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Abstract 

We compare two recently developed statistical tractography methodologies by 
Carmichael and Sakhanenko [2, 3] on a series of artificial but mimicking reality 
datasets. Both methodologies are used to model diffusion tensor imaging (DTI) 
and high angular resonance diffusion imaging (HARDI), which are popular 
brain imaging techniques. The approach based on a higher order tensor model 
dominates the approach based on a standard matrix model in all scenarios 
including wide and narrow fibers, single and crossing fibers. 

1. Introduction 

Diffusion tensor imaging (DTI) is a popular in vivo brain imaging 
technique, allowing for the tracing of neural fibers called axons, the 
pathways of communication between different regions of the brain. Thus 
the investigation of brain connectivity is crucial for disease diagnostics, 
planning of neuro-surgeries, and understanding how the brain ages. 
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The observed data is related to the axons geometry in a very 
complicated physical, mathematical and ultimately statistical way. Many 
tractography methods are available, see [1], [5] and references therein. 
Recently, a class of so called statistical tractography methods has 
emerged. It started with the work of Koltchinskii et al. [6], followed by 
two works of Carmichael and Sakhanenko [2, 3] and, denoted by CS 
below. These three methodologies rely on 3 different models. The first 2 
were compared theoretically and empirically in Carmichael and 
Sakhanenko [3], who concluded that the later paper provides a 
statistically better and a more realistic approach. The goal of this paper 
is to compare empirically the later 2 methods. 

First, let us briefly describe the model and the approaches in CS 
works. Low angular resolution DTI is based on measurements of water 
diffusion on a grid of points. Locally the relative amount of water 

diffusion along a spatial direction ,1,3 =∈ bb R  at a voxel ( ),,, bxSx  

is estimated as follows: 
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where ( )xS0  is the amount of water diffusion without gradient 

application; ( ) bbx ξ>σ ;0,  describes noise; the constant c depends only 

on the proton gyro-magnetic ratio, the gradient pulse sequence shape, 

duration and other timing parameters of the imaging procedure; LD  is a 
33 ×  symmetric positive definite matrix. In practice, a set of N directions 

b is chosen and the corresponding log-losses are measured. They are 
stacked into a vector-column Y in model (1). Meanwhile the upper 

triangular part of matrix LD  is stacked into a 6D vector-column .M  

Furthermore, to model the branching phenomenon, Carmichael and 
Sakhanenko [3] used a mixture of tensors and proposed the following 
setup: at a fixed location x in a 3D region G we assume that the 

observations ( ) ,6, ≥∈ NxY NR  arise from a mixture of two underlying 
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tensors, ( )( )x1M  and ( )( ).2 xM  These tensors the same simple maximal 

eigenvalue but different leading eigenvectors: 

( ) ( ( )( ) ( ) ( )( )) ( ) .1
2121

xxxxBxY Ξ+π−+π= ∑MM   (1) 

Here the symmetric tensors ( )( ) ,2,1, =ixiM  are represented by 6D 

vectors, B is a fixed known 6×N  design matrix. The random noise 6D 

vector Ξ  has mean 0 and identity covariance matrix. ( )x∑  is a positive 

definite 66 ×  unknown matrix. The mixing coefficient π  determines the 

relative contributions of ( )( )x1M  and ( )( )x2M  to ( ).xY  

As an alternative approach, Carmichael and Sakhanenko [2] 

proposed to use a higher order tensor HD  in place of LD  as follows: 
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where ( )xDH  with components ( )xDH
ii M"1

 is a high-order diffusion 

tensor, which is a super-symmetrical positive definite �
�	� …
times

33
M

××  times 

tensor with M being an even number. Due to symmetry ( )xDH  can be 

represented by a vector ( ) MJRx ∈M  with the dimension ( )1+= MJ M  

( ) .22+M  

Now let mJN M=  for some .1≥m  Then at a fixed location x, one 

observes log-losses of signal ( )
( ) 






xS
bxS

0

,log  along N directions b, stacked 

into the vector ( ),xY  such that 

( ) ( ) ( ) ,
21

xxxBxY Ξ+= ∑M   (3) 
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where MJNB ×∈ R  is a fixed matrix determined from the set of 

directions ( ) N
xxYb R∈Ξ,,  are vectors, the -NN × tensor ( )x∑  is 

symmetric positive definite. This model also tries to accommodate 

branchings by following all significant pseudo-eigenvectors of HD  
simultaneously. 

For both models one has a set of locations (typically lying on a regular 
3D lattice) nXX ,,1 "  at which one observes ( ) ( ).,,1 nXYXY …  The goal 

is to estimate the integral curves driven by the (pseudo)-eigenvectors 
( ) ,,,1, Rrv r …=  of the (super)-tensor field ,M  which are the solutions 

of the following ODE: 

( )( ) ( )( ( )( )) ( )( ) ,0,0, axttxvdt
tdx rrr

r
=≥=   (4) 

or equivalently of the following integral equation: ( ) ( ) ( )rtr vatx ∫+=
0

 

( ( )( )) .dssx r  These curves serve as models for the trajectories of fibers 

within axon fiber tracts. 

Carmichael and Sakhanenko [2, 3] proposed natural multi-step 
estimators for the integral curves that are essentially plug-in estimators. 
First M  is estimated using the least squares approach, then the 
(pseudo)-eigenvectors of the estimator are taken as the estimators of the 
true (pseudo)-eigenvectors, which are then plugged into the main ODE 
and solved numerically to produce the estimated integral curves. For the 
first model, a variety of standard clustering techniques can be applied to 

estimate ( )( )x1M  and ( )( )x2M  as well as .π  

It was shown theoretically that both estimators are asymptotically 
normal under certain regularity conditions, so they can be traced 
together with confidence ellipsoids. In this paper, we compare them on 
artificial but mimicking reality patterns of fiber bundles of various 
thicknesses under various levels of noise. The first pattern consists of one 
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fiber bundle which resembles the letter C, so we denote it as such. The 
second pattern mimics a fiber that branches into two fibers, so the three 
bundles comprise the letter Y shape. The third pattern mimics the 
crossing of two fiber bundles which are not orthogonal, so it resembles 
the letter X. Figure 1 shows these patterns together with reference points 
on the curves that will be used to assess the quality of the estimation. 

 

(a) Fibers are estimated using CS procedure for C pattern. 
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(b) Fibers are estimated using CS procedure for Y pattern. 

 

(c) Fibers are estimated using CS procedure for X pattern. 

Figure 1. Reference images of typical curves for patterns C, X, and Y. 
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2. Main Results and Discussion 

For each pattern, we consider 4 different bundle thicknesses ,4,2, δδδ  

and δ8  with 02.0=δ  for images in the volume [ ] .1,0 3  Also, we consider 

4 different levels of noise in the models with corresponding signal-to-
noise ratios (SNR) 2.5, 5, 7.5, and 10. For both models the tensor fields 
are generated as follows. First, the (pseudo)-eigenvectors are generated 
inside the fiber bundles and outside, then the corresponding tensor fields 
are constructed with eigenvalues [4, 2, 1]. Subsequently, the Gaussian 
noise of the proper SNR is added in (1) and (3). For the second model, we 
use the order 4=M  with one (for C) and two (for Y and X) significant 
pseudo-eigenvalues. 

Figure 2 shows the estimated curves based on the first model together 
with their point-wise 95% confidence ellipsoids for the first model. The second 
model produces similar graphs which are omitted here to save space. 

 

(a) Fibers are estimated using CS procedure for C pattern. 
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(b) Fibers are estimated using CS procedure for Y pattern. 

 

(c) Fibers are estimated using CS procedure for X pattern. 

Figure 2. Estimators of typical curves with 95% confidence ellipsoids for 
patterns C, X, and Y. The first model was used. 
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Figure 3 demonstrates the so-called p-value maps that could be used 
in place of heat maps that are popular for images obtained through 
probabilistic tractography methods. On these images colour represents 
the p-value for the test of the null hypothesis that a fiber started at the 
seed point would reach the given point. The cooler colour indicates the 
rejection of the hypothesis, so the seed point and these points are not 
connected by a fiber. 

 

(a) Fibers are estimated using CS procedure for C pattern. 
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(b) Fibers are estimated using CS procedure for Y pattern. 

 

(c) Fibers are estimated using CS procedure for X pattern. 

Figure 3. P-value maps of typical curves for patterns C, X, and Y. The 
first model was used. 
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Overall, the second method produces tighter confidence ellipsoids 
across all patterns and all levels of thickness as Tables 1 and 2 
demonstrate. They give the maximal width of the confidence ellipsoids at 
the locations labelled on Figure 1. There are two such locations for 
pattern C: the beginning (A) and the end (B). There are three such 
locations for pattern Y: the branching point (A) and the ends of the two 
branches (B) and (C). Similarly, there are four such locations for pattern 
X: the crossing point (A), the end of the leading fiber (C) and the ends of 
the secondary fiber (B) and (D). The second method yields tighter 
confidence ellipsoids by a factor of 10 for many combinations of thickness 
levels and SNR levels. It is quite noticeable for thickness levels of δ2  and 

.4δ  
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Table 1. The maximal widths of the 95% confidence ellipsoids at the 
specified points for each of the estimated curves under different 
thicknesses and with different SNR. Here ,02.0=δ  centered Gaussian 

noise was added to 3 different patterns: C, Y, X; (0.47, 0.1706, 0.48) is the 
initial point for C and Y; (0.48, 0.2, 0.48) is the initial point for X. The 

grid is regular with 505050 ××  knots. [ ] .1,0 3=G  The low angular 

resolution DTI model is used 

Curve type A B A B C A B C D 

1δ, SNR = 2.5 .0107 .0145 .2081 .2466 .5485 .1822 .3216 .2009 .2719 

1δ, SNR = 5 .0076 .0092 .0569 .1432 .5251 .3128 .3381 .2177 .3263 

1δ, SNR = 7.5 .0070 .0084 .0289 .0411 .4489 .1347 .1879 .0769 .2859 

1δ, SNR = 10 .0068 .0082 .0197 .0529 .4172 .2202 .2711 .1002 .3538 

2δ, SNR = 2.5 .0105 .0144 .0354 .1037 .1100 .0319 .0461 .0638 .0919 

2δ, SNR = 5 .0075 .0091 .0111 .0203 .1257 .0100 .0165 .0179 .1023 

2δ, SNR = 7.5 .0070 .0084 .0094 .0322 .1145 .0220 .0235 .0199 .0153 

2δ, SNR = 10 .0068 .0082 .0085 .0148 .0714 .0041 .0081 .0125 .0080 

4δ, SNR = 2.5 .0086 .0106 .0247 .0574 .4765 .0889 .1133 .0560 .2602 

4δ, SNR = 5 .0072 .0087 .0134 .0863 .5185 .0218 .0839 .0394 .0591 

4δ, SNR = 7.5 .0069 .0082 .0102 .0898 .4702 .0152 .0485 .0203 .0271 

4δ, SNR = 10 .0067 .0080 .0084 .0299 .3809 .0042 .0440 .0089 .0108 

8δ, SNR = 2.5 .0086 .0106 .0302 .2329 .5677 .0970 .1379 .1342 .1722 

8δ, SNR = 5 .0071 .0087 .0116 .0769 .4711 .0866 .2961 .2570 .1483 

8δ, SNR = 7.5 .0069 .0082 .0117 .1058 .5196 .0199 .1788 .0193 .1433 

8δ, SNR = 10 .0067 .0081 .0097 .0607 .4548 .0140 .1408 .0921 .1473 

 

 

 

 

 

 



Table 2. The maximal widths of the 95% confidence ellipsoids at the specified points 
for each of the estimated curves under different thicknesses and with different SNR. 
The HARDI model is used 

Curve type A B A B C A B C D 

1δ, SNR = 2.5 .0032 .0169 .0037 .0683 .1322 .1021 .1021 .3201 .8509 

1δ, SNR = 5 .0114 .0197 .0004 .0112 .0018 .0019 .0706 2.00E–7 .0007 

1δ, SNR = 7.5 .00002 0.00003 .00005 .0063 .0591 .0100 .0001 .0005 .0496 

1δ, SNR = 10  .0053 .0053 .0002 .0021 .0269 .0024 .0040 .0035 .0973 

2δ, SNR = 2.5 .0028 .0028 7.61E–6 .0006 .0424 .00002 .0027 .00002 .0238 

2δ, SNR = 5 .0001 .0002 2.02E–7 .0002 .0155 9.14E–8 .0092 .0008 .0626 

2δ, SNR = 7.5 .0003 .0004 8.93E–8 .00005 .0164 1.34E–8 6.94E–8 1.18E–7 .0087 

2δ, SNR = 10  5.87E–6 5.89E–6 1.90E–8 .00002 .0179 2.79E–7 2.79E–7 .00002 .0102 

4δ, SNR = 2.5 7.18E–6 8.71E–6 .0031 .0354 .0130 4.75E–6 .00002 6.50E–6 .0092 

4δ, SNR = 5  .0001 .0002 .0001 .0001 .0104 .0001 .00001 1.53E–6 .0101 

4δ, SNR = 7.5 1.39E–6 .00006 3.88E–8 .00009 .0115 2.62E–8 7.91E–6 .0008 .0079 

4δ, SNR = 10 .00001 .0003 .0002 .0003 .0125 .0005 .0006 5.97E–8 .0139 

8δ, SNR = 2.5 .0004 .0005 .00001 .0007 .0526 2.25E–6 .0001 .00003 .0246 

8δ, SNR = 5  .00002 .00003 2.00E–9 1.29E–7 .0092 7.57E–8 1.64E–7 2.47E–6 .0096 

8δ, SNR = 7.5 3.11E–7 3.67E–7 3.17E–9 1.29E–7 .0076 1.28E–8 2.05E–8 2.05E–8 .0001 

8δ, SNR = 10 5.18E–6 .0001 1.58E–9 .0005 .0104 3.13E–9 3.15E–9 4.29E–9 .0106 
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For pattern C, the width increases slightly as one moves along the 
estimated curve which indicates greater uncertainty. Such behaviour is 
expected. For pattern Y the width increases greatly after the branching, 
with the width of ellipsoids for branch C significantly higher than that of 
branch B. The method is more confident in branch B than in the location 
of branch C. For pattern X, the crossing point and the end of the leading 
fiber have confidence ellipsoids of similar widths, increasing slightly 
towards the end, while the secondary fiber has much wider confidence 
ellipsoids at both ends. The level of thickness does not affect pattern C, 
but does influence X and Y (particularly, at smallest width δ2 ). Too wide 
( )δ8  or too narrow ( )δ  fibers are more difficult to estimate. Quite 

naturally, the confidence ellipsoids are rather wide. These tendencies 
hold for both methods. 

On the contrary, the confidence ellipsoids tend to get tighter as the 
SNR increases, which is quite expected. For a single fiber, the 
improvement is especially pronounced when the SNR is increased from 
2.5 to 5. For the pattern Y, the improvement is significant when the SNR 
is increased from 5 to 7.5. For the pattern X, the numbers for the leading 
fiber A and C follow pattern C’s tendencies, while the secondary fibers 
generally have wider confidence ellipsoids across all levels of thickness, 
all levels of SNR and both methods. The estimation is not very stable for 
one of the ends of the secondary fiber especially in the case of high noise, 
i.e., with SNR of 2.5, and narrow fiber bundle, i.e., with thickness of .δ  

Next we consider imaging features of the estimators. It is quite 
common for probabilistic tractography methods to provide so called 
occupation probability plots, since these methods are based on Bayesian 
modelling of the distribution of the fibers. Both approaches being studied 
in this paper are nonparametric and non-Bayesian. So we need a suitable 
counterpart to occupation probabilities. We consider the so called p-value 
map for the image. The null hypothesis at a point x is that a fiber bundle 
starting at the initial point reaches that point x, in other words the initial 
point and point x are connected by a fiber. Thus low p-values lead to the 
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rejection of the connectivity hypothesis. When p-values are calculated at 
each point x on a grid and a corresponding heat map is made, then we 
obtain the p-value map. For each pattern, each level of thickness and 
each level of SNR we calculate the average p-value in an ε -cylinder 
around the true curve bundle and the average outside of this cylinder. 
The resulting numbers are summarized in Tables 3 and 4 for the two 
models. The average p-values are significantly lower outside the ε -tube 
around the fiber for both models, at all levels of thickness and with all 
levels of SNR. The ratio of the average p-values inside and outside the  
ε -tube is at least 10 for the single fiber C for the first model for all levels 
of thickness and SNR and for the second model for most levels of 
thickness and SNR. For pattern Y, the ratio is between 1.25 and 2.25 for 
the first model and it is between 1.32 and 4.21 for the second model. The 
ratio tends to increase as SNR increase, which means that as the relative 
amount of noise decreases the boundary between small p-values and 
large p-values tends to hug the true fiber closer. Likewise, for pattern X, 
the ratio is between 1.1 and 3 for the first model and it is between 1.1 
and 56 for the second model. The level of thickness affects the ratio of 
average p-values only slightly. The thick-nesses of δ2  and δ4  seem to 
give higher ratios for both models. Overall, the method based on the 
second model often gives higher ratio of the average p-values inside and 
outside the ε -tube around the true fiber bundle, which puts the second 
method at advantage. 
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Table 3. We are using the tube of the radius 0.025, 0.1, 0.05 around the 
true curve for the pattern C, Y, X, respectively. We are calculating the 
average p-value inside the tube and outside of it for each of patterns. The 
low angular resolution DTI model is used 

Curve type C: inside C: outside Y: inside Y: outside X: inside X: outside 

1δ, SNR = 2.5 0.0531 2.5614E–4 0.4944 0.4199 0.4927 0.4453 

1δ, SNR = 5  0.0428 8.2638E–5 0.4878 0.3816 0.4833 0.4016 

1δ, SNR = 7.5 0.0396 5.6778E–5 0.4761 0.3371 0.4700 0.3872 

1δ, SNR = 10  0.0384 5.0436E–5 0.4694 0.3663 0.4578 0.3762 

2δ, SNR = 2.5 0.0586 1.7919E–4 0.4727 0.3325 0.4136 0.2895 

2δ, SNR = 5  0.0417 1.0026E–4 0.4461 0.2931 0.3969 0.3115 

2δ, SNR = 7.5 0.0395 6.2330E–5 0.4325 0.2855 0.3127 0.1527 

2δ, SNR = 10  0.0383 5.2524E–5 0.4157 0.1819 0.2580 0.0813 

4δ, SNR = 2.5 0.0560 2.1590E–4 0.4682 0.3431 0.4073 0.2990 

4δ, SNR = 5  0.0429 7.3598E–5 0.4404 0.3009 0.3857 0.3417 

4δ, SNR = 7.5 0.0397 5.5894E–5 0.4379 0.3448 0.3095 0.1825 

4δ, SNR = 10  0.0384 4.8152E–5 0.4357 0.3442 0.3348 0.2700 

8δ, SNR = 2.5 0.0554 1.9306E–4 0.4585 0.2844 0.4422 0.4011 

8δ, SNR = 5  0.0426 7.6901E–5 0.4413 0.3101 0.4247 0.3980 

8δ, SNR = 7.5 0.0394 6.0148E–5 0.4341 0.3144 0.4031 0.3731 

8δ, SNR = 10  0.0383 5.0609E–5 0.4340 0.3344 0.3906 0.3776 
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Table 4. We are using the tube of the radius 0.025, 0.1, 0.05 around the 
true curve for the pattern C, Y, X, respectively. We are calculating the 
average p-value inside the tube and outside of it for each of patterns. The 
HARDI model is used. 

Curve type C: inside C: outside Y: inside Y: outside X: inside X: outside 

1δ, SNR = 2.5 0.0044 4.4549E–4 0.4082 0.3062 0.4858 0.4678 

1δ, SNR = 5 0.0042 1.6423E–5 0.2331 0.1473 0.2744 0.1914 

1δ, SNR = 7.5 3.5732E–7 3.4434E–7 0.2908 0.1277 0.1952 0.1582 

1δ, SNR = 10 0.0176 4.4830E–5 0.2380 0.1557 0.1921 0.1627 

2δ, SNR = 2.5 0.0239 2.0300E–7 0.2904 0.2255 0.2006 0.1459 

2δ, SNR = 5 1.0994E–5 5.9370E–9 0.2373 0.0651 0.1554 0.1375 

2δ, SNR = 7.5 1.277E-5 6.4221E–6 0.0808 0.0389 0.0229 0.0110 

2δ, SNR = 10 3.3089E–4 4.1171E–6 0.1267 0.0801 0.0477 0.0382 

4δ, SNR = 2.5 2.4452E–5 3.9917E–6 0.3527 0.1639 0.0235 0.0149 

4δ, SNR = 5 0.0026 4.8587E–5 0.1428 0.0441 0.0613 0.0558 

4δ, SNR = 7.5 2.8126E–4 1.7066E–4 0.1050 0.0299 0.0453 0.0393 

4δ, SNR = 10 9.4983E–7 5.7935E–7 0.2358 0.0623 0.0466 0.0359 

8δ, SNR = 2.5 0.0022 9.7721E–7 0.2133 0.0772 0.0655 0.0099 

8δ, SNR = 5 1.0082E–4 5.1414E–5 0.2042 0.0455 0.0559 0.0501 

8δ, SNR = 7.5 2.1534E–4 1.6087E–5 0.1193 0.0283 0.0056 0.0001 

8δ, SNR = 10 2.3108E–4 5.6589E–6 0.1959 0.0501 0.1335 0.0422 

3. Conclusion 

Our empirical comparison of the standard matrix model to the higher 
order tensor model demonstrates clearly that the higher order tensor 
model is highly preferable to the former. Regardless of fiber thickness, 
ratio of signal-to-noise, or tracing pattern, the second method yields 
tighter confidence ellipsoids, for many combinations of the three by as 
much as a factor of 10. The first model slightly beats the second for 
pattern C in the calculation of the ratio of average p-values inside and 
outside the ε -tube. Since the difference is small, combined with the fact 
that the second model dominates for the more complex patterns Y and X, 
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the second method is preferred. We last note that both methods have 
some difficulty in estimating fibers at the extremes of fiber thickness 
(narrowest fiber thickness or widest fiber thickness), as well as at some 
locations after branching (in Y and X patterns). With this in mind, we 
consider estimation of axonal surfaces rather than curves as a possible 
further area of research. 
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