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Abstract 

In this article we use the HW maps to solve arbitrary equations ,0=f  by 
providing an effective enumeration of the roots of f, as these project on and at 
the branches of the HW maps. This is just an enumeration of the projection 
points (roots) of a pin-line on the Riemann surface of f through HW. 

1. Introduction 

The HW maps have been used to determine the attractors of the 
infinite exponential whenever it falls into a p-cycle in [3] and in [2] to 
solve certain transcendental equations such as Kepler’s equation. They 
have also been used in [4] to solve in closed form the generalized Abel 
differential equation. Here we display a simple algebraic scheme which 
can be used to utilize the solution of arbitrary equations using the HW 
maps, by providing an effective enumeration of all the roots of arbitrary 
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equations ,0=f  using the branches of the maps HW. Imagine an 
arbitrary multivalued f, for which we force ( ) .0=xf  We line-pin the 

entire Riemann surface of f from top to bottom starting at the complex 
origin. The local projection pin points iz  will be exactly the roots of 

.0=f  Because the branches of HW can be enumerated starting at the 
origin, all the roots iz  of 0=f  can therefore be enumerated and 

referenced by approximating just an   pin through the origin. 

2. Definitions 

Suppose ( )zfn  are non-vanishing identically complex functions, with 

.0 N∈≤ nn  We define ( ) CCN →×:zFn  as: 

Definition 2.1. 
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Definition 2.2. ( ) ( ).;,,, 121 zFzzfffG nn +⋅=…  

If ,0=n  then ( ) .zzG =  If ,1=n  then ( ) ( ).; 11
zfzezfG =  If ,2=n  

then ( )
( )

.;,, 1212
zfefzezffG =  When we write about the HW, we can use 

the terminology ( ),; zG …  meaning that the corresponding function 

includes meaningful terms-parameters. The order of the functions is 
immaterial and we can re-order them to get to the function of interest 
here, which is the inverse of ( ),; zG …  denoted by, 

( ).;,,,HW 21 yfff n…   (1) 

In other words G and HW satisfy the functional relation: 

( )( ) yyG =;HW; ……   (2) 

by supposing always that the list of parameters is identical on both sides. 
These maps have been called generalized hyper-Lambert HW functions 
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and in general they are multivalued. We note that when ( )yn HW,1=  

satisfies a more general form which comes from the Lambert function W, 

i.e., ( ) .1 yze zf =  The Lambert function satisfies .yzez =  The existence of 

all the HW is guaranteed in all cases by the Lagrange Inversion Theorem 
(see ([5], p. 201-202)). 

3. An Indexing Scheme for the HW Maps 

3.1. An algebraic scheme 

For the complex maps log and W, their indexing scheme is the 
simplest possible, that is ( )z,log k  and ( ) .,, Z∈kk zW  There exists an 

indexing scheme which indexes identically the mappings HW but it is not 
integral. Dubinov and Galidakis in [1] solve Kepler’s equation, using the 
following algebraic inversion: 

( ) ⇒=⋅− MEE sin  

( )
⇒=






 − ME

EE sin1   

( ) ⇒=⋅ ⋅− MeE Eincs1log    

( )( )[ ].;incs1logHW MxE ⋅−=    (3) 

The inversion above can be generalized producing a removable pole 

at 0z  of multiplicity n. Setting ( ) ,0
nzzw −=  with 0z  such that 

( ) ,0 yzf =  we have: 

( ) ⇒= yzf  

( ) ( )
( )

⇒=
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⋅− y
zz
zfzz n
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The scheme above gives an index into the set of the HW functions, in 

the form of a functional parameter as ( )
( )

.log
0












− nzz
zf  Now, if we know 

( ),zf  this scheme can give identities which must hold identifying this 

way the corresponding function. 

We can now list how the most important categories of complex 
functions are solved based on this index. 

3.2. Polynomial functions 

Suppose then that ( ) ( ) .
1

k
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 Keeping k  fixed and setting 

( ) ,kk
nzzw −=  we have 
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Theorem 3.1. If ( ) ( ) kk
k

n
N

zzzf −= ∏
=1

 is a complex polynomial function, 

then the inverse of ( )zf  relative to y is given by the function HW and the 

last equation of (5), whose Riemann surface has at most k
k

nm
N
∑
=

=
1

 

branches, indexed by m, with .N∈k  

Proof. The last expression of (5) is true for any { },,,2,1 N…∈k  

therefore the multiplicity is at least m because for each k  the 
multiplicity is at least kn  and each kn  may give different branches. This 

means that the expression can indexfully all the branches of the 

corresponding HW using only an integral index .k    

Theorem 3.2. If ( )zf  is a complex polynomial function, the roots of 

( ) yzf =  are given directly by a suitable HW function. 

Proof. Using Equation (1) of Definition 2.2, follows that for each 
( ) ,00;HWHW, =…  therefore calculating the corresponding HW of the 

last equations in (5) at ,0=y  forces kzz =  and these are the roots of 

( ) .yzf =  Therefore, we can extract all the roots of equation ( ) ,yzf =  

manually. The first root, suppose ,1z  is extracted as, 

( ) ,;logHW1 











= yz
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Having the root ,1z  the rest of the roots can be extracted recursively for 

11 −≤≤ Nk  as, 

( ) ,;logHWlim
0

1 











=

+→
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 z
zgz k

k  

( ) ( ) ,
1

1
+

+ −
=

k

k
k zz

zgzg  

and the Theorem follows.   

3.3. Rational functions 

We suppose that ( ) ( ) ( ),zQzPzf =  with ( ) ( )zQzP ,  polynomial 

functions. We have similar results here. 

Theorem 3.3. If ( ) ( ) ( )zQzPzf =  is a complex rational function 

such that ( ) ( ){ },deg,degmax QPN =  then the inverse of ( )zf  relative to y 

is given by: 

( ) ( )
( )

,;logHW

1

k
k

k

k
zy

zz
zQyzPz

n
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whose Riemann surface has at most k
k

nm
N
∑
=

=
1

 branches, indexed by m, 

with .N∈k  

Proof. If ( ) ( ) ( ),zQyzPzF ⋅−=  then ( )zF  is a polynomial of degree 

N, in which case the Theorem follows similarly, with ( )zf  replaced by 

( ).zF    

Theorem 3.4. If ( )zf  is a complex rational function, the roots of 

( ) yzf =  can be given by a suitable HW function. 
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Proof. Similarly, if ( ) ( ) ( ),zQyzPzF ⋅−=  then ( )zF  is polynomial 

map of degree N, therefore we can extract its roots as: 

( ) ,;logHWlim
0

1 
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Having ,1z  the rest of the roots can be extracted recursively for  

11 −≤≤ Nk  as, 

( ) ,;logHWlim
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and the Theorem follows.   

We observe that when ( ) ,1=zQ  the case of a polynomial function 

arises. 

3.4. Analytic functions 

For an analytic function ( ) ( )nn
n

zzzf 0
0

−⋅α= ∑
∞

=
 in some region 

,C⊆D  with ,0 Dz ∈  we have similar results. 

Theorem 3.5. If ( ) ( )nn
n

zzzf 0
0

−⋅α= ∑
∞

=
 is a complex analytic function, 

then the inverse of ( )zf  relative to y is given by a suitable HW function: 

( )
( )
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whose Riemann surface has infinitely many branches given by .N∈n  
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Proof. Suppose ( ) ( ) ,0
0

n
n

N

n
N zzzT −⋅α= ∑

=
 is the corresponding Taylor 

polynomial of degree N. Then ( )zTN  is obviously a polynomial function, 

therefore the inverse of ( )zTN  relative to y is given again by Theorem 

3.1. 
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( ) ( )zfzTN →  uniformly in compact subsets and the HW are analytic 

([3]), therefore (6) implies that the inverse is given by: 
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and the Theorem follows.   

We observe that in this case the inverse function has infinitely many 
branches, since N is not bounded. 

Theorem 3.6. If ( )zf  is a complex analytic function, the roots of 

( ) yzf =  are given again by a HW function. 
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Proof. We can extract the roots as: 

( ) ,;logHW1 











= yz

zfz  
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The rest of the roots can be again extracted recursively for k≤1  as, 

( ) ,;logHWlim
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and the Theorem follows.   

4. HW Functional Index 

An open problem set in ([2], p. 1114-1115) is whether there is a way 
to effectively index the numbering of the branches of the HW functions. 
With the following theorem we show that the answer is affirmative. 

Theorem 4.1. If ( )zf  is a complex function and ,, NC ∈∈ kkz  such 

that ( ) yzf =k  and suppose ( )zgk  follows as in Equations (8)-(9). Then, if 

HW is the inverse of ( )zf  relative to y, the following scheme covers all the 

branches of this inverse of ( ) :zf  
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Proof. The proof follows from (3) along with Theorems 3.1, 3.3, and 
3.5. Note that for a specific analytic f expanded around ,kz  we define 

( ) ( )
( )

.log 










−
=

k
k

nzz
zfzF  The map F creates a Laurent series with residue 
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( ),exp kna  which is gotten from the HW through the Residue Theorem of 

Cauchy for f, with winding number 
kna  around .kz  Consequently, the 

repeated application of ( )kgF via  for ,kzz =  extracts recursively all the 

roots kz  of the inverse and as such it can be used as an index for the 

corresponding Riemann surface.   

5. Conclusion 

The HW maps can solve any equation ,0=f  provided it can be 

brought into a separable form with all z’s on the left and one w on the 
right. Further, the enumeration of the roots is origin consistent relative 
to the force of f. 
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Appendix: Programming with the HW Maps 

Code for the HW maps is given below. Arguments are HW (functional 
index, y, n) 

restart; 

Digits:=40; 

HW := proc () 

local y, n, c, s, p, sol, i, aprx, dy, dist, r, newr, oldr, 

fun, dfun, eps;  

if nargs < 2 then ERROR(“At least two arguments required”) end 
if; 

n := args[-1]; y := args[-2]; c := [args[1 .. -3]]; 

if y = 0 then 0 else dist := infinity; 

eps:=1e-10; fun := 1; for i from 1 to nargs-2 do fun := 

exp(c[-i]*fun) end do;  

fun := z*fun-y; dfun := diff(fun, z); 

s := series(fun, z, n); p := convert(s, polynom); 

sol := {fsolve(p = 0, z, complex)}; 

for i from 1 to nops(sol) do aprx := evalf(subs(z = op(i, 

sol), fun));  

dy := evalf(abs(aprx)); if dy <= dist then r := op(i, sol); 

dist := dy end if end do; oldr := r; 

newr := r-evalf(subs(z = r, fun)/subs(z = r, dfun)); 

for i from 1 to 1000 while abs((oldr-newr)/oldr)>eps do oldr 

:= newr;  

newr := newr-evalf(subs(z = newr, fun)/subs(z = newr, dfun)) 

end do;  

newr end if end proc: 
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Example 1. Using the program with five decimal digits accuracy to 
solve the equation ( ) ( ) ( ) ,2532 =−−− zzz  

y:=2; 

f:=z->(z-2)*(z-3) * (z-5); 

z1:=HW(log(f(z)/z),y,10); 

g1:=z->(f(z)-y)/(z-z1); 

z2:=HW(log(g1(z)/z),1e-20,10); 

g2:=z->g1(z)/(z-z2); 

z3:=HW(log(g2(z)/z),1e-20,10); 

gives: 

iz 69160.036523.21 −  

iz 69160.036523.22 +  

26953.53 z  

Using the program for an approximate solution with Maple, 

solve(f(z)=y,z); 

evalf(%); 

gives: 

5.26953, 2.36523 + 0.69160i, 2.36523 − 0.69160i. 

Example 2. Using the program to five digits of accuracy to solve the 
equation ( ) ( ) ( ) ( ) ,21532 =−−−− zzzz  

y:=2; 

f:=z->(z-2)*(z-3)/(z-5)/(z-1); 

P:=unapply(numer(f(z)),z); 

Q:=unapply(denom(f(z)),z); 
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F:=unapply(P(z)-y*Q(z),z); 

z1:=HW(log(F(z)/z),1e-10,10); 

g1:=z->F(z)/(z-z1); 

z2:=HW(log(g1(z)/z),1e-10,10); 

gives: 

37228.61 z  

62771.02 z  

Using Maple approximation code, 

solve(F(z)=y,z); 

evalf(%); 

gives: 

6.37228, 0.62771. 

Example 3. Using the program to five decimals of accuracy to solve 
the equation ( ) ,21sin =z  

y:=1/2; 

f:=z->sin(z); 

z1:=HW(log(f(z)/z),y,10); 

g1:=z->(f(z)-y)/(z-z1); 

z2:=HW(log(g1(z)/z),1e-20,10); 

g2:=z->g1(z)/(z-z2); 

z3:=HW(log(g2(z)/z),1e-20,10); 
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gives: 

52359.01 z  

61799.22 z  

66519.33 −z  

…4z  

The results are approximations of the numbers ,,67,65,6 …π−ππ  

which are the roots of ( ) .21sin =z  Many more complex equations can 

be solved here, provided they are separable and the terms are analytic, 
like. 

Example 4. Using the code with five decimal accuracy to solve the 
equation ( ) ( )( ) ( ) ,21tanh1sinexpsin =++ zzz  

y=1/2; 

f:=sin(z)+exp(sin(z))/sqrt(1+tanh(z)); 

z1:=HW(log(f(z)/z), y, 10); 

g1:= z->(f(z)-y)/(z-z1); 

z2:=HW(log(f1(z)/z),1e-20,10); 

g2:=z->g1(z)/(z-z2); 

z3:=HW(log(g2(z)/z),1e-20,10); 

g3:=z->g2(z)/(z-z3); 

z4:=HW(log(g3(z)/z), 0.1e-19, 10); 

gives: 

37435.01 −z  

71811.12 −z  

26659.33 z  

15846.64 z  



ON THE ENUMERATION OF THE ROOTS OF … 15

While using Maple approximation code, 

solve(f(z)=y,z); 

gives an open answer in terms of “RootOf”, i.e., it cannot relay the 
roots directly. 

Example 5. Using the code with five decimal accuracy to solve the 

equation ,254 23 =+− zzz  

y:=2; 

f:=z->z^3-4*z^2+5*z; 

z1:=HW(log(f(z)/z),y,10); 

g1:=z->(f(z)-y)/(z-z1); 

z2:=HW(log(f1(z)/z),1e-20,10); 

g2:=z->g1(z)/(z-z2); 

z3:=HW(log(g2(z)/z),1e-20,10); 

gives: 

21 z  

00005.12 z  

00000.13 z  

The description calculates correctly roots with multiplicity greater 
than 1. 

The example is ( ) ( ) ( ),21 2 −−=− zzyzf  therefore the multiplicity of 

the root 1 is indeed 2. 


