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Abstract

Conditions are explored under which geometric ergodicity of nonlinear
autoregressive time series of order p with additive errors can be extended to
hold for an exponentially bounded class of functions of the time series. This
immediately extends laws of large numbers and central limit theorems to the

larger collection of functions of the series.

1. Introduction

Consider a nonlinear autoregressive time series {Y; },5, of order p with

additive errors defined by Y, = f(Y,_y, ..., Y;_,) + ¢, where f : R — R is
a nonlinear function, p a positive integer, and {¢;,} are mean Zero,

11.d. random variables. Ergodicity of the time series follows from

ergodicity of the associated general state Markov chain X, = (Y}, ...,

’

Y;_p+1), which can be expressed X; = ¢(X;;)+§;, with ¢(X; ) =
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(F(Yy1s ooos Y p)s Yigs o, Yy piy) and & = (e, 0, ..., 0). Ergodicity
of the Markov chain can in turn be established by showing there exists a
function V : R” — R so that the chain {X,} satisfies a stochastic drift
criterion, such as E[V(X;) X, = x] < pV(x) for some p <1 when x is
large (a detailed treatment of stochastic drift criteria is in [5]). Conditions
for {X,} satisfying the stochastic drift criterion will follow from

conditions on f and {¢;}. It will be assumed that V(x) > 1 and V(x) — o

as |« does, with | -|| denoting the Euclidean norm.

Let © denote the stationary distribution of the ergodic Markov chain,
let E[] denote expectation with respect to m, and E,[] = E[|X, = x].

The chain is said to be V-geometrically ergodic when the convergence to

T occurs at a geometric rate when normalized by the function V,

up sup

<Rp", R<eo, 0<p<l. (1
x |gl<V V(x) P P

Also, (1) implies central limit theorems hold for functions g with
lg] < JV and laws of large numbers hold for functions g with lg] <V (see

Theorems 16.1.5 and 17.0.1 in [5]). The purpose of this paper is to provide
conditions under which the function V in (1) can be embedded in an

\%4 Vs

exponential V' =e®" or V' =e’ | s >0, where V' also satisfies (1). The

benefit of this is that the class of functions g for which laws of large

numbers and central limit theorems immediately follow is extended to the

class of functions |g| < V’, |g| < YV, respectively.

2. Results

It will be assumed that {X;} is a 7T-chain, meaning there is a

probability distribution {a(n)} on the nonnegative integers and a kernel
T(x, A) which is a lower semicontinuous function in x € R? for fixed

measurable A ¢ R? with Zna(n)P(Xn e AlXy = x) 2 T(x, A).
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It will also be assumed that {X;} is aperiodic and p-irreducible. A
chain is said to be v -irreducible if there exists a measure p so that
¥(A) > 0 implies P(t4 < Xy =x)> 0 for all x. A chain is said to be
aperiodic if there exists a measure y with P(X; € C|X, = x) > v(C) for
all xe A, p(A) >0, for all measurable sets C. Aperiodicity and
p-irreduciblity are standard notions in the study of general state Markov
chains; more details can be found in [5], for example.

In some cases, ergodicity may be easier to prove through analysis of
the transitions of the k-step chain {X;;, } with & a positive integer, rather
than through analysis of the single-step transitions of {X,}. The
k-step chain inherits the T-chain property from {X;} if a stronger
condition is put on {X,}; when {X;} is weak Feller in addition to being
p -irreducible and aperiodic, » being Lebesgue measure, then so is
{X;:}, implying that {X;.} is a T-chain. Weak Feller chains map
bounded continuous functions to bounded continuous functions, a
condition used to verify a chain is a weak Feller chain.

Lemma 1. Consider a Markov chain {X,}. If {X;} is weak Feller,
aperiodic, and y-irreducible for a measure v whose support has a non-
empty interior, then {X;.} is a y-irreducible, aperiodic T-chain for all

integers k > 1.

Proof. Pick an integer k£ >1. By the weak Feller assumption

E [2(X;)] is a bounded continuous function; by induction so is
E, [2(X})], implying that {X,;} is a weak Feller chain. It is known that
{X;} being y-irreducible and aperiodic implies {X;;} is, and since the
support of » has non-empty interior, we have by [5], Proposition 5.4.5

and Theorem 6.2.9 that {X;; } is a T-chain. O
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The following proposition combines the weak Feller assumption and

the k-step approach to yield conditions under which the function Vin (1)

\4 &

can be embedded in an exponential V' =e*Y or V' =€’ , s >0, where

V’ also satisfies (1). These conditions are applied in Proposition 2 to
extend the exponential geometric ergodicity to nonlinear time series.

Proposition 1. Assume {X,} is a v -irreducible, aperiodic general

state weak Feller chain on R?, with the support of v having a non-empty
interior. Suppose V 21 has V(x) = o as || x| — o, is unbounded off

compact sets and bounded on them, there is a function h bounded on

compact sets with h(x)/V(x) - 0 as | x| — oo, there is a collection of
random variables ¢, ..., ¢ and function 7(e, ..., €, x) with

Elt(eq, ..., e, x)]/ V(x) > 0 as || x | > = such that

up VO0) < V() M)+ (), @
HsHup V(X},) < NV(x) + h(x) + 7(eq, ..., €, X), 3)
x|<M

for some integer k > 0, some 0 <y <1, some M, N < o. Then

Q) If E[e‘T(El""’ek’ 2 ]< o for some q > O there exists 0 <s < min(q,1),

and V'(x) = VN such that {X;} is V' -geometrically ergodic.

@) If E[eqh(fl’“"f’f’ x) ]< o for some q > O there exists 0 <s < min(q,1),
and V'(x) = V™) such that {X,} is V' -geometrically ergodic.

Proof. (i) Get k& from the assumptions. The proof applies Theorem 4
in [3] to {X;,}, which theorem states that if {X,;} is an aperiodic,

p-irreducible T-chain, if V'is locally bounded with V(x) — o as || x || — e,

if there exists a random variable W(x) such that V(X}) < W(x)
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whenever X, =x, if [log[W(x)/V(x)] 4 WET -V uniformly

integrable for some r > 0, and if lim supjye Ex[log(W(x)/ V(x))] < 0

then there exists s >0 and V'(x)= VO such that {X;:} s
V’-geometrically ergodic. That {X;,} is a y-irreducible, aperiodic
T-chain follows from the weak Feller assumption on {X;} and Lemma 1.

Finally, Lemma 2 in [1] adds that if for some integer 0 < k£ < ~ and
all M < eo it holds that msupy(y)_e Ex[V(X})]/V(x) <1, supy () <m
E [V(X})] <, sup, E,[V(X;)]/V(x) <o, and the sets {x:V(x)< M}
are petite, then {X,} is V-uniformly ergodic. This will be used to show
V’-geometric ergodicity of {X;} follows from that of {X;; }.

From the assumption (2), V(X}) < YV(x) + hA(x) + T(c1, ..., €, x) for
|x] > M and there exists ¢ > 0 so that lim SUP| x>0 E.[V(X};)]/ V(x) <
1-¢ and y+e<1. Define W,(x):=V(X;)+eV(x) 2 V(X;). Then by
Jensen’s inequality lim supjy|_s.. Ex [log(W,(x)/ V(x))] < 0. Note V >1
implies W;,(x)/V(x) > ¢ > 0 so that log(W,(x)/ V(x)) is defined for all x.
Pick 8>0 and @ =Q(8) <o so that W(x /V(x) > @ implies
[1og(W, (x)/V(x))['*® < W,(x)/V(x). Then sup, E,[ log(W (x)/V(x))["*°]
< sup B, [V(X;)]/V(x)+ e + [log(@)]"*° < o, implying [log(W;, (x)/V (x))| is
uniformly integrable.

1+6

Get g from the assumptions and choose r so that r < min(q, 1).

. )
Since V, h are assumed bounded on compact sets and Ee‘T(Cl"”’Ck’x)‘ <oo

then from the assumptions (2), (3) |lx|< M implies Ex(e[W’“ @) =V )L+d

SE(e[(N-H)V( )+h +‘T Ek,x)‘]r—[V(x)]r )1+5 ‘T(El,...,fk,x)‘q

is bounded. Since Ee

<oo,y+e<1 and A(x)/V(x)—>0 as |x|| - o then when |jx|| > M it holds that
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E, (M@ -IVE@I )48 o po(CralV @I+ el + e, e ) - VEE 4148

Thus, sup, Ex(e[Wk(x)]r_ V) )% < o and Wi = V@I g uniformly

integrable.

Since |log(W;(x)/ V(x))| and W@ =V gre each uniformly
integrable, so is the sum. The function W, (x) satisfies the conditions of
Theorem 4 in [3] stated above; thus there exist 0<s<gqg and
V'(x) = VP such that {X,,} is V’-uniformly ergodic. Since V is
bounded on compact sets the set A = {x : |x| < M} is compact and thus

petite since {X;;} is a T-chain. It also follows from assumptions (2), (3)

that sup__ ¢ Ex[ev(ka )y ]/eV(x)S <1, sup,cq E, [eV(X’C y ] < e, and

suprx[eV(Xk)s]/eV(x)s < o; then by Lemma 2 in [1], {X,} is

V’-geometrically ergodic as well.

(ii) Similarly, from ([3], Theorem 3), if [W(x) - V(x)| + 'V -V g
uniformly integrable for some r > 0, and if lim sup|y| e E, [W(x)-V(x)] < 0,

then there exists s>0 and V'(x)= V™) such  that {X;} is

V’-geometrically ergodic.

As in (1) the assumption (2) implies there exists ¢ >0 with
Y+e¢ <1,y from (2), so that lim sup|y| e Ey [V(X;)]/ V(x) <1 -« Define
W, (x) = V(X}). Then lim supHxH_>ooEx[Wk(x)— V(x)]< —¢V(x) < 0. The
assumption A(x)/V(x) - 0 as |jx| - o implies that for large enough
M, |x| > M implies h <€V, implying in turn W (x)-V(x) <
(Y+e <1V(x)+]|r(er, ..oy g, ) < |1(eq, ...y g, ). Pick & > 0 so that

qlt(er, e, x

y>1+38)Ilny for y > 0. Since by assumption E[e )‘] < oo,
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then E[|r(c;, ..., ¢4, )] < o from which it follows that sup, E[(W}

(x) - V(x))1+5] < oo; therefore Wi (x)— V(x) is uniformly integrable. The

assumptions and similar arguments also imply sup, Ex[er(Hs)(Wk(x)_V(x))]

< o for r < min(g, 1). Thus, e’ =V s yniformly integrable.

The function W, (x) satisfies the conditions for [3], Theorem 3 stated
above. Again, that {X;.} is a 7T-chain follows from the weak Feller

assumption on {X;} and Lemma 1. The set A = {x : || < M} is petite. Thus

there exist 0 < s < ¢ and V'(x) = ¢*V(®) guch that {X,;:} is V’-uniformly

ergodic. It follows from the assumptions (2), (3) that sup__,c

Ex[eSV(X’C)]/eSV(x) <1, Sup,ecg Ex[eSV(Xk)] < o, and sup, E, [eSV(X’C)]

/e®V®) < o then by Lemma 2 in [1], {X,} is V’-geometrically

ergodic.
O

The following proposition gives conditions on the time series that
guarantee the assumptions of Proposition 1 are satisfied; exponential
geometric ergodicity of the time series then follows from Proposition 1.

Applications often involve f(-) being piecewise continuous or well

approximated by a linear or piecewise linear function. For time series
with additive errors, and using norm-like test functions V, the conditions
for geometric ergodicity with an exponential V are stated as an

appropriate exponential stability condition on the errors {¢;} in addition
to an appropriate stability condition on the skeleton x; = ¢(x;_;). Let p()

denote the eigenvalue of maximum modulus of a matrix.

Proposition 2. Suppose the distribution of {¢;} is absolutely continuous

. q
with respect to Lebesgue measure and Ee‘et‘ < o (or Eedltl < o) for some

q > 0.
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(1) If f is sublinear, bounded on compact sets, finite at each x, and for
some positive integer k, lim supHxH_m"q)(l")(x)"/||x||1/p <1, where o (x) is

the k-fold composition of ¢ with itself, or

(i1) If f is continuous and everywhere differentiable, ¢(-) has Jacobian
J () bounded on compact sets, finite at each x and if Xy = x implies
X, = J(x)x + c(x) + &, k a positive integer, where c(z) = O(|x|"), r <1,

and c(x) is Lipschitz and finite at each x, and lim SUP|| >0 p(J(x)) <1, or

(iii) If there is a collection A, ..., A,, of p X p matrices, and regions
R,, ..., R, that partition RP such that X, = ZZIAiI(Xt_l e R)X,

+ c(x) + &, where c(x) = O(|x|"), r <1, and c(x) is Lipschitz and finite

at each x, and if max;c; ., P(4;) <1, then

there exists a norm |-||,, V(x) =1+|x|! for some 0<s<q<1, and
Vix)= V@) (orV'(x)= sVl )) such that {X,} is V' -geometrically ergodic.

Proof. The assumptions on ¢ imply {X;} has distribution v
absolutely continuous with respect to Lebesgue measure A and each set
of assumptions implies ¢(x) is finite at each x e RP. Also, for
A e B(R?) since MA) >0 implies AMA +d(x)) >0 by translation
invariance of Lebesgue measure, then since v is absolutely continuous
with respect to A and ¢(x) is finite it holds that P(x, A) = JAv(y - 0(x))
Mdy) > 0, so that {X;} is A-irreducible. For Ce B(R?) let A ={x e B(R?)
:v(C + ¢(x)) > 0}. Suppose A(A) = 0. Then P(x, C) = 0 for x € A€, which
by A-irreducibility of {X;} implies A(C) =0, which violates the
assumption AMA) =0 when C = A€, so that by contradiction A(A) > 0
which implies P(x, C) > 0 and so {X;} is aperiodic.
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(i) Consider {x,} with x, = (x1', ..., x} )’ - x=(x9, ..., %, ), then

since f 1s bounded on compact sets there exists C < o so that

loGae) = o )| = [ (Fx), 15 s xpg) = (Fln), &5 oy pg )] < Clle = -

By absolute contlnulty M {x e —x,] < 8}) = 0 1mphes v({x e = x,)
< 8}) — 0. Then if g is a bounded continuous function, by continuity of g,
absolute continuity, and bounded convergence |Ex [g(X7)] - Exn le(X; )]|

= [[g(dy - 0(x)) - [gyu(dy - o(xy))| = [ 8(z + ()u(d2) - [g(z + ¢
(x,)v(dz) > 0 as |x—-x,|— 0 so that E,[g(X;)] is a bounded
continuous function and {X,} is a weak Feller chain with the
irreducibility measure y being Lebesgue measure on RP?; thus its
support has a nonempty interior. By Lemma 1 then, {X;.} is an

aperiodic, A -irreducible 7T-chain for integers k > 1.

Let q)(”)(x) denote the n-fold composition of ¢ with itself. By the

contraction theorem, for all y with |y| < 1 it holds that q)(”)(y) —sa<l as

n — oo, so that for ¢ > 0 there exists N < o with n > N implying
(])(n)(y) < 1-e The assumption lim supHxH_m”(])(k)(x)”/||x||1/p < 1 implies

there is a positive integer £k and M < « so that ||(])(k)(x)||/||x||1/p <1 for

|x|| > M. Since fis sublinear so is ¢ and note from sublinearity of ¢ that
at each x with x| > M, 0" (x) /| x[Y? = 6" (0" (x) / |x[/P) <1-¢ for

integers n > N. By subadditivity of ¢, 0(X,,;) < ¢(n+k)(x) +

k-1 ; . k-1 ;
ZZZ:O E[¢(l+1)(gn+k—i )] Define T(el, ooy Epakal ) — ZZ:’O E[¢(l+l)

(&nsni)*Eniri1] and note at each x with |x|| > M, for integers n > N,
that || X, 4l < @ =)|lx| + T(er, ooy €paprr). Let V(x)=1+|x| and

assumption (2) of Proposition 1 is satisfied. Since fis assumed bounded on

compact sets there exists N < oo so that [X, ..1] < Njx|+ (e, ...,
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¢h+r+1) and assumption (3) of Proposition 1 is satisfied. It was

established above that {X;} is an aperiodic, A-irreducible 7-chain,

where k” = n + k. Then {X,} is V’-geometrically ergodic by Proposition 2

with V'(x) = e(V(x))s(or Vix) = esv(x)) for 0 < s <q.

(ii) Consider {x,} with x, =(xy',...,x,) = x=(xy,...,x,) then since

J(-) is bounded on compact sets and c(-) is Lipschitz there exists C < oo
so that |o(x) - o(x, )| = || (x)x — e(x) — [/ (x,, )x,, —c(x,)]]| < C|x = x,,||. By
absolute  continuity A({x :|x —x,[| <8}) > 0 implies v({x :|x
- %, <8}) = 0. Then if g is a bounded continuous function, by continuity

of g, absolute continuity, and bounded convergence
|Eg(X1)] - By, [8(X1)] = |[goldy - o(x)) - [glyldy - o(x,))= || &
(z + o(x)v(dz) - _[g(z + 0(x,)v(dz)] > 0 as |x—x,| > 0 so that

E, [2(X;)] is a bounded continuous function and {X,} is a weak Feller

chain with the irreducibility measure p being Lebesgue measure on R?;
thus its support has a nonempty interior. By Lemma 1 then, {X;;} is an

aperiodic, A-irreducible 7-chain for integers k > 1.

It is known ([1], Lemma 4 for instance) the assumptions imply there

exists M < e and a norm |- |, with [x]|, — e as [Jx]| — e, and p <1 so
that [J(x)x|, < plx, for |x|> M, and if c(x)=0(x|"), then
c(x) = O(|x|;). Suppose w.Lo.g. that ¢ < 1. Define V(x) = 1 +|x|I, then
since lim supjy| e p(J(x)) <1 there is M < e with |x| > M implying
V(X)) < p(@+x[?)+ @ =p)+[c@)! + &7 Since J() is assumed
bounded on compact sets there is N <o with |x| < M implying

V(X)) < NA+|x[7) + @ = N) + le)]7 + [El; and thus {X;} is
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V’-geometrically ergodic by Proposition 2 with y = p, A(x) = max((1 - N) +
le@)Z, @ = p) + le@)Z), tlers ooy ey 2) = |G = | (g5 O, ...y O],

Vix) = VO (or V(x) = VW),

(iii) Consider {x,} with x, = (x1', ..., xp) — x = (21, ..., x,) then

since c() is Lipschitz and max;c; _,, p(4;) <1 there exists C < o so

that [ o(x) — 0(x,, )| = ||ZZ1AL~I(( e Rx +c(x) - [Y, Ail((x,) € R;)

x, +c(x,)]| £ C|x - x,||. By absolute continuity A({x:|x—zx,|<8})—0
implies v({x : |x —x,| < 8}) = 0. Then if g is a bounded continuous

function, by continuity of g, absolute continuity, and bounded
convergence |E,[g(X;)]- E, [g(X))]| = |Ig v(dy — o(x Ig v(dy —
o(x,)) = |Ig(2 + 0(x))v(dz) - Ig(z +0(x, )v(dz) - 0 as |x —x,| > 0 so

that E, [g(X;)] is a bounded continuous function and {X,} is a weak

Feller chain with the irreducibility measure » being Lebesgue measure

on R”; thus its support has a nonempty interior. By Lemma 1 then,

{X;;.} is an aperiodic, A-irreducible 7-chain for integers &k > 1.

Similar to (i1) the assumptions imply there exists M < « and a norm

[-], with [x], = e as ||x| = o, and p <1 so that [A;x], < p|x], for
each i, and if c(x) = O(|x|"), then c(x) = O(|x|;). Suppose w.lo.g. that
q <1. Define V(x)=1+|x|!, then since max;;
V(X)) <p(L+]x|?)+@—p)+]ec(x)|? +[&[Z. Then {X,} is V'-geometrically
ergodic by Proposition 2 with vy = p, A(x) =1 +|c(x || T(eq, oony gy x) =

&kl V) = VD (or V() = V), O
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3. Applications

If f is continuous and everywhere differentiable a Taylor expansion of

’

p) vields X; =J(x)X( +clx, Xo) + &,

®(Xy) around x = (x7,..., %
where J(x) is the Jacobian of ¢(-) evaluated at x, & = (1, 0, ..., 0) and
c(x, Xo) = ¢(x) — J(x)x + Rg(x, Xp), with  Ry(x, Xo) Dbeing the
remainder of the Taylor expansion. Conditioning on Xy = x gives
E [Ry(x, Xo)] = 0 and E,[X;]=dJ(x)x +c(x)+& with c(x) = ¢(x) - (x)x.
With an appropriate condition on c¢(x) that guarantees c(x) is small

when |jx| is large, a condition for stability would then be lim

SUP)x]| -0 p(J(x)) < 1, as is stated in Proposition 2(ii).

Example. Consider the EXPAR(1) process X; = (o + B exp{ — th—l D
X;_1 +¢;. The function f(x) = (o + B exp{ — x2})x has derivative f(x) =
a+Bexp{ —x?}(1-2x%), so c(x) = f(x) - f(x) = [o+ Bexp{ - x*} - (a

+Bexp{ — x2}(1 - 2x2))]x satisfies the condition c(x) = O(|x|") for some

r < 1. Suppose El N < o for some q > 0. For geometric ergodicity, it is
required that lim supHxH_>°°|f'(x)| <1 which is true if |a| < 1. As a matter
of convenience, geometric ergodicity could then be shown with function
V(x) =1 +|x| since it is simple enough to show that E[V(X;)X, = x] <
pV(x) for some 0 < p < 1 for large enough x. However, this may limit the
class of functions g <V for which it immediately follows that laws of

large numbers and central limit theorems hold. Rather than having to
prove geometric ergodicity directly using a less tractable function, using

vV _ es(1+\x\)

Proposition 2 geometric ergodicity holds for V' = ¢° ,8$<q, S0

that moments of all orders exist, and asymptotic results for partial sums

of functions g with |g| < V. O
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In particular, requiring that {Y;} be asymptotically threshold-like

allows us to exchange the smoothness conditions on f for stability
conditions on the piecewise linear part. Suppose X; = Z:Zl AI(X; €

R;)X,_; +c(x) + & and with conditions on c¢(x) as in Proposition 2 above.

Then {X;} is asymptotically piecewise linear on each of the regions R;.

Example. The threshold autoregressive process of order p, delay d,

d < pis

Y, =Y, g+ v 0Dy, 4, Yogel, i=1..5s
where {[;},i=1,..., s forms a partition of R. Embed Y, in the chain
X, = Y7 AI(X, 4 € R)X, 4 with X, = (Y, ..., Y;_puy), the R; being
regions in R? determined by the partition {I;},7 =1, ..., s, and A; the
matrix with ¢§i), e q)g') in the first row, 1 on the subdiagonal, and 0

elsewhere. Suppose the ¢, have a continuous density that is positive

everywhere and max;c; p(4;) < 1. Ergodicity is often demonstrated
with a norm-like Vsuch as V(x) =1 + |x|. To enable geometric ergodicity

Vi(x) [V(x)P

with an exponential function e® or e , an appropriately strong

moment condition on the error distribution is required, a stronger error
condition than is usually given when the concern is simply to show

al<|

ergodicity. For example, if the ¢, also have Ee < oo for some ¢ > 0,

then the assumptions of Proposition 2 are satisfied and the process is

Vi(x)

geometrically ergodic with V'(x) = e°® for some 0 < s < q. O
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As a more substantial application of the results they are applied to

the threshold autoregressive process

Y, =0y, 4400V, e, Yigel, i=1..s

where {R;}!_; is the partition of R” described in the example above.

Suppose d, s, R; and p are known. If ¢, ~ N(O, N ), then the maximum
likelihood (and conditional least squares) estimators are

-1

n n
O = | Y XXX,y e B)| D XY I(X,qeR), i=1 .8
t=1 t=1

S

& = n _18p Z(Xt -oVX, 1 I(X,; € R; ))2-

=1
Asymptotic properties of these estimators have been established
(see [2], [4], [6], for example). For threshold autoregressive processes

asymptotic results for the (f)(ji) are known to exist when E €t2 < oo, while

asymptotic results for 62 are known to exist when E e? < . However,
since the ¢ are often assumed ii.d. N(O, 62) there is little harm in

ql<t]

. q . .
supposing Eem < or Ee < o for some g >0, in which case

Proposition 2 implies {X;} is V’-geometrically ergodic with

Vix)=eV®W for 0 < s < q.

In this example, limit theorems for the TAR(p; d; s) process are
derived using the results in this paper. The parameter estimates often
involve vector-valued functions, so a multivariate version of the central
limit theorem for V-geometrically ergodic Markov chains ([5], Theorem
17.0.1) is needed. Let g : R? — R” be a vector-valued function and let
V >1 be a real-valued function with the Markov chain being

V-geometrically ergodic. Suppose g, V are such that for a vector a there
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exist constants K; = K;(a), Ky = Ky(a) so that (a’g) (a’g)< KV’ + K.
Then by ([5], Theorem 17.0.1), the partial sum S,(a’g) obeys the central
limit theorem; but S, (a’g) = a’S,,(g), implying that 'S, (g) obeys the
central limit theorem. By the Cramer-Wald device then, S, (g) obeys the

central limit theorem.

Proposition 2 is used to imply geometric ergodicity with V'(x)zesv(x)

for s < q. The multivariate extension of the central limit theorem then

implies limit theorems for vector-valued functions.
Proposition 3. Suppose ¢; has a density which is continuous and

ql<t|

.. q
everywhere positive and Eeltl" < o or Ee < oo for some q > 0. Then

the least squares estimators of the TAR(p; d; s) process are consistent and

obey the central limit theorem, i.e.,

@) (T)(i) - q)(i) with probability one.

(ii) 62 — o2 with probability one.

(1ii) \/n_i(&)(i) - ¢(")) — N(0, 6%T()™Y) in  distribution, where
()= E(X, X} I(X, e R;)).

Proof. (i) By Proposition 2, we have that {X,} is V’-geometrically ergodic

S

with V'(x) = VO o Vix) = SVl o <5 < min(qg, 1) and V(x) — o

as [« does. Let n; = ;l:lI(Xt_l e R;). Since Y, = 0¥)X, | +¢,, then
-1

n n
e . 1 , 1
00 =0 4| =X, X[ I(Xy g € B)| Y X ql(X, g € By).
”itzltltl t-1 i nitzltlt t-1 i
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Let gj((x1, ..., x,) ) = x;. Then |g;(x)g;(x)| < V'(x) for large x which

implies ([5], Theorem 17.0.1) the LLN applies to nL S, lgr (X, )g i (X;-1)

l

I(X;_; € R;)]. By V’-geometric ergodicity of {X;}, E[X;, X, 1I(X,_;

R;)] = I'(i) and we have %Sn[gk:(Xt—l )gj(X; 1) (X; 4 € R;)] = Ty

l

almost surely, from which it follows that nizzl_lXt_lXt'_lI(Xt_l e R;)
i =
converges to I'() almost surely.
Likewise, the V’-geometric ergodicity of {X;} implies the SLLN for

%ZXHI(XH). Since E(X, 1) = E(X,.1)E(¢,) = 0, we have that
l

A

q)(i) - ¢(i) with probability one by Slutsky’s theorem.

(1) By similar arguments, the SLLN implies 62 > 6% with
probability one.
(i11) Note that

-1

Jni (89 — o) = ZXt X I(Xy € Ry) J_ ZXt 1 (X, € Ry).

i = t=1
Also, by V’-geometric ergodicity of {X;} the SLLN implies that

\/_ ZF 1)X;_1¢,1(X;_; ) has limiting variance

TG E(X, 0 (X € Rp)e) (X1 I(X,oy € Bi)e) NG = 0%1G) ™
Clearly, for g(x) = xI(x € R;), a’g < K;V' + K4 for suitable K;, Ky < o
given a vector a and so /\/Z ZF )X, 16, 1(X;_1) obeys the CLT,

-1
converging to N(0, 62I'"(i)). Since [—nl > XX I(X, € R )}
- -

—>T7'(@) this implies yn;(6”) = ¢") converges to N(0, o°I},") by
Slutsky’s once again. 0
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The TAR and EXPAR models discussed in the examples are contained

in the more general functional-coefficient autoregressive (FCAR) model

Y, = a1(Y_q Y1 +ag(Y,g)Y, g + ... + ap(Yt—d )Yt—p +0(Y_g ey

The coefficients a;( ) are unknown functions and are estimated using

nonparametric methods such as kernel-weighted local linear regression.

Ergodicity conditions for FCAR can be established by analyzing the
associated chain X, = ZZIA(X)Xt_l +& with X; = (Y, ..., Y pi1),

A(X) the matrix with o;(X), ..., a,(X) in the first row, 1 on the

P
subdiagonal, and 0 elsewhere, and &; = (¢, O, ..., 0)’. One condition for
ergodicity ([4], Theorem 8.1) 1is that the matrix A(x) have
sup, p(A(x)) <1, which is also the condition implied by Proposition 2

(ii1). However, this is stronger than is necessary; for example, using
Proposition 2, ergodicity will follow if there is an M < e« with

sup,sy P(A(x)) < 1. Laws of large numbers and central limit theorems

for the estimators of ¢;(X),...,a,(X) can be proved assuming a

p

1-2/8

hyperbolic mixing condition on the process such as ch(x(n) for

some 8 > 2 and ¢ >1-2/ 3 (for example, see [4], Theorems 8.2 and 8.3).

With geometric ergodicity as implied by Proposition 2, a geometric rate of
mixing is assured, and the exponential geometric ergodicity implied by
Proposition 2 enlarges the collection of functions of the process to which

laws of large numbers and central limit theorems directly apply.
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