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Abstract 

Let ( )XYM  be some conditional measure of location associated with the 

random variable Y, given X. Many nonparametric regression estimators of 
( )XYM  have been proposed. One that is particularly convenient when dealing 

with robust measures of location is a running interval smoother. The paper 
deals with the goal of computing K confidence intervals for ( )XYM  

corresponding to K values of the covariate X, where K is relatively large, that 
have simultaneous probability coverage .1 α−  When working with a 20% 
trimmed mean, methods based on the Studentized maximum modulus 
distribution or the Bonferroni method, for example, can be highly 
unsatisfactory. The paper describes and compares methods that provide more 
satisfactory results. When ( )XYM  is taken to be the median of Y, given X, the 

approach based on 20% trimmed means performs poorly. An alternative 
approach, based in part on the Bonferroni method, was found that gives 
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reasonably satisfactory results. It is illustrated that achieving reasonably 
accurate probability coverage depends in part on the choice for the span and 
that a good choice for the span is a function of the strength of the association. 

1. Introduction 

Let ( )XYM  be some conditional measure of location associated with 

the random variable Y, given X. Certainly, the best-known and most 
frequently used method for estimating ( )XYM  is to assume ( ) =XYM  

,10 Xβ+β  where 0β  and 1β  are unknown parameters. However, it is 

well established that this linear model might not provide an adequate 
approximation of the true regression line. Something other than a 
straight regression line might be needed. A simple approach is to include 
a quadratic term or some other type of parametric model, but even this 
approach can be unsatisfactory. Another approach is to use some 
nonparametric regression estimator, commonly called smoothers, many 
of which have been proposed (e.g., Hastie & Tibshirani [13]; Efromovich 
[3]; Eubank [4]; Fan & Gijbels [5]; Fox [6]; Green & Silverman [7]; Gyöfri 
et al. [8]; Härdle [11]; Wilcox [21]). The typical smoother is aimed at 
estimating ( ),XYE  the population mean of Y given X. It is well known, 

however, that the population mean is not robust (e.g., Huber & Ronchetti 
[17]; Hampel et al. [10]; Staudte & Sheather [19]). When dealing with 
robust measures of location, a relatively simple and effective method for 
estimating ( )XYM  is the running interval smoother. It is readily 

adapted to any robust estimator of location and it has been studied 
extensively. For a summary of relevant results, see Wilcox [21]. 

For a single value of the covariate, x, it is a trivial matter to compute 
a confidence interval for ( )xXYM =  based on the running interval 

smoother provided that the span is chosen appropriately. (Details are 
made clear in Section 2.) But when dealing with K points, say 

,,,1 Kxx …  there is the issue of computing confidence intervals that have 

some specified simultaneous probability coverage, .1 α−  If K is relatively 
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small, a Bonferroni adjustment might be made or a method based on the 
Studentized maximum modulus distribution might be used. However, if 
K is relatively small, important details about ( )XYM  might be missed. 

If K is reasonably large, say 10 or 25 or even larger, a method based on 
the Studentized maximum modulus distribution might still be used, but 
preliminary simulations clearly demonstrated that this approach can be 
rather unsatisfactory when using a 20% trimmed mean: in some 
situations the actual simultaneous probability coverage can be 
substantially larger than the nominal level. That is, the widths of the 
confidence intervals are larger than necessary to achieve the desired 
simultaneous probability coverage. And of course there is the related 
issue of testing ( ) ,: 00 µ=XYMH  where 0µ  is some specified constant. 

Power can be relatively low when using a Studentized maximum 
modulus distribution because the actual probability of one or more Type I 
errors is substantially smaller than the nominal level. 

The paper examines methods for dealing with this issue when using 
the running interval smoother in conjunction with one of two measures of 
location: a 20% trimmed mean and the population median. For the 20% 
trimmed mean, the proposed method is based in part on the Tukey and 
McLaughlin [20] method for computing a confidence interval. When there 
is interest in the population median, the Tukey–McLaughlin method 
breaks down. Instead, the method derived by Hettmansperger and 
Sheather [15] is used. The 20% trimmed mean was chosen because it has 
good efficiency compared to the sample mean when sampling from a 
normal distribution and it has a reasonably high breakdown point, 
namely, 0.2. (The breakdown point refers to the smallest proportion of 
observations that must be altered to make the estimator arbitrarily large 
or small.) Moreover, it has been studied extensively and found to perform 
relatively well compared to other estimators that might be used (e.g., 
Wilcox [21]). This is not to suggest that it dominates, clearly this is not 
the case. The only point is that it is a relatively good choice. 
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The basic strategy for computing confidence intervals that have 
simultaneous probability coverage α−1  is to determine an appropriate 
adjustment when dealing with normal distributions and there is no 
association, and then use the same adjustment when sampling from a 
non-normal distribution or when there is an association. Roughly, when 
using a 20% trimmed mean, the adjustment has a certain similarity to 
using a Studentized maximum modulus, an important difference being 
that the method used here takes into account the correlation among the 
statistics that are used. As will be seen, this approach was found to 
perform well in simulations provided the span of the running interval 
smoother is not too large. As for using medians, a Bonferroni method was 
found to perform relatively well. 

Section 2 describes the details of the proposed methods. Section 3 
reports simulation results and Section 4 illustrates the methods using 
data from the Well Elderly 2 study. 

2. Description of the Methods 

First, the details of the running interval smoother are described 
followed by a description of the Tukey–McLaughlin method and the 
Hettmansperger–Sheather method. Then the strategy for adjusting the 
confidence intervals is described. 

2.1. The running interval smoother 

The running interval smoother is based on a relatively simple 
process. Let ( ) ( )nn YXYX ,,,, 11 …  be a random sample and consider the 

goal of estimating ( ),xXYM =  where x is some specified value of the 

independent variable X. Let MAD be the median absolute deviation 
statistic. That is, MAD is the median of ,,,1 MXMX n −− …  where M is 

the usual sample median based on .,,1 nXX …  Let MADN = MAD/0.6745. 

Under normality, MADN estimates the population standard deviation. 
Let f be some constant (called the span) that is chosen in a manner to be 
describe. Now, the point x is said to be close to iX  if 
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.MADN×≤− fxXi  

So for normal distributions, x is close to iX  if x is within f standard 

deviations of .iX  Let 

( ) { }.MADN: ×≤−= fxXixN i  

That is, ( )xN  indexes the set of all iX  values that are close to x. Let iθ̂  

be an estimate of some parameter of interest, based on the iY  values 

such that ( ).xNi ∈  That is, use all of the iY  values for which iX  is close 

to x. The running interval smoother simply computes iθ̂  ( ),,,1 ni …=  

which provides an estimate of ( ).xXYM =  

Typically, taking the span to be 0.8 suffices in terms of providing a 
relatively accurate estimate of ( ),XYM  based on mean squared error 

and bias, but of course exceptions are encountered (e.g., Wilcox [21]). This 
assumes that bias is measured with 

( ).ˆ iiE θ−θ∑   (1) 

However, this measure of bias is unsatisfactory for present purposes. 
To illustrate why, consider data generated via the model 

,1 +β= XY  

where both X and   have standard normal distributions. For the case 
,01 =β  there is little bias when estimating ( )1=XYM  or ( ).1−=XYM  

However, when 11 =β  and the span is ,8.0=f  the bias is rather severe. 

It is, 1 – 0.81 = 0.19 for 1=X  and – 0.19 for 1−=X  (based on a simulation 

with 10,000 replications). More generally, for ,xX =  bias is positive or 

negative depending on whether .0>x  So bias is small based on (1), but 
the bias for a specific choice for x can be severe, which in turn can result 
in an inaccurate confidence interval for ( ).xXYM =  
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Note that for the situation at hand, Pearson’s correlation is 1β=ρ  

,12
1 +β  which is 0.7 when .11 =β  The degree of bias is a function of .ρ  

Still assuming ,8.0=f  if ,5.01 =β  so ,45.0=ρ  the bias at 1=X  is 

0.12 and for ( ),24.025.01 =ρ=β  the bias is 0.05. So for a relatively 

weak association, the bias is relatively low and a reasonably accurate 
confidence interval can be computed, but otherwise this is not the case. 

Reducing the span reduces the bias at any specific design point. 
Using ,5.0=f  the bias associated with ,45.0,24.0=ρ  and 0.7, again at 

the point ,1=X  is 0.02, 0.04, and 0.077, respectively. For ,2.0=f  bias 

is now 0.001, 0.011, and 0.014, respectively. In the context of computing 
confidence intervals having some specified simultaneous probability 
coverage, this helps explain why the methods consider here do not 
perform well in general when ,8.0=f  except when the strength of 

association is relatively weak. For this reason, the focus here is on 
5.0=f  and 0.2 henceforth. 

2.2. The Tukey–McLaughlin method 

To describe the Tukey–McLaughlin method, momentarily ignore the 
covariate X. Let ( ) ( )nYY ≤≤ …1  be the observations written in ascending 

order. Suppose the desired amount of trimming has been chosen to be ,γ  

.5.00 <γ≤  Let [ ],ng γ=  where [ ]nγ  is the value of nγ  rounded down to 

the nearest integer. The sample trimmed mean is computed by removing 
the g largest and g smallest observations and averaging the values that 
remain. More formally, the sample trimmed mean is 

( ) ( ) .2
1

gn
YY

Y gng
t −

++
= −+ …

 (2) 

As seems evident, the optimal amount of trimming depends on the 
situation–no single amount is always optimal based on efficiency and 
achieving relatively high power when testing hypotheses. As previously 
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noted, the focus here is on 2.0=γ  because this results in relatively good 

efficiency under normality, versus the sample mean. Moreover, empirical 
studies summarized by Wilcox [21] suggest that often it has good 
efficiency relative to other amounts of trimming as well as other robust 
estimators that might be used. (More comments about this issue are 
relegated to the final section of this paper). 

Next, let 

( ) ( )

( ) ( )
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The Winsorized sample mean is 

,1
iWnW ∑=  

and the Winsorized standard deviation is 

( ) .1
1 22 WWns iw −
−

= ∑  

The two-sided Tukey–McLaughlin α−1  confidence interval for the 
population trimmed mean is 

( )
,

2121 n
stY w

t
γ−

± α−  (3) 

where 21 α−t  is the 21 α−  quantile of Student’s t distribution with 

12 −− gn  degrees of freedom. This will be called method TM henceforth. 

2.3. The Hettmansperger–Sheather method 

Method TM performs poorly when the amount of trimming 
approaches 0.5. When dealing with the median, the method derived by 
Hettmansperger and Sheather [15] is used here. 
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Let U be a binary random variable that has a binomial distribution 
with probability of success .5.0=p  For any integer k  greater than 0 

and less than [ ],2n  let ( ).kkk −≤≤=ζ nUP  Then a distribution-free 

kζ  confidence interval for the median is 

( ( ) ( ) )1, +−kk nYY  

(e.g., Hettmansperger & McKean [14]). 

Because the binomial distribution is discrete, it is not possible, in 
general, to choose k  so that the probability coverage is exactly equal to 

.1 α−  For example, if ,10=n  a 0.891 and 0.978 confidence interval can 

be computed, but not a 0.95 confidence interval as is often desired. 
However, linear interpolation can be used along the lines suggested by 
Hettmansperger and Sheather [15] so that the probability coverage is 
approximately .1 α−  First determine k  such that .11 kk ζ<α−<ζ +  

Next, compute 

( ) ,1
1+ζ−ζ
α−−ζ

=
kk

kI  

and 

( )
( ) .2 In

In
kk

k
−+

−=λ  

Then an approximate α−1  confidence interval is 

( ( ) ( ) ( ) ( ) ( ) ( ) ).1,1 11 +−−+ λ−+λλ−+λ kkkk nn XXXX   (4) 

This will be called method HS henceforth. Results reported by Sheather 
and McKean [18], as well as Hall and Sheather [9], support the use of 
this method. 
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2.4. Computing confidence intervals 

As is evident, when using methods TM and HS, a confidence interval 
can be computed based on the jY  values for which ( ).iXNj ∈  Let 

( )iXN#  denote the cardinality of the set ( ).iXN  With 20% trimming, 

the expectation is that generally, a reasonably accurate confidence can be 
obtained when ( ) 12# ≥iXN  (Wilcox [21]). So here, when computing 

confidence intervals for ( ),iXXYM =  only iX  values satisfying 

( ) 12# ≥iXN  are used. Note that when using method HS, if both n and 

α  are sufficiently small, a confidence interval cannot be computed. To 
avoid this issue, only iX  values satisfying ( ) 16# ≥iXN  are used. 

Next, focus on method TM. Let Kxx ,,1 …  be K covariate values of 

interest, where K is relatively large. Momentarily consider the goal of 
testing 

( ) ,0:0 == kxXYMH  

for each K,,1 …=k  and let Kpp ,,1 …  be the corresponding p-values 

based on the Tukey–McLaughlin method. Let ( ).,,min 1min Kppp …=  

As is evident, if the α  quantile of the distribution of minp  could be 

obtained, say ,αp  then the probability of one or more Type I errors is .α  

The strategy is to determine αp  when ,=Y  and both X and   have a 

standard normal distribution. Then simulations are used to determine 
the impact on the probability of one or more Type I errors when there is 
an association and the error term has a non-normal distribution. (So the 
strategy is similar in spirit to classic ANOVA methods.) 

Here, two strategies for choosing Kxx ,,1 …  are considered, which 

are labelled methods M1 and M2. The basic idea behind both strategies is 
to choose points such that the number of nearest neighbours, ( ),# kxN  is 

sufficiently large, say greater than to equal to ,minn  so as to yield a 

confidence having reasonably accurate probability coverage. For reasons 
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previously indicated, 12min =n  is used in conjunction with method TM, 

given the goal that the simultaneous probability coverage is to be 
.95.01 =α−  Perhaps minn  needs to be adjusted when say 99.01 =α−  

or when using some other robust estimator, but this is not pursued here. 

The same method for determining αp  was considered when using 

method HS, with ,16min =n  but this was found to be unsatisfactory in 

simulations: the estimate of α  often exceeded 0.08. A more successful 
method was to simply rely on the Bonferroni method. That is, probability 
coverage for each of the K confidence intervals is set at .1 Kα−  

Method M1 

M1 uses a specified number of covariate values. How many points to 
use depends on how much detail is desired, which presumably depends 
on the situation. Here, the focus is on K = 25 points evenly space between 

1x  and ,25x  inclusive, where 1x  is taken to be smallest iX  value such 

that ( ) min# nXN i ≥  and let 25x  is taken to be the largest iX  value such 

that ( ) .# minnXN i ≥  Some consideration is given to K = 10 as well. 

Method M2 

M2 uses all iX  values such that ( ) .# minnXN i ≥  This approach can 

be implemented when using method TM, but it breaks down when using 
HS and ,16min =n  again because if Kα  is sufficiently small, a 

confidence interval cannot be computed. 

As previously indicated, αp  is estimated via a simulation. To 

elaborate on the details, the first step was to generate data and compute 
p-values for each ( ) ( )KxXYMH ,,10:0 …=== kk  followed by ,p̂  

the minimum of the K p-values. This process was repeated 4000 times 
yielding ,ˆ,,ˆ 40001 pp …  which were then used to estimate the α  quantile 

of minp  via the quantile estimator derived by Harrell and Davis [12]. 
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As previously noted, 8.0=f  seems to suffice in most situations in 

terms of capturing any curvature that might exist. However, preliminary 
simulations revealed that in some situations, 8.0=f  resulted in 

estimates of the simultaneous probability that were less than 0.90 when 
using M1. Decreasing the span to 5.0=f  substantially improved 

matters except in situations where there is substantial curvature, or 
more generally when the strength of the association is relatively high, in 
which case 2.0=f  provides substantially better results. Henceforth, 5.0=f  

is assumed when using M1 unless stated otherwise. As for 5.0,2M =f  

can be unsatisfactory even when the regression line is straight. Using 
2.0=f  resulted in much better control over the Type I error probability. 

Table 1 shows some estimates of ,αp  when ,05.0=α  based on 4000 

replications and sample sizes n ranging from 50 to 1000. For 50<n  with 
,2.0=f  situations are encountered where ( )kxN#  is not sufficiently 

large for any ,,,1, Kx …=kk  which explains the missing entries in 

Table 1. A similar problem occurs when using M1 and ,40≤n  which is 

why the smallest sample size in Table 1 is 50. Note that based on the 
Bonferroni method, using method M1 with K = 25 and K = 10, each of the 
K tests would be performed at the 0.002 and 0.005 level, respectively. So 
Table 1 indicates that as n increases, the estimates of αp  decrease and 

are only slightly larger than the Bonferroni values when n = 1000 when 
using M1. 
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Table 1. Estimates of αp  based on 4000 replications 

n M1 (K = 25) M1 (K = 10) M2 

50 0.0048 0.0076 **** 

60 0.0045 0.0084 **** 

70 0.0042 0.0070 0.0114 

80 0.0041 0.0068 0.0057 

100 0.0035 0.0057 0.0024 

150 0.0033 0.0057 0.0014 

200 0.0030 0.0061 0.0012 

300 0.0030 0.0054 0.0008 

400 0.0028 0.0055 0.0006 

500 0.0025 0.0052 0.0006 

600 0.0026 0.0056 0.0006 

800 0.0026 0.0054 0.0005 

1000 0.0028 0.0055 0.0005 

3. Simulation Results 

Simulations were used to study the small-sample properties of 
method TM in conjunction with M1 and M2. Estimates of the 
simultaneous probability coverage were based on 4000 replications. Data 
were generated based on the model 

,+= aXY   (5) 

for a = 0, 1 and 2. 

Four types of distributions were used: normal, symmetric and heavy-
tailed, asymmetric and light-tailed, and asymmetric and heavy-tailed. 
More precisely, both the error term and the distribution of the 
independent variable were taken to be one of four g-and-h distributions 
(Hoaglin [16]) that contain the standard normal distribution as a special 
case. If Z has a standard normal distribution, then 
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( ) ( )

( )



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=

>−
=

,0if,2exp

,0if,2exp1exp

2

2

ghZZ
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V  

has a g-and-h distribution where g and h are parameters that determine 
the first four moments. The four distributions used here were the 
standard normal ( ),0.0== hg  a symmetric heavy-tailed distribution 

( ),0.0,2.0 == gh  an asymmetric distribution with relatively light tails 

( ),2.0,0.0 == gh  and an asymmetric distribution with heavy tails 

( ).2.0== hg  Table 2 shows the skewness ( )1κ  and kurtosis ( )2κ  for 

each distribution. Additional properties of the g-and-h distribution are 
summarized by Hoaglin [16]. 

Table 2. Some properties of the g-and-h distribution 

g h 1κ  2κ  

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2 0.2 2.81 155.98 

Table 3 summarizes the simulation results for method TM, based on 
M1, for a = 0 and 2, where the random variables X and   were generated 
from identical g-and-h distributions. Shown are estimates of α  when the 
goal is to achieve simultaneous probability coverage 95.01 =α−  when 
computing confidence intervals for the population 20% trimmed means. 
Bradley [1] has suggested that as a general guide, when computing a 0.95 
confidence interval, at a minimum the actual probability coverage should 
be between 0.925 and 0.975. Note that for a = 0 and 2.0=f  as well as 

0.5, this criterion is met for all of the situations considered. As previously 
noted, 5.0=f  is generally small enough to achieve a reasonably 

accurate approximation for any regression line that exhibits curvature. 
However, if the strength of the association is sufficiently high, 2.0=f  
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can be required given the goal of achieving simultaneous probability 
coverage equal to 0.95. For a = 2 and ,2.0=f  Bradley’s criterion is met 

for all but one situation, where the estimate is 0.077 for ,0.0,2.0 == hg  

and n = 1000. Plots reveal the problem: a slightly smaller choice for the 
span is required. For a = 1, not shown in Table 3, again 2.0=f  is 

required to get reasonably good control over the probability coverage. 

Table 3. Estimates of ,α  when the goal is to achieve simultaneous 
probability coverage ,95.01 =α−  based on method TM using M1 with         
K = 25 

g h n a = 0, f = 0.5 a = 0, f = 0.2 a = 2, f = 0.2 

0.0 0.0 50 0.050 **** **** 

0.0 0.0 100 0.050 0.066 0.065 

0.0 0.0 200 0.050 0.055 0.057 

0.0 0.0 1000 0.050 0.059 0.071 

0.0 0.2 50 0.036 **** **** 

0.0 0.2 100 0.040 0.046 0.046 

0.0 0.2 200 0.040 0.041 0.044 

0.0 0.2 1000 0.049 0.049 0.063 

0.2 0.0 50 0.050 **** **** 

0.2 0.0 100 0.055 0.054 0.064 

0.2 0.0 200 0.048 0.060 0.065 

0.2 0.0 1000 0.057 0.065 0.077 

0.2 0.2 50 0.034 **** **** 

0.2 0.2 100 0.037 0.049 0.044 

0.2 0.2 200 0.036 0.044 0.046 

0.2 0.2 1000 0.052 0.052 0.060 

It is noted that additional simulations were run using ,1,5.01 ==β a  

and .5.0=f  For ,50050 ≤≤ n  the estimates were reasonably close to 
the nominal level. For example, when 0== hg  and n = 50, the 
estimate was 0.055. For n = 500 the estimate was 0.052, but for n = 800 
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the estimate was 0.08. The difficulty is that bias becomes more of a factor 
when the sample size is large. Using 2.0=f  corrects this problem, the 
estimate being 0.065. This suggests using 2.0=f  routinely, but a 
concern is that this can result in relatively wide confidence intervals. 

Table 4 shows the simulation results for method M2. There are two 
situations where the estimate drops below 0.025, both of which occur 
when 5.0,0,50 === fan  and sampling is from a heavy-tailed 

distribution. No estimate exceeds 0.075, the largest estimate being 0.68. 

Table 4. Estimates of ,α  when the goal is to achieve simultaneous 
probability coverage ,95.01 =α−  based on method TM using M2 

g h n a = 0, f = 0.5 a = 0, f = 0.2 a = 2, f = 0.2 

0.0 0.0 50 0.050 **** **** 

0.0 0.0 100 0.050 0.050 0.048 

0.0 0.0 200 0.050 0.050 0.052 

0.0 0.0 1000 0.050 0.048 0.065 

0.0 0.2 50 0.021 **** **** 

0.0 0.2 100 0.036 0.034 0.021 

0.0 0.2 200 0.027 0.032 0.033 

0.0 0.0 1000 0.044 0.045 0.059 

0.2 0.0 50 0.028 **** **** 

0.2 0.0 100 0.038 0.050 0.046 

0.2 0.0 200 0.038 0.055 0.057 

0.2 0.0 1000 0.059 0.052 0.068 

0.2 0.2 50 0.018 **** **** 

0.2 0.2 100 0.037 0.036 0.032 

0.2 0.2 200 0.052 0.031 0.037 

0.2 0.2 1000 0.057 0.044 0.059 

Table 5 shows the results when using method HS. The largest 
estimate is 0.054. The main difficulty is that estimates drop below 0.025. 
The two smallest estimates, 0.014 and 0.019, occur when 5.0,50 == fn  

and sampling is from a skewed distribution ( ).2.0=g  
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Table 5. Estimates of ,α  when the goal is to achieve simultaneous 
probability coverage ,95.01 =α−  based on method HS ( )25=K  

g h n a = 0, f = 0.5 a = 0, f = 0.2 a = 2, f = 0.2 

0.0 0.0 50 0.022 **** **** 

0.0 0.0 100 0.037 0.023 0.023 

0.0 0.0 200 0.034 0.034 0.037 

0.0 0.0 1000 0.042 0.049 0.054 

0.0 0.2 50 0.022 **** **** 

0.0 0.2 100 0.033 0.020 0.021 

0.0 0.2 200 0.031 0.028 0.028 

0.0 0.2 1000 0.045 0.040 0.046 

0.2 0.0 50 0.014 **** **** 

0.2 0.0 100 0.034 0.020 0.022 

0.2 0.0 200 0.031 0.033 0.031 

0.2 0.0 1000 0.037 0.038 0.052 

0.2 0.2 50 0.019 **** **** 

0.2 0.2 100 0.029 0.022 0.021 

0.2 0.2 200 0.036 0.030 0.033 

0.2 0.2 1000 0.034 0.038 0.054 

There is the issue how the lengths of the confidence intervals using 
M1 compare to the lengths based on the Studentized maximum modulus 
(SMM) distribution. To provide at least some indication, consider the case 

,+= XY  where both X and   have standard normal distributions.       

For the k-th value among the K values of the independent variable,         
let 1kL  denoted that the length of the confidence interval and let         

2kL  denote the length based on method SMM ( ).,,1 K…=k  Let 

( ).2,1== ∑ mKLL mm k  A simulation estimate of ( ) ( ),21 LELE  

when K = 10 and n = 50, was 0.958. Increasing n to 100, the estimate was 
1.0. For K = 25 and n = 50, the estimate was 0.918, and for n = 100 the 
estimate was 0.953. 
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4. Some Illustrations 

The methods are illustrated using data from the Well Elderly 2 study 
(Clark et al. [2]) that dealt with an intervention program aimed at 
improving the physical and emotional wellbeing of older adults. A portion 
of the study focused on the association between the cortisol awakening 
response (CAR) and a measure of depressive symptoms based on the 
Center for Epidemiologic Studies Depressive Scale (CESD). CAR refers to 
the change in cortisol concentration that occurs 30-60 minutes after 
waking from sleep. A CESD score greater than 15 is regarded as an 
indication of mild depression. A score greater than 21 indicates the 
possibility of major depression. 

It seems fairly evident that simply computing a 0.95 confidence 
interval for each of the K covariate values of interest can result in a 
substantially different result compared to method TM, where the goal is 
to compute confidence intervals having simultaneous probability 
coverage 0.95. Using measures taken after intervention, Figures 1 and 2 
illustrate this point. Figure 1 shows the confidence intervals based on the 
former strategy with K = 25 covariate values chosen as done by M1 and 
when the span is .5.0=f  Figure 2 shows the results when using method 

TM based on M1. As can be seen, the length of the confidence intervals 
differ substantially from those in Figure 1, as would be expected. 
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Figure 1. Confidence intervals based on 20% trimmed means and the 
Well Elderly 2 data where each confidence interval has, approximately, 
probability coverage 0.95. 

 

Figure 2. Confidence intervals based on the same data used in Figure 1, 
only now the simultaneous probability coverage is approximately 0.95. 
The horizontal dotted line corresponds to CESD = 15. (CESD values 
greater than 15 are considered an indication of mild depression.)  
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The horizontal dotted line in Figure 2 corresponds to CESD = 15. So 
Figure 2 indicates that for CAR values between – 0.2 to 1.5, after 
intervention, a reasonable decision is that the typical participant does 
not have any indication of mild depression. Outside this interval, it is 
unclear the extent to which this is the case. 

Figure 3 shows an estimate of the regression line prior to 
intervention. Note that now, it is less clear whether the typical 
participant does not show signs of mild depression. Moreover, there is no 
strong empirical evidence that there is an association. This in contrast to 
Figure 2 where it appears there is a positive association between CAR 
and CESD when CAR is positive (cortisol decreases after awakening). For 
CAR greater than zero, the slope of the regression line, based on the 
Theil-Sen estimator, is significant at the 0.05 level (using a percentile 
bootstrap method), p = 0.038. (A significant result is also obtained using 
least squares regression in conjunction with the HC4 estimate of the 
standard error, p = 0.012.) This raises the concern that after 
intervention, for CAR sufficiently large, the typical participant might 
exhibit mild depression. In Figure 2, for example, for CAR greater than 
2.1, the typical CESD measure is estimated to be greater than 15. 
However, based on the confidence intervals in Figure 2, there is no 
compelling evidence that this is the case. 
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Figure 3. Confidence intervals based on measures taken prior to 
intervention. The simultaneous probability coverage is approximately 
0.95. 

5. Concluding Remarks 

There are, of course, many variations of the methods considered here 
and there is the practical issue that no single estimator dominates in 
terms of efficiency. So, using a robust estimator other than the 20% 
trimmed mean or median might have practical value. For example, a 
robust M-estimator might be used, but it is known that non-bootstrap 
methods, based on some estimate of the standard error, can perform 
poorly in terms of achieving reasonably accurate probability coverage 
when sampling from skewed distributions (Wilcox [21]). This issue can be 
addressed with a percentile bootstrap method. For the situation at hand, 
perhaps a percentile bootstrap method gives satisfactory results, but this 
remains to be determined. 
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One of the main points is that when using a 20% trimmed mean, the 
strategy of using a Studentized maximum modulus distribution can 
result in confidence intervals for which the actual simultaneous 
probability coverage can be substantially greater than the nominal level. 
Of course, switching to the Bonferroni method only makes matters worse. 
This is less of an issue when using the median, but for n = 100 there are 
situations where the actual probability coverage is greater than 0.975. 

The choice for the span is crucial. If there is a fairly weak association, 
taking the span to be 8.0=f  is satisfactory, but otherwise the span 

should 0.5 or smaller. For a very strong association, 2.0=f  should be 

used. For sample sizes ,1000>n  perhaps 2.0<f  is required, 

particularly when the strength of the association is fairly strong. The 
simulations suggest that to minimize the bias associated with any 
estimate of ( ) fXYM ,  should be a decreasing function of n, with the 

complication that any method for choosing the span also depends on the 
strength of the association. For ,1000≤n  an argument for using 2.0=f  

routinely is that the simultaneous probability coverage is controlled 
reasonably well, at least among the situations considered here. But a 
negative feature is that 2.0=f  can result in relatively wide confidence 

intervals compared to using .5.0=f  

Finally, the R function rplotCI applies method TM based on M1, and 
rplotCIv2 uses M2, both of which have been added to the R package 
WRS. The R function rplotCIM applies method HS and has been added to 
WRS as well. 
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