HANKEL OPERATORS ON COPSON SPACES

N. POPA

Institute of Mathematics of Romanian Academy
P. O. Box 1-764

RO-014700 Bucharest
Romania
e-mail: Nicolae.Popa@imar.ro

Abstract

We investigate the necessary and sufficient conditions in order that a Hankel operator on the space H_{d}^{2}, isomorphic to Copson space cop(2), belongs to some operator ideals such as that of all linear bounded operators, of all compact operators, of all nuclear operators etc.

1. Introduction

In [10], we introduced the scale of spaces

$$
H_{d}^{p}:=S p\left(\mathcal{M}_{d}^{+}\right)=\mathcal{M}_{d}^{+} \cap H^{p}-\mathcal{M}_{d}^{+} \cap H^{p}, 1 \leq p<\infty
$$

where $\operatorname{Sp}\left(\mathcal{M}_{d}^{+}\right)$is the space generated by \mathcal{M}_{d}^{+}. These spaces are Banach lattices with respect to the cone $\mathcal{M}_{d}^{+} \cap H^{p}$, where

[^0]$$
\mathcal{M}_{d}^{+}=\left\{f(z)=\sum_{k=1}^{\infty} a_{k} z^{k} ;|z|<1, f \text { analytic, and } a_{k} \downarrow_{k} 0\right\}
$$
of all analytic functions from the classical Hardy spaces $H^{p}, 1 \leq p<\infty$, with a decreasing sequence of positive Taylor coefficients. In that paper we proved that the Hankel operators with a symbol having also a decreasing sequence of positive Taylor coefficients act boundedly on H_{d}^{2} if and only if the symbol belongs to the $B M O A_{d}$, the subspace of the classical Banach space $B M O A$ as defined in [12], generated by the cone $\mathcal{M}_{d}^{+} \cap B M O A$.

It is perhaps of interest to remark that H_{d}^{2} is topologically isomorphic to the classical Copson space cop(2), as defined in [2].

This paper is a continuation of [10], and we intend to give necessary and sufficient conditions in order that a Hankel operator as above belongs to different operator ideals like the ideal of compact operators, of nuclear operators, or to the ideal N_{2}, as defined in [8].

2. Solid Spaces of Sequences

First we recall the definition of the smallest solid superset $S(X)$, of a Banach space of sequences X. (See [1], [4].)

$$
S(X):=\left\{a=\left(a_{n}\right)_{n \geq 0}: \exists b \in X \text { such that }\left|b_{n}\right| \geq\left|a_{n}\right| \text { for all } n\right\}
$$

The norm on $S(X)$ is the following (see [4]):

$$
\|a\|_{S(X)}:=\inf \left\{\|b\|_{X}: \text { for all } b \in X \text { such that }\left|b_{n}\right| \geq\left|a_{n}\right| \forall n\right\}
$$

We use also the space $d(a, p)$ introduced by Bennett in [2]:
$d(a, p):=\left\{x=\left(x_{n}\right):\right.$ such that $\left.\|x\|_{d(a, p)}:=\left(\sum_{k=1}^{\infty} a_{k} \sup _{n \geq k}\left|x_{n}\right|^{p}\right)^{1 / p}<\infty\right\}$,
where $a=\left(a_{1}, a_{2}, \ldots\right), a_{n} \geq 0$, and $1 \leq p<\infty$. In the particular case $a_{n}=1, \forall n$, we denote $d(a, p)$ simply by $d(p)$.

Another space of interest introduced in [2] is $g(a, p):=\left\{x: \sum_{k=1}^{n}\right.$ $\left.\left|x_{k}\right|^{p}=\mathcal{O}\left(A_{n}\right)\right\}$. Here $a=\left(a_{1}, a_{2}, \ldots\right)$, where $A_{n}=a_{1}+a_{2}+\cdots+a_{n}$.

Of course, the norm of $g(a, p)$ is given by

$$
\|x\|_{g(a, p)}=\sup _{n}\left(\frac{1}{A_{n}} \sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p} .
$$

The following result is valid for all $0<p<\infty$:
Theorem 2.1. Let $0<p<\infty$. Then $S\left(H_{d}^{p}\right)=d(a, p)$, where $a_{n}=n^{p-2}, \forall n$, with equivalent norms.

Proof. Let $x=\left(x_{n}\right)_{n} \in d(\alpha, p)$, and $y=\left(y_{n}\right)_{n} \in H_{d}^{p}$. Then $\sum_{n} n^{p-2} \sup _{k \geq n}\left|x_{k}\right|^{p}=\|x\|_{d(a, p)}^{p}<\infty$, and, for $y_{n}:=\sup _{k \geq n}\left|x_{k}\right|$, for all n, we have $y_{n} \downarrow_{n} 0,\left|x_{n}\right| \leq\left|y_{n}\right| \forall n$, and $y \in H_{d}^{p} \cap \mathcal{M}_{d}^{+}$, consequently $x \in S\left(H_{d}^{p}\right)$.

In other words

$$
d(a, p) \subset S\left(H_{d}^{p}\right),
$$

and, moreover, $\|x\|_{S\left(H_{d}^{p}\right)} \leq\|y\|_{H_{d}^{p}}=\|x\|_{d(a, p)}$.

Since by using Theorem 6.1-[4], $S\left(H_{d}^{p}\right)$ is the smallest Banach lattice containing H_{d}^{p}, and $d(a, p)$ is a Banach lattice containing H_{d}^{p}, then

$$
S\left(H_{d}^{p}\right) \subset d(a, p)
$$

Thus

$$
S\left(H_{d}^{p}\right)=d(a, p)
$$

and their corresponding norms are equivalent by closed graph theorem and by inequality $\|x\|_{S\left(H_{d}^{p}\right)} \leq\|x\|_{d(a, p)}$.

Also the study of the largest solid subset of a space X, denoted by $s(X)$, where X is a Banach space of sequences, is of interest as showed in [1].

In what follows we describe the largest solid subspace of the topological dual of $H_{d}^{p}, 1 \leq p<\infty$.

We denote by A^{*} the topological dual of the Banach space of sequences A.

First we prove a lemma:
Lemma 2.2. The space of all coefficient multipliers from ℓ^{∞} into $\left(H_{d}^{p}\right)^{*}$, denoted by $\left(\ell^{\infty},\left(H_{d}^{p}\right)^{*}\right)$, coïncides with the corresponding space $\left(H_{d}^{p}, \ell^{1}\right)$.

Proof. Let $m=\left(m_{n}\right)_{n}$ be a multiplier belonging to $\left(\ell^{\infty},\left(H_{d}^{p}\right)^{*}\right)$, that is $\left(m_{n} a_{n}\right)_{n} \in\left(H_{d}^{p}\right)^{*} \forall\left(a_{n}\right)_{n} \in \ell^{\infty}$.

Let $\left(b_{n}\right)_{n} \in H_{d}^{p}$. The canonical sequence $\left(e_{n}\right)_{n}$ is a non normalized Schauder basis of $H_{d}^{p}, 1 \leq p<\infty$, by [10]. Consequently $\sum_{n} m_{n} a_{n} b_{n}$ is a convergent series $\forall\left(b_{n}\right)_{n} \in H_{d}^{p}$, and $\forall\left(a_{n}\right)_{n} \in \ell^{\infty}$.

Thus fix an arbitrary $\left(b_{n}\right)_{n} \in H_{d}^{p}$, and take $a_{n}=\operatorname{sign}\left(b_{n} m_{n}\right), \forall n$. Then we have that $\sum_{n}\left|m_{n}\right|\left|b_{n}\right|<\infty, \forall\left(b_{n}\right)_{n} \in H_{d}^{p}$, that is $m \in\left(H_{d}^{p}, \ell^{1}\right)$.

In other words $\left(\ell^{\infty},\left(H_{d}^{p}\right)^{*}\right) \subset\left(H_{d}^{p}, \ell^{1}\right)$.
Conversely, let $m \in\left(H_{d}^{p}, \ell^{1}\right)$, and $a=\left(a_{n}\right) \in \ell^{\infty}$. Then, for $b=\left(b_{n}\right)_{n} \in H_{d}^{p}$, we have:

$$
\left(m_{n} b_{n}\right)_{n} \in \ell^{1} \text { implies } \sum_{n}\left|m_{n}\right|\left|b_{n}\right|<\infty \text { thus } \sum_{n}\left|m_{n}\right|\left|a_{n}\right|\left|b_{n}\right|<\infty,
$$

$\forall a \in \ell^{\infty}, b \in H_{d}^{p}$, which in turn implies $\left(m_{n} a_{n}\right)_{n} \in\left(H_{d}^{p}\right)^{*} \forall\left(a_{n}\right)_{n} \in \ell^{\infty}$.
It follows

$$
m \in\left(\ell^{\infty},\left(H_{d}^{p}\right)^{*}\right)
$$

Theorem 2.3. $s\left(\left(H_{d}^{1}\right)^{*}\right)=g(a, 1)$, where $a_{n}=\left(\frac{1}{n}\right)_{n}$, and $g(a, 1)=$ $\left\{x=\left(x_{n}\right) ;\|x\|_{g(a, 1)}=\sup _{n \geq 0} \frac{\sum_{k=1}^{n}\left|x_{k}\right|}{\ln (n+1)}<\infty\right\}$, with the equivalent norms.

Proof. It is easy to see that $s\left(\left(H_{d}^{1}\right)^{*}\right)=\left(\ell^{\infty},\left(H_{d}^{1}\right)^{*}\right)$. (See [1].)
By using the previous lemma and [4] we have that $s\left(\left(H_{d}^{1}\right)^{*}\right)=\left(H_{d}^{1}, \ell^{1}\right)$ $=\left(S\left(H_{d}^{1}\right), \ell^{1}\right)$.

Now by Theorem 2.1 and by Theorem 3.8 - [2], it follows that $\left(\left(H_{d}^{1}\right)^{*}\right)=\left(d(a, 1), \ell^{1}\right)=g(a, 1)$.

In the case $1<p<\infty$, we have:
Theorem 2.4. Let $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$. Then

$$
s\left(\left(H_{d}^{p}\right)^{*}\right)=\ell^{q} \cdot g(a, p),
$$

where $\ell^{q} \cdot g(a, p)$ means the space of all sequences $x \cdot y$, with $x \in \ell^{q}$, $y \in g(a, p)$.

Proof. Similarly with the proof of Theorem 2.3 we have

$$
s\left(\left(H_{d}^{p}\right)^{*}\right)=\left(d(a, p), \ell^{1}\right)=d(a, p)^{\times},
$$

where the last term is the Köthe dual of $d(a, p)$.
But, by using Theorem 12.3 -[2], we get the result.
First recall that, for $0<p<\infty$,

$$
\begin{gathered}
\operatorname{cop}(p):=\left\{x=\left(x_{k}\right)_{k}: \sum_{k=0}^{\infty}\left(\sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k+1}\right)^{p}<\infty\right\}, \text { with the quasi-norm } \\
\|x\|_{\operatorname{cop}^{(p)}}=\left(\sum_{n=0}^{\infty}\left(\sum_{k=n}^{\infty} \frac{\left|x_{k}\right|}{k+1}\right)^{p}\right)^{1 / p}
\end{gathered}
$$

We recall that by the space $b v$ we mean the Banach space of sequences of real numbers $a=\left(a_{n}\right)_{n \geq 0}$ with bounded variation $\|a\|_{b v_{0}}:=|\alpha|+\sum_{n=0}^{\infty}\left|a_{n}-a_{n+1}\right|$, where $\lim _{n} a_{n}=\alpha$.

It is well-known and easy to prove that $b v$ is a vector lattice for the order induced by the cone $C:=\left\{a=\left(a_{n}\right)_{n \geq 0}, a_{n} \downarrow_{n} \alpha \geq 0\right\}$.

For the convenience of the reader we sketch the argument of this: First the cone C is a lattice cone.

For instance if $a, b \in C$, then $\sup (a, b):=a \vee_{C} b \in C$ is given by

$$
a \vee_{C} b:=\left(c_{n}\right)_{n} \text {, where } c_{n}=\sum_{k=n}^{\infty}\left(a_{k}-a_{k+1}\right) \vee\left(b_{k}-b_{k+1}\right), \forall k \geq 0 .
$$

It follows, by using [11] - Chapter V - Proposition 1.2, that bv is a vector lattice with respect to the order induced by the cone C.

We recall that the modulus of $a \in b v$, denoted by $\mid a_{b v}$, is defined by

$$
\left(|a|_{b v}\right)_{n}:=|\alpha|+\sum_{k=n}^{\infty}\left|a_{k}-a_{k+1}\right|, \forall n \geq 0 .
$$

If $\alpha=0$, for all sequences from $b v$, the corresponding space is denoted by $b v_{0}$, and the latter is also vector lattice.

We mention that $b v$ is also a Banach lattice, but this is not important for this paper.

Then we have:

Theorem 2.5. Let $0<p<\infty, p \neq 2$. Then H_{d}^{p} is linear-topological isomorphic (but not latticially isomorphic) to the Copson space of order p, $\operatorname{cop}(p)$.

The isomorphism $T: H_{d}^{p} \rightarrow \operatorname{cop}(p)$ is given, for $x=\left(x_{n}\right)_{n \geq 0} \in H_{d}^{p}$, by $T(x):=u=\left(u_{k}\right)_{k \geq 0} \in \operatorname{cop}(p)$, in the following way:

$$
u_{k}=(k+1)\left[(k+1)^{1-2 / p} x_{k}-(k+2)^{1-2 / p} x_{k+1}\right], k \geq 0 .
$$

$T^{-1}: \operatorname{cop}(p) \rightarrow H_{d}^{p}$ is given by

$$
x_{n}=(n+1)^{2 / p-1} \sum_{k=n}^{\infty} \frac{u_{k}}{k+1}, n \geq 0 .
$$

Moreover,

$$
\|x\|_{H_{d}^{p}}=\left(\sum_{n=0}^{\infty}(n+1)^{p-2}\left(\left|x_{n}\right|_{b v_{0}}\right)_{n}^{p}\right)^{1 / p}=\|T(x)\|_{\mathrm{cop}}(p), \forall x \in H_{d}^{p}
$$

Proof. Obvious by inspection.
Corollary 2.6. Let $1<p<\infty, p \neq 1$. Then $\left(H_{d}^{p}\right)^{*}$ is linear-topologically (but not latticially) isomorphic to $d\left(p^{*}\right)^{\times}$, where $\frac{1}{p^{*}}+\frac{1}{p}=1$.

Proof. By using Theorem 6.8 and Corollary of Theorem 12.17-[2], we get that $\operatorname{cop}(p)^{*}=d\left(p^{*}\right)$.

The particular case $p=2$ is of interest view the fact that Hankel operators act nicely on H_{d}^{2}, as we see in the next section.

Corollary 2.7. (1) $H_{d}^{2} \stackrel{T}{\longleftrightarrow} \operatorname{cop}(2)$ by the latticial isometry:
$T(x)=u$, where $u_{k}=(k+1)\left[x_{k}-x_{k+1}\right], k \geq 0$, and,

$$
T^{-1}(u)=x, x_{n}=\sum_{k=n}^{\infty} \frac{u_{k}}{k+1}, n \geq 0
$$

Moreover T^{*} maps isometrically $\left(H_{d}^{2}\right)^{*}$ onto $d(2)$.
(2) H_{d}^{2} is not isomorphic to ℓ^{2}, but $\left(H_{d}^{2}\right)^{*}$ is isomorphic to $S\left(H_{d}^{2}\right)=d(2)$.
(3) H_{d}^{2} is a reflexive Banach space.

Proof. (1) Is a particular case of the previous Theorem and Corollary.
(2) By using a more generally fact - Proposition 15.13 [2].
(3) By (2).

3. Hankel Operators on $\boldsymbol{H}_{\boldsymbol{d}}^{\mathbf{2}}$

We saw in Corollary 2.7 that H_{d}^{2} is not isomorphic to a Hilbert space. However $H_{d}^{2} \subset H^{2}$, and the restriction of a Hankel operator (with an appropriate symbol) to H_{d}^{2} behaves very likely to a classical Hankel operator on H^{2}.

More specific we show in Theorem 4.1 [10] that a Hankel operator $H_{\bar{f}}$, with a decreasing sequence of Taylor coefficients, is a linear and bounded operator on H_{d}^{2} if and only if $f \in B M O A_{d}^{+}:=\mathcal{M}_{d}^{+} \cap B M O A$.

In order to be self-contained we give the proof of this result.
First we recall the definition of $B M O A$.
Following [12] we consider first a function $f \in L^{2}(\partial \mathbb{D})$ and I an interval contained in $\partial \mathbb{D}$. We write the mean of f over I as

$$
f_{I}=\frac{1}{|I|} \int_{I} f(\theta) d \theta
$$

where $|I|$ denotes the length of $I . f$ is said to have bounded mean oscillation on $\partial \mathbb{D}$ if

$$
\|f\|_{B M O}=\sup _{I}\left[\frac{1}{|I|} \int_{I}\left|f(\theta)-f_{I}\right|^{2} d \theta\right]^{1 / 2}<\infty .
$$

Let $B M O$ denote the space of all functions $f \in L^{2}(\partial \mathbb{D})$ having bounded mean oscillation. It can be checked that $B M O$ is a Banach space modulo constants. Now let BMOA the intersection of BMO with H^{2} and $B M O A(\mathbb{D})$ be the space consisting of harmonic extensions \hat{f} of functions in BMOA.

Since BMOA is only a Banach space modulo constants we consider on the $B M O A$ the norm

$$
\|f\|=\|f\|_{B M O}+|\widehat{f}(0)| .
$$

$B M O A$ equipped with this norm is then equivalent to the dual of H^{1}, as it follows by using [12] Theorem 8.3.8 (the celebrated theorem of Fefferman). The bilinear map which realizes this duality is given by

$$
<f, g>=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) \overline{g(\theta)} d \theta
$$

where $f \in H^{1}, g \in B M O A$.
In the sequel we present some results concerning the behaviour of Hankel matrices on H_{d}^{2}.

Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of positive real numbers with $\sum_{n} a_{n}^{2}<\infty$. The infinite matrix

$$
A:=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \ldots \\
a_{2} & a_{3} & a_{4} & \ldots & \ldots \\
a_{3} & a_{4} & \ldots & \ldots & \ldots \\
a_{4} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right),
$$

having the constant entries on each skew-diagonal, is called a Hankel matrix.

To each Hankel matrix we can associate a Hankel operator mapping H^{2} into $\overline{H^{2}}$, denoted by H_{f}, where f is an anti-analytic function on the unit disk with Taylor coefficients $a_{n}, n \geq 0$, in the following way:

$$
H_{f} g=(I-p)(f g),
$$

for $g \in H^{2}$, where P is the Szegö projection, that is the orthogonal projection from $L^{2}(\partial D)$ onto H^{2}.

A natural question about this operator is to determine the property of f such that H_{f} is bounded. It is well-known [12] that the answer is as follows:

Theorem of Nehari H_{f} is bounded if and only if f belongs to BMOA.
Denote by ℓ_{d}^{2} the subspace $C-C$ of ℓ^{2}, where $C:=\left\{a=\left(a_{n}\right)_{n \geq 0} \in \ell^{2}\right.$; $\left.a_{n} \downarrow_{n} 0\right\} \cdot \ell_{d}^{2}$ is equipped with the norm
$\|a\|:=\inf _{a=a^{1}-a^{2}, a^{1}, a^{2} \in C}\left(\left(\sum_{n=0}^{\infty}\left(a_{n}^{1}\right)^{2}\right)^{1 / 2}+\left(\sum_{n=0}^{\infty}\left(a_{n}^{2}\right)^{2}\right)^{1 / 2}\right) \sim\left(\sum_{n=0}^{\infty}\left(|a|_{b v_{0}}\right)_{n}^{2}\right)^{1 / 2}$.
Of course, so equipped, ℓ_{d}^{2} is a Banach lattice isomorphic to H_{d}^{2}.

Similarly, in our context we have:
Theorem 3.1. Let A be the Hankel matrix defined as above, where the sequence $\left(a_{n}\right)_{n \geq 0}$ is, moreover, monotone decreasing $a_{n} \downarrow_{n} 0$. Then A determine a bounded operator from ℓ_{d}^{2} into ℓ_{d}^{2} if and only if $\sup _{n \geq 0}(n+1) a_{n}<\infty$, that is the Hankel operator H_{f}, where $f(z):=\sum_{n=0}^{\infty} a_{n} \bar{z}^{n}, z \in \mathbb{D}$, is bounded on H_{d}^{2} if and only if $\bar{f} \in B M O A_{d}$.

Proof. Assume that $\sup _{n}(n+1) a_{n}<\infty$. Then by using [13] we get that $\bar{f} \in B M O A_{d}$. From [12]-9.2.3, we get that H_{f} is bounded on H^{2}, and $\left\|H_{f}\right\|$ is comparable with the norm $\|A\|_{B\left(\ell^{2}\right)}$. Next let us take the sequence $\left.b=\left(b_{n}\right)_{n \geq 0}\right) \in C:=\mathcal{M}_{d}^{+} \cap H^{2}$, and $g=\sum_{n=0}^{\infty} b_{n} e^{\text {int }}, t \in[0,2 \pi]$. Then $H_{f} g=A \cdot b \in C$. Then it is easy to see that H_{f} is a bounded map on $H_{d}^{2}:=C-C$.

Conversely assume that A determines a bounded operator (which is the Hankel operator H_{f}) on H_{d}^{2}. Consider the unit vector function

$$
k_{z}(t)=\frac{\sqrt{1-|z|^{2}}}{1-\bar{z} e^{i t}} \in H^{2}, z \in \mathbb{D} .
$$

This function has the Taylor coefficients $b_{n}=r^{n} e^{-\mathrm{int}}, n \geq 0$, where $z=r e^{i t}$. Of course $\left|b_{n}\right| \downarrow_{n} 0$. It is well-known (see [12]-9.2.2) and easy to see that

$$
\left\|H_{f} k_{z}\right\|_{H^{2}}=\widehat{|\widehat{f}|^{2}}(z)-|\widehat{\bar{f}}(z)|^{2},
$$

for all $z \in \mathbb{D}$, where \hat{f} is the Poisson extension of f on \mathbb{D}.

Let k_{z}^{1} be the analytic function with Taylor coefficients $\left|b_{n}\right|$, for all $n \geq 0$. Then, of course, $k_{z}^{1} \in H_{d}^{2}$, with $\left\|k_{z}^{1}\right\|_{H_{d}^{2}}=\left\|k_{z}\right\|_{H^{2}}=1, z \in \mathbb{D}$.

On the other hand the Taylor coefficients of $H_{f} k_{z}$ are dominated by the corresponding Taylor coefficients of $H_{f} k_{z}^{1}$. Moreover, the sequence of Taylor coefficients of $H_{f} k_{z}^{1}$ is a decreasing sequence running to 0 .

Consequently $\left\|H_{f} k_{z}\right\|_{H^{2}} \leq\left\|H_{f} k_{z}^{1}\right\|_{H^{2}}=\left\|H_{f} k_{z}^{1}\right\|_{H_{d}^{2}} \leq M<\infty$, where M is the operator norm of H_{f} on H_{d}^{2}.

It follows that $\left|\widehat{\left.\bar{f}\right|^{2}}(z)-|\widehat{\bar{f}}(z)|^{2}\right.$ is a bounded function on \mathbb{D}, and, by using Theorem 8.3.4-[12], $\bar{f} \in B M O A$. Since $a_{n} \downarrow_{n} 0$, in view of [13], it follows that $\sup _{n \geq 0}(n+1) a_{n}<\infty$.

Now we study Hankel operators on H_{d}^{2}, first we recall the definition of the $V M O A$ space. The closure of analytic polynomials in $B M O A$ is called the $V M O A$, and denote by $V M O A_{d}^{+}$the cone $\mathcal{M}_{d}^{+} \cap V M O A$. Here, of course, the space $V M O A$ is equipped with the norm induced by that of $B M O A$.

Then we have the analogue of Theorem 9.3.2 [12].
Theorem 3.2. If $f \in H_{d}^{2} \cap \mathcal{M}_{d}^{+}, H_{\bar{f}}$ is a compact operator from H_{d}^{2} to $\left(H_{d}^{2}\right)^{\perp}:=\left(H^{2}\right)^{\perp} \cap L^{2}(\partial \mathbb{D})_{d}$ if and only if $V M O A_{d}^{+}$.

Proof. Since $H_{\bar{f}}$ is given by the matrix:

$$
A:=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \ldots \\
a_{2} & a_{3} & a_{4} & \ldots & \ldots \\
a_{3} & a_{4} & \ldots & \ldots & \ldots \\
a_{4} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right),
$$

where $f(\theta)=\sum_{k=0}^{\infty} a_{k} e^{i k \theta}, \theta \in[0,2 \pi), a_{k} \downarrow_{k} 0$, it is easy to see that $H_{\bar{f}}$ maps H_{d}^{2} into $L^{2}(\partial \mathbb{D})_{d}^{-}:=\left\{g \in L^{2}(\partial \mathbb{D}), g(\theta)=\sum_{k=1}^{\infty} a_{k} e^{-i k \theta} ;\left(a_{k}\right)_{k} \in \ell_{d}^{2}\right\}$.

Assume that $H_{\bar{f}}$ is a compact operator defined on H_{d}^{2} into $L^{2}(\partial \mathbb{D})_{d}^{-}$, denoted simply by $\overline{H_{d}^{2}}$. We know that $H_{\bar{f}}$ maps any sequence weakly convergent to zero in a sequence norm-convergent to zero, with respect to the norm of ℓ_{d}^{2}.

Now, let k_{z}^{1} be the analytic function $k_{|z|}(t)=\frac{\sqrt{1-|z|^{2}}}{1-\bar{z} e^{i t}}, z \in \mathbb{D}$, and $t \in \mathbb{R}$. Clearly $k_{z}^{1} \in H_{d}^{2} \cap \mathbb{M}_{d}^{+}$. Since $\left\|k_{z}^{1}\right\|_{H_{d}^{2}}=\left\|k_{|z|}\right\|_{H^{2}}=1, \forall z \in \mathbb{D}$, the set $\left\{k_{z}^{1} ; z \in \mathbb{D}\right\}$ is bounded in H_{d}^{2}.

Because H_{d}^{2} is a reflexive Banach space, $\left\{k_{z}^{1} ; z \in \mathbb{D}\right\}$ is a relatively weakly compact set in H_{d}^{2}. By using Eberlein's theorem (see Theorem 11.1 - Chapter IV [11]), each subsequence of $\left\{k_{z_{n}}^{1}\right\}_{n}$ contains a weakly convergent subsequence in H_{d}^{2}.

Since $k_{z_{n}}^{1} \rightarrow 0$ whenever $\left|z_{n}\right| \rightarrow 1^{-}$, it follows that each subsequence of $\left(H_{\bar{f}}\left(k_{z_{n}}^{1}\right)\right)_{n}$ contains a norm-convergent subsequence in $\overline{H_{d}^{2}}$, hence also in $\overline{H^{2}}$. By using the proof of Theorem 9.3.2-[12] it follows that this limit is equal to 0 .

Consequently $\left\|H_{\bar{f}}\left(k_{z_{n}}^{1}\right)\right\|_{H_{d}^{2}} \rightarrow 0$, and also

$$
\left|\widehat{\left.\bar{f}\right|^{2}}\left(\left|z_{n}\right|\right)-|\widehat{\bar{f}}(z)|^{2}=\left\|H_{\bar{f}}\left(k_{z_{n}}^{1}\right)\right\|_{H^{2}}^{2} \rightarrow 0\right.
$$

By using Theorem 8.4.2 [12], it follows that $f \in V M O A$. By the hypothesis concerning f, we have $f \in V M O A_{d}^{+}$.

Conversely, let $f \in V M O A_{d}^{+}, f(\theta)=\sum_{k=0}^{\infty} a_{k} e^{i k \theta}$, with $a_{k} \downarrow_{k} 0$. By using Theorem 8.4.7 [12], it follows that there is a $g \in C(\partial \mathbb{D})$ such that $f=P g, P$ being the Szego projection. By 9.2.3-(4) -[12] we have $H_{\bar{f}}=$ $H_{\bar{g}}$.

It remains, consequently, to prove that $H_{g}: H_{d}^{2} \rightarrow \overline{H_{d}^{2}}$, where $g \in C(\partial \mathbb{D})$, is a compact operator. By using [12], we know that $f \rightarrow H_{f}$ is a bounded map from $L^{\infty}(\partial \mathbb{D})$ into the space $B\left(H^{2},\left(H^{2}\right)^{\perp}\right)$, and the norm $\left\|H_{f}\right\|_{B\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)}$ is, clearly, dominated by $\left\|H_{f}\right\|_{B\left(H^{2},\left(H^{2}\right)^{\perp}\right)}$. Thus it is enough to show that $H_{f}: H_{d}^{2} \rightarrow \overline{H_{d}^{2}}$, where $f(t)=e^{\text {int }}, n \in \mathbb{Z}$, is a compact operator.

But it is easy to see that, for $n \in \mathbb{N}, H_{f}=0$, and, for $n<0, H_{f}$ is a finite rank operator.

As we have seen above a Hankel operator $H_{\bar{f}}$, with $f(z)=\sum_{k=0}^{\infty} a_{k} e^{i k z}$, $z \in \mathbb{D}, a_{k} \downarrow_{k} 0, \quad$ acting on H_{d}^{2}, \quad is bounded if and only if $\sup _{n}(n+1) a_{n}<\infty$.

It is natural to ask ourselves if there is something similar in the compact case.

The following result gives us the answer:

Theorem 3.3. Let $f(z)=\sum_{k=0}^{\infty} a_{k} e^{i k z}, z \in \mathbb{D}, a_{k} \downarrow_{k} 0$, an analytic function.

Then $H_{\bar{f}}$ is a compact operator acting on H_{d}^{2} if and only if $\lim _{n \rightarrow \infty}(n+1) a_{n}=0$.

Proof. Necessity. Let $H_{\bar{f}}$ be a compact operator. Then by Theorem 3.2, $f \in V M O A \subset \mathcal{B}_{0}$, where \mathcal{B}_{0} is the closure of all analytic polynomials in the Bloch space \mathcal{B}. By using Theorem 1.10(a) and Remark 1.19 - [3], it follows that

$$
\sum_{j=0}^{n} j a_{j}=o(n), \forall n
$$

Since $a_{j} \downarrow_{j} 0$, we have

$$
a_{n} \frac{n(n+1)}{2}=o(n), \text { thus } \lim _{n \rightarrow \infty}(n+1) a_{n}=0 .
$$

Sufficiency. Assume that $a_{n} \downarrow_{n} 0$, and $\lim _{n}(n+1) a_{n}=0$. By Theorem 7.2.2-(3), vol. I-[6], it follows that $g(t):=\sum_{n=1}^{\infty} a_{n} \sin n t, t \in[0,2 \pi)$, is a continuous function.

If $P: L^{2} \rightarrow H^{2}$ is the Szegö projection, $P(h)(t):=\sum_{n=0}^{\infty} b_{n} e^{\text {int }}$, for $h(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{\text {int }}, \forall\left(b_{n}\right)_{n \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$, then, by using Theorem 8.4 .7 [12], $P(C(\partial \mathbb{D}))=V M O A$.

Consequently,

$$
P(g)(t)=\sum_{n=1}^{\infty} \frac{1}{2 i} a_{n} e^{\mathrm{int}}=\frac{1}{2 i}\left[f(t)-a_{0}\right] \in V M O A,
$$

thus $f \in V M O A$, and, by using Theorem 3.2, it follows that $H_{\bar{f}}$ is a compact operator. Here, of course, $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, z \in \mathbb{D}$.

Remark 3.4. (1) By using the proof of Theorem 3.1 we get easily that, for $f \in B M O A_{d}^{+}$, the subspace, $\operatorname{Hank}_{B M O A_{d}}$, of all Hankel operators $H_{\bar{f}} \in B\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)$ is a Banach subspace of the similar space $H a n k_{B M O A}$.
(2) Similarly, for $f \in V M O A_{d}^{+}$, the space, Hank $\operatorname{comp}_{V M O A_{d}}$, of all compact Hankel operators from H_{d}^{2} into $\overline{H_{d}^{2}}$, is a Banach subspace of the similar space Hank comp $_{V M O A}$.

We intend now to characterize the nuclear Hankel operators $H_{\bar{f}}$, $f \in \mathcal{M}_{d}^{+}$acting on H_{d}^{2}.

Let $S_{1}\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)$ the space of all nuclear operators acting from H_{d}^{2} into $\overline{H_{d}^{2}}$, equipped with the usual nuclear norm.

Denote by $\left(\operatorname{Bes}_{1}\right)_{d}^{+}=\left\{f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}, a_{n} \downarrow_{n} 0 ;\|f\|_{\operatorname{Bes}_{1}}\right.$

$$
\left.:=\int_{D}\left|f^{\prime \prime}(z)\right| d A(z)<\infty\right\}
$$

Then we have the analogue of Theorem 9.4.4-[12]:
Theorem 3.5. If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, with $a_{n} \downarrow_{n} 0$, then $f \in\left(\mathrm{Bes}_{1}\right)_{d}^{+}$ if and only if $H_{\bar{f}} \in S_{1}\left(H^{2}, H_{d}^{2}\right)$. Moreover the corresponding norms are equivalent.

Proof. Let $f \in\left(\mathrm{Bes}_{1}\right)_{d}^{+}$. Then, by using the proof of Theorem 9.4.4 [12], we get

$$
H_{\bar{f}}=\int_{\mathbb{D}}\left(1-|w|^{2}\right) \bar{g}(w) H_{\bar{K}_{w}} d A(w)
$$

where $g(w)=f^{\prime \prime}(z) / \bar{w}^{2} \in L^{1}(\mathbb{D}, d A)$, and $K_{w}(t)=\frac{1}{1-\bar{w} e^{i t}}$, with $|w|<1$.

Since $H_{\bar{K}_{w}} h=\widehat{h}(w)\left(\bar{K}_{w}-1\right), \forall h \in H_{d}^{2}$, we have that $H_{\bar{K}_{w}}$ is a rank 1 operator on H_{d}^{2}, into $\overline{H_{d}^{2}}$. Now, since, for $w=|w| e^{i \theta}$,

$$
\left(\bar{K}_{w}-1\right)(t)=\left(\frac{1}{1-w e^{-i t}}-1\right)=|w| e^{i \theta} e^{-i t}\left(\sum_{n=0}^{\infty} w^{n} e^{-i n t}\right)
$$

we have

$$
\left.\sum_{n=k}^{\infty}| | w\right|^{n+1} e^{i(n+1) \theta}-\left.|w|^{n+2} e^{i(n+2) \theta}\left|=\sum_{n=k}^{\infty}\right| w\right|^{n+1}|1-w|, \forall k \in \mathbb{N}
$$

consequently $\left\|\bar{K}_{w}-1\right\|_{\overline{H_{d}^{2}}} \leq \frac{1}{\left(1-|w|^{2}\right)^{1 / 2}}<\infty$, and $H_{\bar{K}_{w}}: H_{d}^{2} \rightarrow \overline{H_{d}^{2}}$ is a rank 1 linear operator.

Thus, by Remark 3.4-(1), and by the proof of Theorem 9.4.4-[12], we have that

$$
\left\|H_{\bar{K}_{w}}\right\|_{B\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)} \approx \frac{|w|}{1-|w|^{2}}
$$

Consequently, reasoning as in [12]-pages 200-201, we have that:

$$
\left\|H_{\bar{f}}\right\|_{S_{1}\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)} \text { is dominated by }\|f\|_{\left(\operatorname{Bes}_{1}\right)_{d}^{+}}<\infty
$$

Moreover, there is a constant $C>0$, independent of f, such that

$$
\left\|H_{\bar{f}}\right\|_{S_{1}\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)} \leq C\|f\|_{\left(\operatorname{Bes}_{1}\right)_{d}}
$$

for $f \in\left(\mathrm{Bes}_{1}\right)_{d}^{+}$.
Conversely, let $H_{\bar{f}} \in S_{1}\left(H_{d}^{2}, \overline{H_{d}^{2}}\right)$, with $a_{n} \downarrow_{n} 0$. Since H_{d}^{2} has a Schauder basis [10], it follows that $H_{\bar{f}} \in\left(H_{d}^{2}\right)^{*} \widehat{\otimes}_{\pi} \overline{H_{d}^{2}}$, that is $\quad H_{\bar{f}}=\sum_{n=1}^{\infty} \lambda_{n} f_{n}^{\prime} \otimes g_{n}, \quad$ with $\quad f_{n}^{\prime} \in\left(H_{d}^{2}\right)^{*}, g_{n} \in \overline{H_{d}^{2}}, \quad$ and $\sum_{n} \lambda_{n}\left\|f_{n}^{\prime}\right\|_{\left(H_{d}^{2}\right)^{*}}\left\|g_{n}\right\|_{H_{d}^{2}}<\infty$.

By using Theorem 2.1 we can assume $f_{n}^{\prime} \in d(2) \subset H^{2}$. Then we have, uniformly with respect to $n,\left\|f_{n}^{\prime}\right\|_{\left(H_{d}^{2}\right)^{*}} \approx\left\|f_{n}^{\prime}\right\|_{d(2)}$, and $\left\|f_{n}^{\prime}\right\|_{\left(H_{d}^{2}\right)^{*}} \geq C\left\|f_{n}^{\prime}\right\|_{H^{2}}$, where $C>0$ is a constant not depending on n.

Consequently we have $\left\|H_{\bar{f}}\right\|_{S_{1}\left(H^{2}, \overline{H^{2}}\right)}=\sum_{n} \lambda_{n}\left\|f_{n}^{\prime}\right\|_{H^{2}}\left\|g_{n}\right\|_{H^{2}} \leq$ $\left.C^{-1} \sum_{n} \lambda_{n}\left\|f_{n}^{\prime}\right\|_{\left(H_{d}^{2}\right)^{*}}\left\|g_{n}\right\|_{\overline{H_{d}^{2}}}=\left\|H_{\bar{f}}\right\|_{S_{1}\left(H_{d}^{2}\right.}, \overline{H_{d}^{2}}\right)<\infty$, that is $H_{\bar{f}} \in S_{1}\left(H^{2}, \overline{H^{2}}\right)$, and, by using the proof of Theorem 9.4 .4 -p. 201 -[12], it follows that

$$
\int_{\mathbb{D}}\left|f^{\prime \prime}\right| d A(w)<\infty .
$$

Thus $f \in\left(\mathrm{Bes}_{1}\right)_{d}^{+}$.
What about the characterization of Hankel operators from other ideals of operators, similar to Schatten classes $S_{p}, 1<p<\infty$?

We were only been able to give a characterization of Hankel operators mapping H_{d}^{2} into $\overline{H^{2}}$, which are 2-nuclear operators. (See [8], [9].)

We recall the definition of the analytic Besov space Bes $_{2}$, [12] as follows:
$\mathrm{Bes}_{2}:=\{f: \mathbb{D} \rightarrow \mathbb{C}, f$ analytic function such that

$$
\left.\|f\|_{\operatorname{Bes}_{2}}:=\left(\int_{\mathbb{D}}\left|f^{\prime}(z)\right|^{2} d A(z)\right)^{1 / 2}<\infty\right\} .
$$

An operator $T: X \rightarrow Y, X, Y$ Banach spaces is called a 2-nuclear operator [9], and is writting $T \in N_{2}(X, Y)$, if

$$
\begin{gathered}
T=\sum_{i=1}^{\infty} a_{i} \otimes y_{i} \text {, such that } l_{2, X^{\prime}}(a):=\left(\sum_{i=1}^{\infty}\left\|a_{i}\right\|^{2}\right)^{1 / 2}<\infty, \\
\text { and } w_{2, Y}(y):=\sup _{\left\|y^{\prime}\right\|_{F^{\prime}} \leq 1}\left(\sum_{i=1}^{\infty}\left|y^{\prime}\left(y_{i}\right)\right|^{2}\right)^{1 / 2}<\infty .
\end{gathered}
$$

$T \in N_{2}(X, Y)$ is a Banach space when equipped with the norm

$$
\|T\|_{N_{2}(X, Y)} ;=\inf \left\{l_{2, X^{\prime}}(a) w_{2, Y}(y)\right\} .
$$

Now let us denote by $\left(\mathrm{Bes}_{2}\right)_{d}^{+}:=\mathrm{Bes}_{2} \cap \mathcal{M}_{d}^{+}$. Then we have:

Theorem 3.6. Let $f \in \mathcal{M}_{d}^{+}, f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, z \in \mathbb{D}$. Then

$$
H_{\bar{f}} \in N_{2}\left(H_{d}^{2}, \overline{H^{2}}\right) \Leftrightarrow f \in\left(\mathrm{Bes}_{2}\right)_{d}^{+} \Leftrightarrow \sum_{k=0}^{\infty} a_{k}^{2}(k+1)<\infty .
$$

Moreover

$$
\left\|H_{\bar{f}}\right\|_{N_{2}\left(H_{d}^{2}, \overline{H^{2}}\right)} \approx\left(\sum_{k=0}^{\infty} a_{k}^{2}(k+1)\right)^{1 / 2}
$$

Proof. The second equivalence in the statement of the theorem is nothing else than a particular case of Corollary 1.3 - [5].

So, it remains only to prove

$$
H_{\bar{f}} \in N_{2}\left(H_{d}^{2}, \overline{H^{2}}\right) \Leftrightarrow f \in\left(\mathrm{Bes}_{2}\right)_{d}^{+}
$$

Let $f \in\left(\mathrm{Bes}_{2}\right)_{d}^{+}$. By using Theorem 9.4.13 - [12], and Proposition 2.11.27-[9], we get that $H_{\bar{f}} \in N_{2}\left(H_{d}^{2}, \overline{H^{2}}\right)$.

Conversely, let $H_{\bar{f}} \in N_{2}\left(H_{d}^{2}, \overline{H^{2}}\right)$. Then, $H_{\bar{f}} T^{-1} \in N_{2}\left(\operatorname{cop}(2), H^{2}\right)$, where $T^{-1}: \operatorname{cop}(2) \rightarrow H_{d}^{2}$ is the isomorphism given by Corollary 1.7,

$$
T^{-1}(u)=x, x_{n}=\sum_{k=n}^{\infty} \frac{\left|u_{k}\right|}{k+1}, n \geq 0
$$

Equivalently, it follows that the operator given by the product of matrices

$$
H:=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \ldots \\
a_{2} & a_{3} & a_{4} & \ldots & \ldots \\
a_{3} & a_{4} & \ldots & \ldots & \ldots \\
a_{4} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \ldots \\
0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \ldots \\
0 & 0 & \frac{1}{3} & \frac{1}{4} & \ldots \\
0 & 0 & 0 & \frac{1}{4} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

belongs to $N_{2}\left(\operatorname{cop}(2), H^{2}\right)$.
Hence, by using relation (6.5) - [2] and Proposition 2.11.27 - [9], we get that

$$
H=\left(\begin{array}{ccccc}
a_{1} & \frac{a_{1}+a_{2}}{2} & \frac{a_{1}+a_{2}+a_{3}}{3} & \frac{a_{1}+a_{2}+a_{3}+a_{4}}{4} & \ldots \\
a_{2} & \frac{a_{2}+a_{3}}{2} & \frac{a_{2}+a_{3}+a_{4}}{3} & \ldots & \ldots \\
a_{3} & \frac{a_{3}+a_{4}}{2} & \ldots & \ldots & \ldots \\
a_{4} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right)
$$

Thus, it follows that

$$
\sum_{i=1}^{\infty} a_{i}^{2}+\frac{1}{2^{2}} \sum_{i=1}^{\infty}\left(a_{i}+a_{i+1}\right)^{2}+\frac{1}{3^{2}} \sum_{i=1}^{\infty}\left(a_{i}+a_{i+1}+a_{i+2}\right)^{2}+\cdots<\infty .
$$

Since the sequence $\left(a_{i}\right)_{i}$ is monotone decreasing, we get

$$
\sum_{i=1}^{\infty} i a_{i}^{2}=\sum_{i=1}^{\infty} a_{i}^{2}+\sum_{i=2}^{\infty} a_{i}^{2}+\sum_{i=3}^{\infty} a_{i}^{2}+\cdots<\infty,
$$

that is $f \in \mathrm{Bes}_{2}^{+}$.

References

[1] J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Transactions of the American Mathematical Society 224(2) (1976), 255-265. DOI: https://doi.org/10.1090/S0002-9947-1976-0419769-6
[2] G. Bennett, Factorizing the classical inequalities, Memoirs of the American Mathematical Society 120 (576) (1996), 130.

DOI: http://dx.doi.org/10.1090/memo/0576
[3] G. Bennett, D. A. Stegenga and R. M. Timoney, Coefficients of Bloch and Lipschitz functions, Illinois Journal of Mathematics 25(3) (1981), 520-531.

DOI: http://dx.doi.org/10.1215/ijm/1256047167
[4] O. Blasco and M. Pavlović, Coefficient multipliers on Banach spaces of analytic functions, Revista Matemática Iberoamericana 27(2) (2011), 415-447.

DOI: http://dx.doi.org/10.4171/RMI/642
[5] S. M. Buckley, Mixed norms and analytic function spaces, Mathematical Proceedings of the Royal Irish Academy 100A(1) (2000), 1-9.
[6] R. Edwards, Fourier Series: A Modern Introduction, Vol. 1, Second Edition, Springer Verlag, New-York, 1979.
[7] V. V. Peller, Hankel operators of class \mathfrak{S}_{p} and their applications (rational approximation, Gaussian processes, the problem of majorizing operators), Mathematics of the USSR-Sbornik 41(4) (1982), 443-479.

DOI: https://doi.org/10.1070/SM1982v041n04ABEH002242
[8] A. Pietsch, Operator Ideals, North Holland, Amsterdam, 1980.
[9] A. Pietsch, Eigenvalues and s-numbers, Akademische Verlagsgesellschaft Geest \& Portig K. -G., Leipzig, 1987.
[10] N. Popa, Order structures in Banach spaces of analytic functions, Complex Analysis and Operator Theory 11(8) (2017), 1765-1780.

DOI: https://doi.org/10.1007/s11785-017-0660-x
[11] H. H. Schaefer, Topological Vector Spaces, Macmillan Company, New York, 1966.
[12] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc., New York, 1990.
[13] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, Vol. 1767, Springer Verlag, Berlin, 2001.

DOI: https://doi.org/10.1007/b87877

[^0]: 2020 Mathematics Subject Classification: 47B10, 46B42.
 Keywords and phrases: Banach lattices, Hankel operators, Copson space.
 Communicated by Abdelhalim Azzouz.
 Received January 18, 2020; February 15, 2020

