canada for X-11-ARIMA, and the F-tests for seasonality of 

the series and residuals. Then the variable(s) in which seasonality is 

observed will be seasonally adjusted. 

Table 3.3 presents the full F-tests for seasonality of the original Load 

Factor (LF). The combined test for the presence of identifiable seasonality 

indicates that LF series has a seasonal pattern that can be identified by 

X-12 ARIMA. The M7 diagnostic (0.390 < 1) also strengthens the 

identifiability of the LF series with the aid of X-12 ARIMA. From the 

Table 3.3, the F-tests assert that seasonality exists in the monthly 

original LF series at 0.1% level of significance. But the good is that, before 

seasonal adjustment, the seasonality never passed to the years with a 

confidence of 95% and also the residuals of the series are free from 

seasonality at 1% significance level. In addition to M7, all the                  

M-statistics are shown to be less than one, and hence the Q-statistic 

(0.45) produced from them is also less than one. This condition assures 

that the seasonal adjustment performed on LF is acceptable. 

 

 

 

 

 

 

 

 

 

 



VECTOR AUTOREGRESSION AND VECTOR … 221 

Table 3.3. F-tests for seasonality and adjustment quality diagnostics of 

original LF 

Test for the presence of seasonality assuming stability: 

 Sum of squares Degrees of freedom Mean square F-value 

Between months 1514.9564 11 137.72331 181.173** 

Residuals 36.4885 48 0.76018  

Total 1551.4449 59   

**Seasonality present at the 0.1 percent level   

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis Degrees of freedom Probability level  

 statistic    

 56.7443 11 0.000%  

Seasonality present at the one percent level   

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 2.7531 4 0.688283 0.898 

Error 33.7353 44 0.766712  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY PRESENT   

Test for the presence of residual seasonality:   

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.01 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 1.64 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M1 = 0.532, M2 = 0.429, M3 = 0.856, M4 = 0.563, M5 = 0.433, M6 = 0.098, M7 = 0.390, Q = 0.45 

The remaining pre adjustment tests for Passenger revenue (PR), 

Block hours (BH), and Distance flown (DF) can be seen from Table A1 (a)-(c) 

in Appendix. 
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3.3. Post-seasonal adjustment features 

From Table 3.4 below, at 1% level of risk, the test for residual 

seasonality (at 1% significance level) shows that there is no any estimable 

seasonal effect left in the seasonally adjusted series of LF and its 

irregular component as it is also indicated by the F-tests at 0.1% and 1% 

(for Kruskal-Wallis test) significance level. The combined test for the 

presence of seasonality together with M7 diagnostic (a value of 3 which is 

greater than 1) is also assuring that no more seasonal adjustment will be 

necessary at 1% significance level. Similar deductions can be drawn from 

the tests of residual seasonality (with 99% confidence) and F-tests (with 

99.9% confidence) in Tables A2 (a)-(c) in Appendix which exhibit that 

seasonality is completely removed from PR, BH, and DF series. Moreover, 

the combined tests for seasonality and M7 (greater than 1 for each 

variable) guarantee that no more seasonal adjustment is required for 

each variable. 
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Table 3.4. F-tests for seasonality of load factor series after adjustment 

Test for the presence of seasonality assuming stability:  

 Sum of squares Degrees of freedom Mean square F-value 

Between months 0.0234 11 0.00213 0.004 

Residuals 26.5476 48 0.55307  

Total 26.5710 59   

No evidence of stable seasonality at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis Degrees of freedom Probability level  

 statistic    

 1.7659 11 99.916%  

No evidence of seasonality at the one percent level   

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 0.7577 4 0.189416 1.214 

Error 6.8632 44 0.155982  

No evidence of moving seasonality at the five percent level  

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY NOT PRESENT 

Test for the presence of residual seasonality:   

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.02 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 1.38 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M7 = 3.000    

3.4. Stationarity test for individual series 

In practice, using the non-stationary time series in VAR modelling is 

problematic with regard to statistical inference since the standard 

statistical tests used for inference are based on the condition that all of 

the series used must be stationary. 
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Thus, inspections and standard testes should be conducted on each 

variable for the presence of unit root(s) and in so doing the order of 

integration of each series is determined. 

3.4.1. Visual inspection 

As shown in Figure 3.2, all the series are seasonally adjusted but they 

are still with an increasing pattern in line with time increment. This 

means that all the series are non-stationary. But the time plots should 

not be the only instruments to detect stationarity of the series. Rather the 

clue obtained from the time plots ought to be authenticated by standard 

tests for stationarity (unit root tests). 
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Figure 3.2. Post-seasonal adjustment time plots for each series. 

3.4.2. Unit root test 

Unit root tests are confirmatory strive for stationarity detection. 

Augmented Dickey-Fuller test and a Phillips and Perron test are 

employed to test stationarity and determine the maximum order of 

integration of each series. The hypothesis of these tests will be as follows. 

:H0  The series is non-stationary. 
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:H1  The series is stationary. 

Tables 3.5 and 3.6 below provide the outcome of ADF and PP tests. 

The critical values used for the tests are the McKinnon [18] critical 

values. 

Table 3.5. Unit root test results (at level) 

With intercept With intercept and trend 

Test Statistic Prob.* Test statistic Prob.* Series 

ADF PP ADF PP ADF PP ADF PP 

LF – 1.44 – 2.16 0.56 0.22 – 2.93 – 3.33 0.16 0.07 

PR 1.34 1.26 0.99 0.99 – 1.72 – 1.91 0.74 0.65 

BH 1.56 1.81 0.99 0.99 – 2.19 – 2.04 0.49 0.57 

DF 1.94 2.11 0.99 0.99 – 2.11 – 1.93 0.53 0.64 

Critical value 

(5%) 
– 2.88 – 3.44 

*MacKinnon [19] one-sided p-values. 

Once it is confirmed that all the series are non-stationary, the next 

step is to go for differencing so as to make the data stationary. 

Table 3.6. Unit root test results (after first difference) 

With intercept With intercept and trend 

Test statistic Prob.* Test statistic Prob. * Series 

ADF PP ADF PP ADF PP ADF PP 

LF – 13.07 – 19.33 0.00 0.00 – 13.03 – 19.26 0.00 0.00 

PR – 15.08 – 15.01 0.00 0.00 – 15.29 – 15.31 0.00 0.00 

BH – 15.12 – 15.29 0.00 0.00 – 15.45 – 16.54 0.00 0.00 

DF – 15.47 – 15.42 0.00 0.00 – 15.94 – 16.83 0.00 0.00 

Critical 

Value (5%) 
– 2.88 – 3.44 

*MacKinnon [19] one-sided p-values 
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Consequently, based on the ADF and PP test results, it can be 

concluded that all series are nonstationary at level and stationary at first 

difference. 

Furthermore, time plots for each seasonally adjusted and first 

differenced series are presented in Figure 3.3. In the figure, it can be 

clearly seen that there is no seasonality and upward or downward pattern 

with time, i.e., all the series are non-seasonal and stationary. Therefore, 

based on all the above methods of stationarity detection, the four time 

series are non-stationary originally and stationary after first differences. 

This implies all the series are integrated of order one (I(1)). 
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Figure 3.3. Time plots of seasonally adjusted series after first difference. 

3.5. VAR model specification 

3.5.1. Specification of VAR order 

Determination of optimal lag order for the VAR/VEC model is done by 

using the Akaike information criterion (AIC), Schwartz information 

criterion (SC), and Hannan-Quin (HQ) information criterion. In each 

criterion, the lag with a minimum criterion value is selected as an optimum 

lag length for the model. The results are shown in Table 3.7 below. 
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Table 3.7. VAR lag order selection results 

Lag AIC SC HQ 

0 1.477747 11.74201 11.88164 

1 0.004127* 5.859841* 6.557956* 

2 0.004457 5.929077 7.185684 

3 0.005027 6.030597 7.845695 

4 0.005274 6.042776 8.416366 

5 0.005334 5.994265 8.926347 

6 0.006327 6.072719 9.563293 

7 0.007247 6.072470 10.12154 

8 0.009315 6.128377 10.73593 

*indicates lag order selected by the criterion. 

From Table 3.7, the AIC, SC, and HQ test suggest the appropriate lag 

length for the VAR model to be one (1) since the minimum AIC, SC, and 

HQ values occur at lag one. Thus, it should be assumed that VAR(1) is the 

best for the data among all contender models. 

3.5.2. Lag exclusion test 

This test carries out confirmation for suitability of each lag selected 

by the above three criteria for the VAR. For each lag, the Chi square 2χ  

(Wald) statistics of all variables are reported separately and jointly in 

Table 3.8 below. 
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Table 3.8. VAR lag exclusion Wald tests 

Chi-squared test statistics for lag exclusion: Numbers in [ ] are p-values 

 LF PR BH DF Joint 

10.67937 26.99636 25.87778 22.87876 80.94704 
Lag 1 

[0.030414] [1.99e-05] [3.35e-05] [0.000134] [1.12e-10] 

3.497042 4.116885 5.497757 5.484011 23.65859 
Lag 2 

[0.478328] [0.390418] [0.239927] [0.241139] [0.097231] 

4.213082 3.106088 4.182982 5.092473 26.19202 
Lag 3 

[0.377936] [0.540232] [0.381808] [0.277940] [0.051386] 

2.000285 8.778823 8.536231 9.098116 23.54798 
Lag 4 

[0.735706] [0.066872] [0.073797] [0.058693] [0.099852] 

Df 4 4 4 4 16 

As it can be seen from Table 3.8 above, only the first lag is significant 

for LF at 5% significance level and for the remaining variables and for the 

joint at 1% significance level. Therefore, provided that VAR models 

usually need the same lag length for all the series, the Wald exclusion 

test assures that VAR(1) is found optimal for the data set and hence could 

be adopted. 

3.5.3. Cointegration analysis 

The idea behind cointegration analysis is that, although variables 

may tend to trend up and down over time, groups of variables may drift 

together. To determine the number of cointegrating relationships, the 

Johansen [13] approach of cointegration test is applied. The two tests for 

cointegration are the trace test and the maximum eigenvalue statistics. 

Here, these two test statistics are compared to special critical values to 

determine the number of cointegrating vector(s) in the model. The 

maximum eigenvalue and trace tests proceed sequentially from the first 

hypothesis – no cointegration – to an increasing number of co-integrating 

vectors. 
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From the results of Johansen cointegration test presented in Table 

3.9 below, it can be observed that the trace or estimated LR statistic 

(63.35851) exceeds the respective critical value (47.85613) with P-value 

(0.0009). The maximum eigenvalue test also supports the same thing as 

the trace test. This implies that the null hypothesis of no cointegration 

relations is rejected at the 5% significance level in favour of the 

alternative one which states that there exists one cointegration relation. 

Therefore, the rank of cointegration matrix is equal to one, meaning, 

there is only one cointegrating equation in the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3.9. Johansen cointegration test results (by assumption: Linear deterministic trend) 

Trace test Maximum eigenvalue test Hypothesised 
number of 

cointegration 
equation(s) 

Eigenvalue 
Statistic 

Critical 
value 
(5%) 

Prob.* * Statistic 
Critical 

value 
(5%) 

Prob. ** 

None * 0.222015 63.35851 47.85613 0.0009 38.66131 27.58434 0.0013 

Atmost 1 0.099832 24.69720 29.79707 0.1726 16.19672 21.13162 0.2136 

Atmost 2 0.051055 8.500472 15.49471 0.4135 8.070276 14.26460 0.3716 

Atmost 3 0.002790 0.430196 3.841466 0.5119 0.430196 3.841466 0.5119 

Normalized cointegrating coefficients (standard error in parentheses) 

LF PR BH DF     

1.000000 – 0.540468 – 0.927617 0.944683     

 (0.03997) (0.09354) (0.09852)     

 [– 13.5210] [– 9.91697] [9.58913]     

*denotes rejection of the hypothesis at the 0.05 level. 

**MacKinnon-Haug-Michelis [20] p-values. 
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Consequently, the cointegrating vector is given by 

( ).944683.0,927617.0,540468.0,1 −−=β  

The values correspond to the cointegrating coefficients of LF (normalized 

to one), PR, BH, and DF, respectively. 

As far as the main purpose of cointegration analysis is to get a 

stationary series from two or more non-stationary series, the resulting 

stationary series is written as a linear combination of the nonstationary 

series under study. Accordingly, if this stationary series is designated by 

,tS  then using the results obtained from Table 3.9 above tS  is given by 

,944683.0927617.0540468.0 ttttt DFBHPRLFS +−−=   (3.1) 

(3.1) above enlightens that tS  is stationary in spite of the fact that all the 

four series are nonstationary. 

3.6. Model estimation 

After deduction is made then the variables in the VAR model 

appeared to be cointegrated, the immediate stride is to estimate the 

short-run behaviour and the adjustment to the long-run models, which is 

represented by VECM. The VEC model has the following structure: 

,1
1

ttiti

p

i
t BXYY ε+α+∆Γ+µ=∆ −−

=∑  (3.2) 

where tBX  is the error correction term given by tYβ′  and β  is the 

cointegrating vector. The responses of LF, PR, BH, and DF to short-term 

output movements are captured by the iΓ  coefficient matrices. The α  

coefficient vector reveals the speed of adjustments to the equilibrium, 

which measures the deviation from the long-run relationship between LF, 

PR, BH, and DF. Coefficient estimates of the VEC model are presented in 

Table 3.10 below. This long-run equilibrium model is: 

.944683.0927617.0540468.027715.47 tttt DFBHPRLF −++=   (3.3) 

(3.3) above indicates that, in the long run, a one million dollar increase in 

the monthly Passenger Revenue accounts for an average increase of about 

0.54% in the monthly Load Factor. 



THOMUS SOLOMAN and M. K. SHARMA 236 

Table 3.10. Vector error correction estimates 

Vector error correction estimates standard errors in ( ) & t-statistics in [ ] 

Cointegrating Eq.: Coint. Eq.1    

LF(-1) 1.000000    

PR(-1) – 0.540468    

 (0.03997)    

 [– 13.5210]    

BH(-1) – 0.927617    

 (0.09354)    

 [– 9.91697]    

DF(-1) 0.944683    

 (0.09852)    

 [9.58913]    

C – 47.27715    

Error correction: D(LF) D(PR) D(BH) D(DF) 

Coint. Eq. 1 – 0.588086 0.662929 0.087086 0.607007 

 (0.18673) (0.20171) (0.26189) (0.18972) 

 [– 3.14934] [3.28654] [0.33253] [3.19943] 

D(LF(-1)) – 0.652171 0.867706 0.384553 0.022715 

 (0.21241) (0.38976) (0.45889) (0.02388) 

 [– 3.07039] [2.22626] [0.83801] [0.95109] 

D(PR(-1)) – 0.057621 – 0.278937 0.071514 0.005741 

 (0.09491) (0.16772) (0.41041) (0.01512) 

 [– 0.60711] [– 1.66314] [0.17425] [0.37975] 

D(BH(-1)) 0.757550 0.971061 – 0.920145 – 0.129807 

 (0.187992) (0.36552) (0.56427) (0.45777) 

 [4.02969] [2.65664] [– 1.63068] [– 0.28357] 

D(DF(-1)) 0.938681 0.952187 0.920495 – 0.114545 

 (0.32081) (0.34654) (0.67738) (0.67165) 

 [2.92601] [2.74773] [1.35890] [– 0.17054] 

C – 0.596773 0.062378 0.101714 0.123822 

 (0.31018) (0.26496) (0.03383) (0.03513) 

 [– 1.92396] [0.23543] [3.00644] [3.52441] 
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Table 3.10. (Continued) 

R-squared 0.651586 0.680120 0.123152 0.168651 

Adj. R-squared 0.619367 0.651933 0.102185 0.131674 

Sum sq. resides 34.72280 423.5239 7.712675 3.441194 

F-statistic 4.571581 4.109382 2.112504 2.190930 

Log likelihood – 68.72787 – 143.7643 – 23.59193 0.619467 

Akaike AIC 3.853418 4.992143 0.986398 0.179351 

Schwartz SC 4.062853 5.201577 1.195832 0.388786 

Likewise, a one thousand hours flight time increase per month will 

result in an average increase by around 0.93% in the monthly Load 

Factor of the Ethiopian Aviation, in the long-run. In contrast, a one 

million kilometer increase in the monthly flight distance, on average in 

the long run, will come up with a decrease of about 0.94% in the load 

factor per month. 

The second part of Table 3.10 contains the coefficients of the error 

correction terms (coint. Eq. 1) for the cointegration vector. These coefficients 

are called the adjustment coefficients. They measure the short-run 

adjustments of the deviations of the endogeneous variables from their 

long-run values. These first row coefficients identify the fraction of the 

long-term gap that is closed by each endogeneous variable in each period 

(months). 

But before going to construct the individual VEC models, each 

variable should be checked whether they are endogeneous or exogeneous. 

This can be done through the following exogeneity test. 

3.7. Granger causality/block exogeneity Wald test 

This test detects whether the lags of one variable can Granger-cause 

any other variables in the VEC system. The null hypothesis is that all 

lags of one variable can be excluded from each VECM. Table 3.11 below 

presents an exogeneity test when each series are treated as dependent 

(endogeneous) variable. 
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Table 3.11. VEC granger causality/block exogeneity Wald tests 

Depen dent variable : D(LF) 

Excluded Chi-sq df Prob. 

D(PR) 2.585663 1 0.1078 

D(BH) 12.80246 1 0.0003 

D(DF) 12.38657 1 0.0004 

All 14.48618 3 0.0023 

Dependent variable: D(PR) 

Excluded Chi-sq df Prob. 

D(LF) 6.208201 1 0.0127 

D(BH) 8.623484 1 0.0033 

D(DF) 8.236895 1 0.0041 

All 9.579177 3 0.0020 

Dependent variable: D(BH) 

Excluded Chi-sq df Prob. 

D(LF) 0.790258 1 0.3740 

D(PR) 0.001542 1 0.9687 

D(DF) 0.057172 1 0.8110 

All 1.211434 3 0.7503 

Dependent variable: D(DF) 

Excluded Chi-sq df Prob. 

D(LF) 1.043092 1 0.3071 

D(PR) 4.76E-06 1 0.9983 

D(BH) 0.007355 1 0.9317 

All 1.797007 3 0.6156 

Thus from the two parts of VEC estimates in Table 3.10, the following 

two VECMs can be straightforwardly estimated only for endogeneous 

variables (LF and PR) by introducing the error correction term as another 

independent variable in the restricted VAR model. 
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VEC model of load factor: 

[ ]3.4794.093.054.059.0 1111 −+−−−=∆ −−−− tttt DFBHPRLFLF  

;59.094.076.006.065.0 1111 −∆+∆+∆−∆− −−−− tttt DFBHPRLF (3.4) 

VEC model of passenger revenue: 

[ ] 11111 87.03.4794.093.054.066.0 −−−−− ∆+−+−−=∆ ttttt LFDFBHPRLFPR  

,062.095.097.028.0 111 +∆−∆+∆− −−− ttt DFBHPR  (3.5) 

where “Δ” denotes first difference (D), the value in the closed bracket is 

the error correction term and the coefficients of error correction term are 

called adjustment coefficients. 

Therefore, from (3.4) and (3.5) above it can be realized that, each 

month, 59% and 66% of the long term gaps are closed by LF and PR, 

respectively. That is, 59% and 66% of the short run disequilibria in LF 

and PR are adjusted within one month, respectively. On the other hand, 

the long term BH and DF gaps are closed by about 8.7% and 61% in each 

month as it can be referred from Table 4.10, respectively. It is also 

possible to say that 8.7% and 61% of the short run disequilibria in BH 

and DF are adjusted within a single month. These results imply that BH 

and PR have the shortest and longest speed, respectively, to get back to 

the equilibrium after a shock. LF and DF share almost equal speed to 

achieve equilibrium after a shock. Additionally, LF is significantly 

affected by BH, DF and its own lagged values in the short-run. On its 

part, PR is significantly determined by lagged values of all the variables, 

except its own lagged values, in the short run. However, BH and DF are 

insignificantly affected by all of the variables in the short run. 

3.8. Model checking 

Subsequent to model development, it is necessary to verify whether 

the fitted model is suitable. All the time it is after model validity 

examination that forecasting will be made. 
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3.8.1. Test of residual autocorrelation 

Table 3.12 below presents the results of the Portmanteau Q-statistic 

and Lagrange Multiplier (LM) test for the whole VEC model residual 

serial correlation. 

Table 3.12. Test of residual autocorrelation 

Q-Stat Adj Q-Stat LM-Stat 
Lag 

Value Prob. Value Prob. Value Prob. 

1 2.432637 NA* 2.473868 NA* 14.38020 0.5704 

2 18.54117 0.9117 19.13787 0.8938 19.07306 0.2649 

3 42.37984 0.5412 44.23121 0.4619 22.35275 0.1322 

4 54.94693 0.6604 57.69594 0.5604 13.66433 0.6237 

5 70.40964 0.6593 74.56435 0.5251 16.42390 0.4238 

6 87.10019 0.6249 93.10941 0.4481 17.37960 0.3615 

7 101.1300 0.6672 108.9922 0.4552 15.29466 0.5032 

8 108.5863 0.8364 117.5957 0.6448 8.167734 0.9437 

9 121.3304 0.8706 132.5887 0.6594 15.63678 0.4786 

10 132.5038 0.9139 145.9968 0.7057 13.76859 0.6159 

11 147.6776 0.9103 164.5769 0.6443 23.66651 0.0970 

12 164.7226 0.8886 185.8831 0.5300 21.16612 0.1722 

*The test is valid only for lags larger than the VAR lag order. 

The tests in Table 3.12 above are used to test for the overall 

significance of the residual autocorrelations up to lag 12. Both tests imply 

that residuals do not suffer from autocorrelation problem up to lag 12 as 

all p-values go beyond the 5% level of risk. 

3.8.2. Testing normality 

Multivariate version of the Jarque-Bera tests is used to test the 

normality of the residuals. It compares the 3rd and 4th moments 

(skewness and kurtosis) to those from a normal distribution. The test has 

null hypothesis indicating that the error term in the model has skewness 

and kurtosis corresponding to a normal distribution. 
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Table 3.13. Normality test 

Skewness Kurtosis Jarque-Bera Statistic 
Component 

Value Prob. Value Prob. Value Prob. 

1 – 0.512526 0.1051 4.331375 0.0353 7.058224 0.0293 

2   0.409035 0.1958 3.384622 0.5431 2.042931 0.3601 

3 – 0.616863 0.0511 3.445014 0.4817 4.300290 0.1165 

4 – 0.083268 0.7923 2.474528 0.4061 0.759639 0.6840 

Joint  0.0854  0.2001  0.077 

The results in Table 3.13 show that there is no evidence to reject the 

null hypothesis of normality for the whole VEC model residuals. 

3.9. Structural analysis 

3.9.1. Granger causality test 

Table 3.14 below presents results from the pair wise Granger 

causality tests at 5% significance level. The result shows that at 95% 

confidence level, Block hours (BH) and Distance flown (DF) Granger 

cause the Load factor (LF) but the converses do not hold. Passenger 

revenue (PR) does not Granger cause LF. That is, only the change in PR 

does not account for the change in LF. Beside, PR is Granger caused by 

all the variables but the reverses fail. That is, the changes in all variables 

will result in the change in PR. 
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Table 3.14. Pairwise Granger causality tests 

Null Hypothesis: Obs. F-Statistic Prob. 

PR does not Granger Cause LF 0.22910 0.6341 

LF does not Granger Cause PR 
59 

7.32725 0.0090 

BH does not Granger Cause LF 11.6683 0.0008 

LF does not Granger Cause BH 
59 

2.98006 0.0863 

DF does not Granger Cause LF 11.4995 0.0009 

LF does not Granger Cause DF 
59 

2.50532 0.1155 

BH does not Granger Cause PR 13.5908 0.0003 

PR does not Granger Cause BH 
59 

0.00248 0.9604 

DF does not Granger Cause PR 13.8178 0.0003 

PR does not Granger Cause DF 
59 

0.00616 0.9375 

DF does not Granger Cause BH 1.74584 0.1884 

BH does not Granger Cause DF 
59 

0.05641 0.8126 

3.9.2. Impulse-response functions 

Impulse responses trace out the reaction of the variables in the VAR 

to shocks of each variable. Therefore, for each variable a unit shock is 

applied to the error and the effects upon the VAR system over time are 

noted. 

The x-axis in Figure A1((a) and (b)) in the Appendix part provides the 

time horizon or the duration of the shock whilst the y-axis gives the 

direction and intensity of the impulse or the percent variation in the 

dependent variable away from its base line level. In our case there are 8 

potential impulse response functions. The outcomes and combined graphs 

of these IRF functions are given in Table A5 ((a) and (b)) and Figure A1 

((a) and (b)) of Appendix with the Cholesky ordering of LF, PR, BH, and 

DF, respectively. 

Figure A1(a) shows the responses of LF, PR, BH, and DF with respect 

to one standard deviation innovation in LF. The result indicates LF 

innovations have a positive impact on PR and BH. For PR, it displays a 

slow rising trend until it reaches 0.072 intensity value and it calms down 
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at around 2 month time horizon. Similarly, the shocks of LF show a 

positive effect upon BH with a fast intensifying up to an impulse intensity 

of 0.23, then declines rapidly to an intensity of 0.092 and finally stabilizes 

at 3 month time horizon. But the one standard shocks in LF have totally 

a negative impact on DF. This impact initially exhibits a slight decrease 

up to a − 0.2 and becomes constant after 4 month time horizon. 

Figure A1(b) shows that the effects of a one standard deviation shock 

in PR on the remaining variables. From the figure, the shocks have a 

positive response for LF. That is, it reveals a sluggish diminishing 

pattern up to 1.11 level of intensity and moves upward moderately until 

it becomes steady at around 3. The shocks have also a parallel effect in 

BH but an opposite response in DF. 

3.9.3. Forecast error variance decomposition 

The decomposition results of the models of endogeneous variables   

(LF and PR) are plotted in Figure A2((a) and (b)) of Appendix. These two 

results provide the forecast error percentage in each variable that could 

be attributed to innovations of the other variables, for different time 

periods. The Cholesky ordering employed is LF, PR, BH, and DF. 

The variance decomposition analysis result of Figure A2(a) shows 

that, at the first horizon, variation of LF is explained only by its own 

shock. In the second month 97.83% of the variability in the LF 

fluctuations is explained by its own innovations and the remaining 2.17% 

is explained by BH (1.71%), DF (0.29%), and PR (0.17%). Even up to the 

tenth month, much of the variability of LF (85.93%) is explained by its 

own shock and the rest portion is occupied by DF (8.74%), BH (4.01%), 

and PR (1.32%). It can also be observed that, after ten months, the 

variability of LF determined by DF has shown an increment to 8.74% and 

the LF shock revealed a total of 14.07% decrement. However, the 

percentages of BH and PR to LF variability explanation seem to never 

increase beyond 5% and 2%, respectively, even after large amount of 

duration. 
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In a similar fashion, Figure A2(b) displays that, in the first month, 

81.25% of the variability of PR is explained by its own shock and 18.75% 

is determined by LF. After ten months the variability of PR explained by 

its shocks and LF attained 70.05% and 26.85%, respectively. 

3.10. Forecasting 

This section conducts an examination on the forecasting accuracy of 

the fitted model and then makes a forecast for January 2014 to December 

2014. Meaning, one year ahead forecast is made and can be seen from 

Table 3.16. 

3.10.1. Evaluation of accuracy 

The mean square error (MSE), root mean square error (RMSE), mean 

absolute error (MAE), and Theil U statistics are used to assess the 

forecasting performance. In evaluating the performance of the forecasting 

models, the lower the RMSE, MAE, MAPE, and Theil-U statistic, the 

better the forecasting accuracy. 

Table 3.15. Forecasting accuracy statistics 

Forecast sample: January 2013 to December 2013 

Variables 
Accuracy measures 

LF PR 

Root mean squared error 1.090529 4.369759 

Mean absolute error 0.891087 3.970237 

Mean absolute percent error 1.249139 3.931896 

Theil inequality coefficient 0.007653 0.022276 

3.10.2. Out-of-sample and in-sample forecasting analysis 

Out-of-sample forecasted values for the series under study, using the 

vector error correction model, are presented in Table 3.16 below. 
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Table 3.16. Forecasts from the VECM (1) models 

Months LF PR 

January 2014 71.39764 92.39132 

February 2014 71.31635 93.70771 

March 2014 71.47449 94.64862 

April 2014 71.53258 93.66481 

May 2014 71.78363 94.04010 

June 2014 71.53519 95.94809 

July 2014 71.22674 98.67355 

August 2014 71.18153 99.72597 

September 2014 70.76529 102.4194 

October 2014 70.95727 103.9212 

November 2014 70.94412 104.6392 

December 2014 70.77500 105.7876 
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Appendix 

Table A(1). Seasonality F-tests and adjustment quality diagnostics of 

original series 

Table A1(a). F-tests for seasonality and adjustment quality diagnostics 

of original PR 

Test for the presence of seasonality assuming stability: 

 Sum of squares Degrees of freedom Mean square F-value 

Between months 7302.5129 11 663.86481 130.619** 

Residuals 243.9578 48 5.08246  

Total 7546.4707 59   

**Seasonality present at the 0.1 per cent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability level  

 56.3639 11 0.000%  

Seasonality present at the one percent level  

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 24.8880 4 6.221996 1.542 

Error 177.5488 44 4.035201  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.09 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.56 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M1 = 0.099, M2 = 0.113, M3 = 0.000, M4 = 0.201, M5 = 0.225, M6 = 0.521, M7 = 0.211, Q = 0.19 
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Table A1(b). F-tests for seasonality and adjustment quality diagnostics 

of original BH 

Test for the presence of seasonality assuming stability: 

 Sum of squares Degrees of freedom Mean square F-value 

Between months 1594.6490 11 144.96809 54.912** 

Residuals 126.7196 48 2.63999  

Total 1721.3686 59   

**Seasonality present at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability 

level 

 

 53.4551 11 0.000%  

Seasonality present at the one percent level  

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 9.5947 4 2.398663 0.948 

Error 111.3712 44 2.531163  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.23 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.80 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M1 = 0.182, M2 = 0.194, M3 = 0.000, M4 = 0.161, M5 = 0.147, M6 = 0.056, M7 = 0.299, Q = 0.18 
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Table A1(c). F-tests for seasonality and adjustment quality diagnostics 

of original DF 

Test for the presence of seasonality assuming stability:  

 Sum of squares Degrees of freedom Mean square F-value 

Between months 1690.9310 11 153.72100 59.340** 

Residuals 124.3450 48 2.59052  

Total 1815.2760 59   

**Seasonality present at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability level  

 53.2098 11 0.000%  

Seasonality present at the one percent level 

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 7.9251 4 1.981283 0.863 

Error 101.0621 44 2.296867  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.15 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.67 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M1 = 0.200, M2 = 0.214, M3 = 0.000, M4 = 0.282, M5 = 0.144, M6 = 0.114, M7 = 0.284, Q = 0.20 

 

 

 

 



VECTOR AUTOREGRESSION AND VECTOR … 251 

Table A2. Post-seasonal adjustment tests 

Table A2(a). F-tests for seasonality of passenger revenue series after 

adjustment 

Test for the presence of seasonality assuming stability:  

 Sum of squares Degrees of freedom Mean square F-value 

Between months 24.0917 11 2.19016 0.514 

Residuals 204.7018 48 4.26462  

Total 228.7936 59   

No evidence of stable seasonality at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability level  

 3.7502 11 97.666%  

No evidence of seasonality at the one percent level 

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 1.2852 4 0.321289 0.135 

Error 104.3351 44 2.371253  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.10 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.49 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M7 = 2.189 
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Table A2(b). F-tests for seasonality of block hours series after 

adjustment 

Test for the presence of seasonality assuming stability:  

 Sum of squares Degrees of freedom Mean square F-value 

Between months 7.9035 11 0.71850 0.316 

Residuals 109.2417 48 2.27587  

Total 117.1452 59   

No evidence of stable seasonality at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability level  

 1.4590 11 99.967%  

No evidence of seasonality at the one percent level 

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 3.3667 4 0.841686 0.825 

Error 44.8811 44 1.020025  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY NOT PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.19 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.65 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M7 = 3.000 
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Table A2(c). F-tests for seasonality of distance flown series after 

adjustment 

Test for the presence of seasonality assuming stability:  

 Sum of squares Degrees of freedom Mean square F-value 

Between months 8.0585 11 0.73259 0.311 

Residuals 113.0569 48 2.35535  

Total 121.1154 59   

No evidence of stable seasonality at the 0.1 percent level  

Nonparametric test for the presence of seasonality assuming stability: 

 Kruskal-Wallis 

statistic 

Degrees of freedom Probability level  

 1.1508 11 99.990%  

No evidence of seasonality at the one percent level 

Moving seasonality test:   

 Sum of squares Degrees of freedom Mean square F-value 

Between years 1.0636 4 0.265898 0.244 

Error 47.9685 44 1.090194  

No evidence of moving seasonality at the five percent level 

COMBINED TEST FOR THE PRESENCE OF IDENTIFIABLE SEASONALITY: 

IDENTIFIABLE SEASONALITY NOT PRESENT 

Test for the presence of residual seasonality: 

No evidence of residual seasonality in the entire series at the 1 percent level. F = 0.13 

No evidence of residual seasonality in the last 3 years at the 1 percent level. F = 0.59 

No evidence of residual seasonality in the last 3 years at the 5 percent level. 

M7 = 2.980 
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Table A5(a). Impulse response results (Cholesky ordering: LF, PR, BH, 

DF) 

 

Period LF PR BH DF 

1 1.584788 0.000000 0.000000    0.000000 

2 0.707372 0.072319 0.229310 − 0.095068 

3 0.570479 0.060804 0.091592 − 0.144731 

4 0.351148 0.082558 0.141682 − 0.203685 

5 0.306381 0.079909 0.124629 − 0.213003 

6 0.253537 0.084614 0.128889 − 0.226599 

7 0.235466 0.084852 0.127147 − 0.231316 

8 0.222716 0.085738 0.127576 − 0.234435 

9 0.216955 0.085959 0.127282 − 0.235927 

10 0.213540 0.086162 0.127334 − 0.236781 

 

Table A5(b). Response of PR 

Period LF PR BH DF 

1 1.212795 2.524314 0.000000   0.000000 

2 1.113426 2.150071 0.508846 − 0.420855 

3 1.445829 2.163550 0.443438 − 0.145376 

4 1.378483 2.171589 0.399866 − 0.204049 

5 1.393663 2.169909 0.429614 − 0.199768 

6 1.412428 2.167921 0.419615 − 0.191979 

7 1.410077 2.168827 0.421929 − 0.193672 

8 1.414102 2.168293 0.421591 − 0.192521 

9 1.414713 2.168361 0.421675 − 0.192317 

10 1.415383 2.168301 0.421639 − 0.192181 
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Figure A1(a). Response of LF to Cholesky One S.D. innovations. 

 

Figure A1(b). Response of PR to Cholesky One S.D. innovations. 



THOMUS SOLOMAN and M. K. SHARMA 256 

 

Figure A2(a). Variance decomposition of LF. 

 

Figure A2(b). Variance decomposition of PR. 




