
International Journal of Statistics: Advances in Theory and Applications 
Vol. 1, Issue 1, 2020, Pages 45-74 
Published Online on June 3, 2019 
 2020 Jyoti Academic Press 
http://jyotiacademicpress.org 

2020 Mathematics Subject Classification: 62F12, 62M10. 
Keywords and phrases: periodically correlated process, restricted periodic exponential 
autoregressive model, local asymptotic normality (LAN), local asymptotic minimax (LAM) 
estimator, adaptive estimation. 
Communicated by Marcelo Bourguignon. 
Received February 4, 2017; Revised May 10, 2017 

EFFICIENT ESTIMATION IN RESTRICTIVE 
PERIODIC EXPAR(1) MODELS 

H. DRIDI, M. MERZOUGUI and A. CHADLI 

LaPS Laboratory 
University Badji Mokhtar  
Annaba 
Algeria 
e-mail: merzouguimouna@yahoo.fr   

Abstract 

This paper is devoted to study the problem of estimation in the restricted 
periodic exponential autoregressive (PEXPAR(1)) model. The asymptotic 
optimality of the procedure is shown via local asymptotic normality (LAN). Once 
the LAN property is proved, we construct a parametric locally asymptotically 
minimax LAM estimator. Using these results, we construct the adaptive 
estimators for the parameters when the innovation density is unknown. The 
performance of the established estimators is shown via small simulation. 

1. Introduction 

Periodic time series models have been extensively used in the recent 
decades to describe many series with periodic dynamics. The inability of 
SARIMA models to adequately represent many seasonal time series 
exhibiting a periodic autocovariance structure has motivated the 
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research in the periodically correlated processes. This notion, introduced 
by Gladyshev [15], was exploited in a variety of new classes of time series 
models, among them, the periodic GARCH (Bollerslev and Ghysels [9]), 
the periodic bilinear (Bibi and Gautier [7]) and the mixture periodic 
autoregressive model (Shao [34]). Recently, Merzougui et al. [30] 
discussed a class of restricted periodic EXPAR(1) model. 

The class of exponential autoregressive time series models 
introduced, by Ozaki [31] and Haggan and Ozaki [16], in order to 
describe nonlinear dynamics which are well known in random vibration 
theory such as amplitude-dependent frequency, jump phenomena and 
limit cycles. This class has been of interest for its potential applications 
in ecology, hydrology, speech signal, macroeconomic and others, see, for 
example, Haggan and Ozaki [16], Ozaki [32], Priestley [33], Terui and 
Van Dijk [39], Ishizuka et al. [20], Amiri [3]. Recently, Katsiampa [22] 
suggested the models EXPAR-GARCH which combine two forms of 
nonlinearity: conditional mean and conditional variance and have the 
potential of explaining financial time series. The theoretical properties of 
EXPAR models have been the subject of study by many authors: Chan 
and Tong [10] gave necessary and sufficient conditions of stationarity and 
geometric ergodicity for the EXPAR(1) model, a forecasting method is 
proposed by Al-Kassam and Lane [1], Koul and Schick [23] showed the 
LAN property and constructed asymptotically efficient estimates for the 
restricted EXPAR(1), Allal and El Melhaoui [2] constructed a parametric 
and nonparamtric test for the detection of exponential component in 
AR(1), Shi and Aoyama [35], Baragona et al. [4] used the genetic 
algorithm in order to estimate the parameters of EXPAR(p) models, 
Ismail [25] introduced the Bayesian analysis and Ghosh et al. [14] 
developed an estimation procedure using extended Kalman filter. 

This paper is devoted to establish adaptive estimators of the 
unknown parameters of a restricted PEXPAR(1) model where the 
unknown innovation density is symmetric and satisfies only some mild 
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regularity conditions. We recall that an adaptive estimator is efficient for 
a model where its distribution of the errors is only specified partially. 
Thus, the adaptive estimator based on nonparametric kernel density 
estimation is as efficient, asymptotically, as any optimal estimator. 
Consequently, adaptive estimation is recommended whenever information 
about the true density is not clear and/or complete. The asymptotic 
theory is based on the LAN property, due to Le Cam [25] and for the 
proof we use the version of Swensen [38]. In this work, we follow the 
procedure of Kreiss [24] who construct, firstly, a LAM estimator for an 
ARMA model when the innovation density was known, secondly, an 
adaptive estimator for the semiparametric model having a symmetric 
innovation density and uses the discretization technic for the proofs. 

The problem of adaptive estimation has received considerable 
interest from many authors: Linton [29] for ARCH models, Drost et al. 
[12] for general time series models, Drost and Klaassen [11] for GARCH, 
Ling [27] for ARFIMA with GARCH errors, Ling and McAleer [28] for 
nonstationary ARMA-GARCH, Lee and Taniguchi [26] for the 

( ) SMARCH −∞  model and Bentarzi et al. [6] for PAR model. 

Our paper is organized as follows. The Section 2 introduces the 
notation and reviews the technical assumptions. In the third section, we 
establish, while adapting the Swensen’s conditions [38] to our periodic 
model, the Local Asymptotic Normality (LAN) propriety and the local 
asymptotic linearity for the central sequence. In Section 4, in the case 
where the innovation density is specified and using a discrete and 

consistent-n  estimator, we obtain a parametric local asymptotic minimax 

estimator in the sense of Fabian and Hannan [13]. The fifth section, is 
devoted to the construction of an efficient estimator with unknown 
symmetric innovation density, based on the kernel estimator for the score 
function. Finally, in the sixth section, we present a small simulation study. 
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2. Notations and Assumptions 

2.1. Main definitions and notations 

The process { }Z∈tXt ;  is said to follow a restricted periodic 
exponential autoregressive PEXPAR(1), with period ( ),2≥SS  if it is a 
solution of a nonlinear periodic stochastic difference equation of the form: 

( )( ) ,,exp 1
2

12,1, Z∈ε+γ−ϕ+ϕ= −− tXXX tttttt   (2.1) 

where { }Z∈ε tt ;  is a periodic white noise process, with mean 0 and 

finite variance ,2
tσ  with probability density ( ),.tfσ  not necessarily 

Gaussian. The autoregressive parameters 2,1, , tt ϕϕ  and the innovation 

variance 2
tσ  are periodic, in time, with period S, i.e., 

.2,1and,,and 22
,, =∈∀σ=σϕ=ϕ ++ jttStjtjSt Zkkk  

The nonlinear parameter, ,0>γ  is known. In fact, Shi et al. [36] 
proposed a heuristic determination of this coefficient from the data and 
defined 

l
2

1

log ,
max tt n

X
≤ ≤

γ = −   

where   is a small number. 

Putting SsSrst ,,2,1, …=+=  and ,Z∈r  one can rewrite the 
last periodic nonlinear stochastic difference equation in the equivalent 
form: 

( )( ) .,,,2,1,exp 1
2

12,1, Z∈=ε+γ−ϕ+ϕ= +−+−++ rSsXXX SrsSrsSrsssSrs …  

(2.2) 

Figure 1 shows a simulated series, monthplot and scatterplot of the 

( )1PEXPAR4  model with ( ) ,6.0,7.0;1.1,9.0;5.1,5.0;2,8.0 ′−−−=ϕ  

1=γ  for all seasons and n = 500. The lag plot clearly indicate nonlinear 
behaviour. 
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Figure 1. Simulated series, monthplot and scatterplot of the ( ).1PEXPAR4  
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Denoting ( ) ( )ϕn
fH  a sequence of null hypotheses under which { ( ),n

tX  

}Z∈t  satisfies the PEXPAR(1) model (2.2), where ( )′ϕ′ϕ′ϕ′=ϕ S,,, 21 …  

,2SR∈  where ( ) Sssss ,,1,, 2
2,1, …=∈′ϕϕ=ϕ R  and ( ) ( )( )nn

fH ϕ  the 

sequence of local alternative hypotheses which are contiguous to ( ) ( ),ϕn
fH   

under which { ( ) }Z∈tX n
t ,  satisfies the PEXPAR(1) model (2.2), where 

( ) ( ) ( ) ( ) ,,,, 2
21

Sn
S

nnn R∈
′






 ϕϕϕ=ϕ

′′′
…  

( ) ( ) ( ) ,,,1,1,1 2
2,2,1,1, Ssh

n
h

n
n

ss
n

ss
n

s …=∈
′






 +ϕ+ϕ=ϕ R  

such that ( ) ( )( ) .sup 2
2,

2
1, ∞<+ n

s
n

sn
hh  

The terms ( )n
sh 1,  and ( ) Ssh n

s ,,1,2, …=  can be interpreted as           

local perturbations of the parameters 1,sϕ  and ,2,sϕ  respectively. Let  

( ) ( ) ( ) ( )( ) ,,,, 21
′

= n
S

nnn ττττ …  where ( ) ( ) ( )( ) .,,1,, 2,1, Sshh n
s

n
s

n
s …=

′
=τ  We can 

easily rewrite the sequence { ( ) }N∈ϕ nn ,  in the following form: 

( ) ( ) ( ) ( ) ( ) .thatsuch,1 2 ∞<∈+ϕ=ϕ
′ nnSnnn

n
ττττ R  

2.2. Technical regularity assumptions 

Throughout this paper, we make the following assumptions: 

Assumption (A1): The exponential autoregressive parameters ϕ  

satisfy the sufficient periodically stationary condition of (2.2), i.e., 

.,,1,,1 2,1, Ssss …=∈ϕ<ϕ R  
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Assumption (A2): The innovation density ( ).tfσ  is supposed to 

satisfy the following conditions: 

(a) ( ) ;,0 R∈∀>σ xxf t  

(b) ( ).tfσ  is absolutely continuous with respect to the Lebesgue 

measure :µ  that is there exists a function. ( ).tf σ
•

 such that, for all  

,∞<<<−∞ ba  we have ( ) ( ) ( ) ( );xdxfafbf ttt

b

a
µ=− σ

•
σσ ∫  

(c) The Fisher information ( ) ( )( ) ( )dxxfxfI tt f σσ φ= ∫ 2  is finite, where 

( )
( ) ;.
.

t

t
f
f

f
σ

σ
•

−=φ  

(d) ( ) 0=σ∫ dxxxf t  and the variance is finite, i.e., ( ) .22 ∞<ε=σ tt E  

We note that the two conditions (b) and (c) imply the quadratic 

differentiability of the function ( ) ,. 21
σf  i.e., 

( ) ( )
( )

( )
.0lim

2

21
21212

0
=

















λ−−λ+λ
σ

σ
•

σσ
−

→λ ∫ dx
xf

xf
xfxf

t

t
tt

 

(see, for instance Lemma 3, page 191, Hájek [17] or Hájek and Šidák 
[18]). 

3. Local Asymptotic Normality for Restricted PEXPAR(1) 

3.1. Sequence of likelihood ratios 

Denote by ( ) ( ) ( )( )n
n

nn XXX ,,1 …=  a realization of a finite size n of a 

periodically correlated autoregressive process ( ){ }Z∈tX n
t ;  satisfying the 

causal periodic restricted EXPAR(1) model (2.2) and let ( )nX0  be the 
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initial value whose densities are ( ) ( )( )σϕ,;00
nn Xg  and ( ) ( ) ( )( )σϕ ,;00

nnn Xg  

under ( )( )ϕn
fH  and ( ) ( )( ),nn

fH ϕ  respectively, where ( ) .,,1
′σσ=σ S…  

Furthermore, we suppose that ( ) ( ) ( )( ) ( ) ( )( )σϕ−σϕ ,;,; 0000
nnnnn XgXg  

converges in probability to 0, when ( ) ϕ→ϕ n  with .∞→n  Suppose, for 

simplicity of notation, that the size of observed time series n is a     

multiple of S, i.e., ∗∈= NmmSn ,  and let SsrSst ,,1, …=+=  and 

.1,,1,0 −= mr …  Denote by ( )( )ϕn
tZ  and ( ) ( )( ) ,, Z∈ϕ tZ nn

t  the 

calculated residuals under ( ) ( )ϕn
fH  and ( ) ( )( ),nn

fH ϕ  respectively. Then, 

we have 

( ) ( )( ) =ϕ nn
rsZ ,  

( ) ( ) ( ) ( ) ( )n
rSsrSs

n
ss

n
ss

n
rSs XXh

n
h

n
X 1

2
12,2,1,1, exp11

−+−++ 



 γ−






 +ϕ+






 +ϕ−  

( )( ) ( ) ( ) ( )[ ] ( )n
rSsrSs

n
s

n
s

n
rs XXhh

n
Z 1

2
12,1,, exp1

−+−+γ−+−ϕ=  

( ) ( ) ( ) ( )n
rSs

n
s

n
s X

n
Z 1,

1
−+

′
−ϕ= ττ  

( ) ( ) ( ) ,,,
n
rs

n
sZ γ−ϕ= τ  

where ( ) ( ) ( ) ( )( )′γ−= −+−+−+−+
2

1111 exp, rSs
n

rSs
n

rSs
n

rSs XXXX  and ( ) ( )′=γ n
s

n
rs n

τ1
,  

( ) .,,1,1 SsX n
rSs …=−+  The corresponding empirical variances are then 

given by l ( ) ( )( )
1 22

0

1 , 1, 2, , .
m

n
s s rS

r
Z s Sm

−

+
=

σ = ϕ =∑ …  Hence, the logarithm of 

the likelihood ratio, ( ) ( )( ) ( ) ( )






 +ϕΛ=ϕΛ nn

f
nn

f n
τ1  for ( ) ( )ϕn

fH  versus 

( ) ( )( ),nn
fH ϕ  is then given, for ,mSn =  by: 
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( ) ( )
( ) ( )( )( )
( ) ( )( )

( ) ( ) ( )( )
( ) ( )( ) .

,;

,;
loglog1

00

00

,

,1

01 σϕ

σϕ
+

ϕ

ϕ
=






 +ϕΛ

σ

σ−

==
∑∑ nn

nnn

s
n
rs

n
s

n
rsm

r

S

s

nn
f Xg

Xg

Zf

Zf

n
s

sτ  

Hence, we have, under ( ) ( ),ϕn
fH  the local asymptotic approximation: 

( ) ( )
( ) ( )( )( )
( ) ( )( ) ( ),10log1

,

,
1

01
P

s
n
rs

n
s

n
rs

m

r

S

s

nn
f Zf

Zf

n
s

s +
ϕ

ϕ
=






 +ϕΛ

σ

σ
−

==
∑∑τ  

( ) ( ) ( )( )( ) ( ) ( )( )( )[ ] ( ),10loglog ,,,

1

01
Ps

n
rs

n
rss

n
rs

m

r

S

s
ZfZf ss +ϕ−γ−ϕ= σσ

−

==
∑∑  

where the ( )10P  term accounts for the unobserved value ( ).0
nX  

3.2. Local asymptotic normality 

In order to prove LAN, we shall use a modification of Swensen’s 
conditions to deal with our restricted PEXPAR(1) model. Let, for ,1=s  

S,…  and ,1,,0 −= mr …  the following random variables: 

( ) ( )
( ) ( ) ( )( )

( ) ( )( ) ,1
,

21
,,

21

−
ϕ

γ−ϕ
=ϕξ

σ

σ
+

s
n
rs

n
rss

n
rs

s
n

rSs Zf

Zf

s

s  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ,..where,2

1
2
1 .

,,,
s

s
ss f

f
Z n

s
n

rs
n
rss

n
rss

n
rSs

σ

σ
•

σ
′

σ+ −=φ∆=γϕφ=ϕζ τ  

( ) ( ) ( )( ) ( ) ,1and 1,.,,
n

rSss
n
rs

n
rs XZ

n s −+σ ϕφ=∆  

( ) ( ) ( ) ( ) ( ) ( ) ,,, 2
11

S
S

n
S

n
s

n R∈
′






 ϕ∆ϕ∆=ϕ∆

′′
…  (3.1) 

( ) ( ) ( )( )( ) ( ) ,,,1,1where 1,

1

0
SsXZ

n
n

rSs
n
rs

m

r
s

n
s s …=ϕφ=ϕ∆ −+σ

−

=
∑  
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( ) ( ) ( )( )( ) ( ) and,1
1,

1

0
1,

n
rSs

n
rs

m

r
s

n
s XZ

n s −+σ

−

=

ϕφ=ϕ∆ ∑  

( ) ( ) ( ) ( )( ) ( ) ( )( ).exp1 2
11,

1

0
2,

n
rSs

n
rSs

n
rs

m

r
s

n
s XXZ

n s −+−+σ

−

=

γ−ϕφ=ϕ∆ ∑  

Consider the SS 22 ×  block diagonal matrix: 

( )

( )

( )

( )

,

,
0

0
,

0

00
,

,

2

2
2

2

2
1

1































σ

σϕΓ

σ

σϕΓ
σ

σϕΓ

=σϕΓ

S

S""

#%##

"

"

 (3.2) 

where ( )σϕΓ ,s  is the variance matrix of the vector ( ) SsX n
Srs ,,1,1 …=+−  

and Z∈r  

( )
( )

.,
2

1
22

1

2
1

2
1

2
1

2
1

2
1









































=σϕΓ
−

γ−
−

γ−

−
γ−

−

−−

−

s
X

s
X

s
X

s
s

XeEXeE

XeEXE

ss

s

 

Using the precedent definitions and notations, we are able to state 
the adapted Swensen’s conditions, which imply the LAN property. 

Proposition 3.1. The following adapted conditions are, under the 
Assumptions (A1) and (A2), satisfied: 

(1) ( ) ( ) ( ) ( )( ) ;0lim
21

01
=ϕζ−ϕξ ++

−

==
∞→ ∑∑ s

n
rSss

n
rSs

m

r

S

s
m

E  

(2) ( ) ( )( ) ;sup 2
1

01
∞<ϕζ +

−

==
∑∑ s

n
rSs

m

r

S

sm
E  



EFFICIENT ESTIMATION IN RESTRICTIVE … 55

(3) ( ) ( ) ( );10maxmax Ps
n

rSsrs
=ϕζ +  

(4) ( ) ( )( ) ( ) ( ) ( ) ( ) ( );10,4
1

1
2

1

01
P

nn
s

n
rSs

m

r

S

s
fIS =σϕΓ−ϕζ

′

+

−

==
∑∑ ττ  

(5) ( ) ( ) ( ) ( ) ( ),101,
2
1

2
1

01
PrSsns

n
rSs

m

r

S

s s
n

rSs
IE =












ϕζ +−





 >ϕζ+

−

== +
∑∑ B  

rSsn +−1,B  is the σ -algebra generated by the past of the process up to time 

;1 rSs +−  

(6) ( ) ( )( ) ( ).101, PrSsns
n

rSsE =ϕζ +−+ B  

Proof. See Appendix. 

Proposition 3.2. Assuming that Assumptions (A1) and (A2) hold, 

then we have, under ( ) ( ),ϕn
fH  as ∞→n  the following two results: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( );10,2
1i 1

P
nnnnnn

f S
fI

n
+σϕΓ−ϕ∆=






 +ϕΛ

′′
ττττ  

( ) ( )( ) ( ) ( ) .,,0ii 1
2 






 σϕΓ→ϕ∆ S

fIN S
n  

Proof. Since the Swensen’s sufficient conditions are verified, then 
taking account of the fact that 

( ) ( ) ( ) ( ) ( ).2
1

01
ϕ∆=ϕζ

′

+

−

==
∑∑ nnn

rSs

m

r

S

s
τ  

Local asymptotic normality follows immediately from Theorem 1 (Le Cam) 

(cf., Swensen [38]). We will use the notation ( ) ( ) ( ) ( ) .,,, 1 





 ϕ∆σϕΓϕ n

S
fILAN  
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Lemma 3.1. (i) As a consequence of the property LAN, we have: 
( ) ( )ϕn
fH  and ( ) ( )( )nn

fH ϕ  are contiguous. 

(ii) The central sequence ( )( )ϕ∆ n  satisfies the following local asymptotic 

linearity: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ),10,1
P

nnnn
S
fI

+σϕΓ−=ϕ∆−ϕ∆ τ  (3.3) 

where ( ) ( ),1 nn
n

τ+ϕ=ϕ  as ∞→n  under ( )( )ϕn
fH  hence also under 

( ) ( )( ).nn
fH ϕ  

Proof. For (ii), the proof is similar of Lemma 6.4 of Kreiss [24]. 

4. Existence and Construction of LAM Estimators 

From the Proposition 3.2, we can construct sequences of estimates 
which are locally asymptotically minimax (LAM) as defined in Fabian 
and Hannan [13]. 

4.1. Lower bound in LAN models 

Let 
( )xlx

Sl
→
→ RR2:  a lost function which satisfied the following 

conditions: 

(i) ( ) ;0≥xl  

(ii) ( ) ( ) ;, 2Sxxlxl R∈∀−=  

(iii) ( ){ }uxlx ≤  is convexe .∗+∈∀ Ru  

The following theorem gives a lower bound of the risk when we take 
{ }nZ  as a sequence of estimators of parameter .ϕ  
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Theorem 4.1 (Fabian and Hannan [13]). Let { }nZ  any sequence of 

estimator of ϕ  and suppose that the condition  ( ) ( ) ( ) ( )





 ϕ∆σϕΓϕ n

S
fILAN ,,, 1  

is verified, then: 

( )
{ ( )}ϕ−ϕ

≤ϕ−ϕ∞→∞→ nn
KnZnK

ZnlE
n

,
0

supinfinflimlim  

( ) ( ) ( ) .,,0
1

1
















 σϕΓ

−

∫ S
fIdNxl   (4.1) 

Definition 4.1. If the ( ) ( ) ( )( )





 ϕ∆σϕΓϕ n

S
fILAN ,,, 1  condition is 

satisfied, a sequence of estimator { }nZ  is called locally and 

asymptotically minimax ( ),ϕLAM  if the equality in (4.1) holds. 

Definition 4.2. The sequence of estimators { }nZ  is called regular,-ϕ  

under ( ) ( ) ( )( )





 ϕ∆σϕΓϕ n

S
fILAN ,,, 1  if 

( ) ( ) ( )( ) ( ) ( ) ( ).10, 1
1

P
n

n fI
SZn =ϕ∆σϕΓ−ϕ− −   (4.2) 

The following lemma is a result from Fabian and Hannan [13], Theorem 
6.3, p.467. 

Lemma 4.1. Under the LAN condition, for any sequence of estimators 
( ),nZ  if ( )nZ  is ,-regularϕ  then ( )nZ  is LAM. 

4.2. Construction of LAM estimators 

In order to construct regular estimates the existence, of                 
consistent-n estimators of ,ϕ  is essential. We assume that there exists 

a sequence of initial estimators l ( ) , -consistent,
n

nϕ  hence the following 

hypothesis: 
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Assumption (A3): A sequence of estimators nϕ  exists, such that 

(i) ( l
( )

) ( )1 ,
n

Pn Oϕ − ϕ =  under ( ) ( ).ϕn
fH  

For technical reason, we also use discretized version nϕ  of the l ( )n
ϕ  

which is defined as follows: 

(ii) nϕ  is locally asymptotically discrete; that is, there exists NK ∈  
such that in dependently of nNn ϕ∈ ,  takes at most K different values 

in the set ( )( ) 0,:
12 >







 ≤ϕ−θ∈θ=

−
ccQ nS

n νR  fixed. 

The great advantage of discrete estimates is that we can replace a 

deterministic sequence ( )nϕ  by a sequence of discrete estimators, this 

result is formulated in Lemma 4.4 in Kreiss [24], so we can restrict the 
proofs to nonstochastic sequences. 

The estimator given in the next proposition is valid and optimal when 
the density f is known. 

Proposition 4.1. Assume { } Θ∈ϕn  is discrete and consistentn -  

sequences of estimators for .Θ∈ϕ  Then lnϕ  defined by 
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where l ( ) ( ) ( )
1

,
0

1 1 1
m

nn S X S s X S sm

−

=

′Γ ϕ = + − + −∑
τ

τ τ  and l
nΓ  is a 

consistent estimator of ( ).ϕΓ  

Proof. See Appendix. 

5. Construction of Adaptive Estimators 

The estimator given in the preceding proposition is valid and optimal 
when the density f is specified. However, in practice, f remains unknown. 
In this section, we consider the semi-parametric model whose parameter 
is ( ),, fϕ  where ϕ  is the parameter of interest and f is the nuisance 

parameter belonging to the class of the symmetrical density functions 

.+F  An estimator is known as adaptive if it has for the unknown density 
function f the same efficacity as the optimal estimator in the model where 
f is supposed to be known. The requirement of adaptability given by Stein 
[37] is satisfied as soon as the density f is symmetrical, so we add the 
following hypothesis. 

Assumption (A4): The innovation density function f is symmetric 
with finite fourth moment. This density intervenes in the estimate 
through the score function .φ  One can estimate f by the kernel method, 
we envisage, in this work, the estimators proposed by Kreiss [24]. To this 
end, the following notations are introduced: 

(i) ( ) ;,
2

exp
2
1; 2

2

2
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



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η
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πη
=η xxxg  
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∞+

∞−
η  

(iii) l ( ) ( ) { ( ) ( ) }0 0
0
0

1

, ,,
0

1; , , ;2 1 r

m

s s rr
r
r r

f x g x z g x zm

−

η
=
≠

ϕ = + η + − η
− ∑ τ  

0, , 1.r m= −…  
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Let l ( ), ,n rq x ϕ  be an estimator of φ  

l ( )
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ηη
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2211

′
ϕ∆ϕ∆ϕ∆ SS…  and the unbiased estimator l ( ) 1
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Lemma 5.1. Let ( )nϕ  be a sequence of discrete consistentn - of .ϕ  

Then, under the hypotheses (A1)-(A4), we have: ( )( ) ( )( ) ( )10~
Pn

n
n

n =ϕ∆−ϕ∆  if 

( ) ( ) ( ) 0,0,0,0,, 4 →η→η→→η∞→∞→ − nngcndngc nnnnn  and 

( )9nnη  stays bounded. 

Proof. See Appendix. 

Lemma 5.2 (Estimation of the Fisher information). 
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EFFICIENT ESTIMATION IN RESTRICTIVE … 61

Proof. From the WLLN, we have for each ( )nϕ  satisfying ( ) +ϕ=ϕ n  

( ),1 n
n
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The assertion follows from Lemma 4.1 of Bickel [8], the contiguity of 
( ) ( )ϕn
fH  and ( ) ( )( )nn

fH ϕ  and from the Lemma 4.4 of Kreiss [24]. 

The following proposition establishes the adaptive estimators for the 
parameters of the periodic EXPAR(1) models. 

Proposition 5.1. Under the hypotheses (A1)-(A4), the estimator nϕ
~  

defined as: 

i
l ( )
i

i ( ) ( )
11 ,nnn

n nn
n

S
In

−Γ ϕ
ϕ = ϕ + ∆ ϕ  

is an LAM estimator, consequently, it is adaptive. 

Proof. The proof of this proposition, which rests on the two preceding 
lemmas, is similar to that of Kreiss [24]. 

6. Simulation Results 

The performance of the adaptive estimator is shown by a small 
simulation study. Two periodic ( )1PEXPARS  models, with period S = 2, 4, 
are used to simulate the time series. For each data-generating process, 
we consider 1000 Monte Carlo replications and report the adaptive 
estimator (AE) and the LSE, which is used as initial estimator, and we 
compare them by the root mean square error (RMSE) criterion: RMSE 

( ) .VarianceBias 2 +=  The models are: 

(1) ( )1PEXPAR2  model: 

with ( ) ( )8.0,4.0,2,5.0,5.1,8.0 2 =σ−−=ϕ  and .400,200=n  
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(2) ( )1PEXPAR4  model: 

with ( ) ( )4.0,8.0,5.0,2.0,2,7.0;7.1,9.0;3,5.0;2.1,4.0 2 =σ′−ϕ  and 
.1000=n  

The innovation densities are taken to be the standard normal and the 
famous density of Kreiss [24] which is the case where the density is far 
away from normality: 

( ) ,2exp
2
1 2
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
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The second density is rescaled such that it has the required unit 
variance. The parameters of the score function was taken to be: 

( ) .1.0,,4, 6
1

3
1

mdgcmgmn nnnn ====η
−

 

The estimation results are reported in Tables 1 and 2, respectively. 
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Table 1. Empirical means and RMSE of LSE and AE for ( )1PEXPAR2  

   n = 200  n = 400   

φf   1,1ϕ  2,1ϕ  1,2ϕ  2,2ϕ  1,1ϕ  2,1ϕ  1,2ϕ  2,2ϕ  

LSE Mean – 0.7991 1.4928 0.4916 – 1.9840 – 0.7977 1.5005 0.5008 – 1.9997 

RMSE 0.0804 0.2845 0.1688 0.3660 0.0576 0.1995 0.1164 0.2436 

AE Mean – 0.8007 1.4976 0.4939 – 1.9885 – 0.7980 1.5027 0.5007 – 2.0033 
1f  

RMSE 0.0859 0.3018 0.1764 0.3880 0.0620 0.2116 0.1254 0.2640 

          

LSE Mean – 0.8023 1.5159 0.4974 – 2.0044 – 0.8023 1.4941 0.5041 – 2.0138 

RMSE 0.0752 0.3153 0.1860 0.3716 0.0549 0.2231 0.1239 0.2515 

AE Mean – 0.7993 1.4942 0.4971 – 1.9970 – 0.8014 1.5111 0.5003 – 2.0006 
2f  

RMSE 0.0518 0.2169 0.0872 0.1570 0.0347 0.1393 0.0496 0.0976 

Table 2. Empirical means and RMSE of LSE and AE for ( )1PEXPAR4  

φf   1,1φ  1,2φ  2,1φ  2,2φ  1,3φ  2,3φ  1,4φ  2,4φ  

LSE Mean 0.4011 1.2047 – 0.4982 2.9979 0.8988 1.7150 0.7000 2.0022 

RMSE 0.0282 0.2649 0.0527 0.1823 0.0702 0.2739 0.0346 0.1260 

AE Mean 0.4010 1.2027 – 0.4984 2.9967 0.8988 1.7175 0.7002 2.0020 
1f  

RMSE 0.0291 0.2806 0.0547 0.1911 0.0747 0.2900 0.0354 0.1319 

          

LSE Mean 0.4017 1.1974 – 0.4989 2.9936 0.9005 1.6978 0.6977 2.0034 

RMSE 0.0312 0.2459 0.0525 0.2367 0.0908 0.2978 0.0352 0.1360 

AE Mean 0.3999 1.1991 – 0.5004 2.9987 0.9011 1.6967 0.7005 2.0000 
2f  

RMSE 0.0109 0.0893 0.0227 0.0986 0.0328 0.1054 0.0191 0.0779 

The two tables show that the adaptive estimator is always better 
compared to LSE when the innovation density is .2f  In the normal case, 

the performance of the two estimators is not much different. 
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Appendix 

Proof of Proposition 3.1  

Proof of condition (1) 

Replacing ( ) ( )s
n
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and 

EB
m

r
ms ∑

−

=

=
1

0
,,2  

[ ]
( ) ( ) ( )( ) ( ) ( )( )

















ϕ−γ−ϕ σσ+− s
n
rs

n
rss

n
rsKX ZfZfI

ssSrs ,
21

,,
21

1   

( )( )
( )( )( )
( )( )( )

( )( )( ) ,2
1

,
1

2

,
21

,
,











ϕ×









ϕ

ϕ
γ−− −

σ
σ

σ
•

s
n
rs

s
n
rs

s
n
rsn

rs Zf
Zf

Zf
s
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Since the processes { }Z∈+− rX Srs ,1  are stationary msB ,,2  can be made 

small uniformly in m by choosing K large enough. 

Proof of condition (2) 
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We must show, for s fixed, that the ( )( )2,
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Proof of condition (3) 
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for any s. Thus, we need to prove that 
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thus the right hand side converges to 0, as .∞→n  In a same manner, we 
can show that the second expression also converges to zero. 

Proof of condition (4) 

We have 
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where ( )σϕΓ ,  is given by (3.2). 
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Proofs of conditions (5) and (6) are similar to those of Swensen’s [38], 
hence they are omitted. 

Proof of Proposition 4.1 

We will show that lnϕ  is regular 
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Proof of Lemma 5.1 

By Lemma 4.4 of Kreiss [24], it suffices to verify that ( ) ( )( ) −ϕ∆ nn~  
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Then 
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For the remaining proof one can use Lemmas 6.5-6.9 of Kreiss [24] which 
ensure that each term of the right hand side converges to zero as ,∞→n  
exactly in the same manner. 

 


