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Abstract 

In this paper, a collocation method based on Bessel functions of first kind is 
applied to solve the one-dimensional wave equation subject to the Dirichlet, 
Neumann boundary, and the integral conditions. Firstly, the matrix forms of 
these functions with two variables are constructed. Secondly, the matrix forms 
of the solution form and its partial derivatives are organized and thus each 
terms of wave equation are written in matrix form. Similarly, the matrix forms 
of the Dirichlet, Neumann boundary, and the integral conditions of the problem 
are constructed. By using the collocation points, these matrix equations and 
matrix operations, the wave problem is reduced to a system of linear algebraic 
equations. Finally, the solutions of this system determine the coefficients of the 
assume approximate solution in Bessel series form. An error analysis technique 
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is presented for the method. To demonstrate the validity and applicability of the 
technique, some numerical examples are solved. The method is easy to 
implement and produces accurate results. Also, the results of the method are 
compared with the results of previous methods in literature. 

1. Introduction 

The solutions of the hyperbolic non-local initial-boundary value 
problems are used in the solutions of the model problems in science and 
engineering. Therefore, the development of numerical methods for the 
solutions of these problems has been an important research subject in 
many branches of science and engineering. The hyperbolic partial 
differential equations with given initial conditions and a standard 
boundary condition and an integral condition replacing the classic 
boundary condition are encountered in mathematical modelling of many 
problems in physics [1-9]. 

In this study, we deal with the one-dimensional wave equation [10, 11] 
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with the Dirichlet boundary condition 

( ) ( ) [ ],,0,0, 1 lxxfx ∈=ν   (2) 

( ) ( ) [ ],,0,,0 1 Tttgt ∈=ν   (3) 

Neumann boundary condition 

( ) ( ) [ ],,0,0, 2 lxxfxl ∈=ν   (4) 

and the nonlocal condition (or the integral condition) 
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0

Tttgdxtx
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where 121 ,,, gffq  and 2g  are known functions and also ( )txq ,  is 

defined for ( ) [ ] [ ] ( ) ( ) [ ] ( ) ( ) [ ].,0,,,0,,,0,0, 2121 TCtgtglCxfxfTltx ∈∈×∈  
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Recently, the one-dimensional wave equations have been solved by 
using numerical methods, such as the finite difference method [10], the 
Bernstein Ritz-Galerkin method [11], the method of lines [12], the 
variational iteration method [13], a numerical method based on an 
integro-differential formulation [14], the Legendre tau method [15], 
homotopy perturbation method [16], Lagrange interpolation, and 
modified cubic B-spline differential quadrature methods [17]. In addition, 
some partial differential equations considered with the integral condition 
have been solved with the aid of various numerical methods considered in 
[2, 5, 9, 18-25]. Also, Yüzbaşı and Şahin [23] have applied the Bessel 
collocation approach to solve singularly perturbed one-dimensional 
parabolic convection-diffusion problem. 

In this paper, by means of the collocation method in [23], the 
solutions of one-dimensional wave equations will be computed in the 
truncated Bessel series form 
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so that Nsra sr ,,0,;, …=  are the unknown Bessel coefficients and 

( ) NnxJn ,,2,1,0, …=  are the Bessel functions of the first kind 

defined by 
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2. Main Matrix Relations 

To obtain the numerical solution of the one-dimensional wave 
equation with the presented method, we evaluate the Bessel coefficients 
of the unknown function. For this purpose, let us write the solution 
function (6) in type [23] 

( ) ( ) ( ) ,, AQJ txtx =ν   (7) 
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where 

( ) [ ( ) ( ) ( )] ( ) ( )txJxJxJx NN QJ ,1110 +×=  
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( ) ( ) ( ) [ ],1, 2 NT xxxxxx == XDXJ  (8) 

and if N is odd, 
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if N is even, 
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The matrix forms of the relations between the matrix ( )xX  and the 

matrices ( )( )x1X  and ( )( )x2X  becomes as follows [23]: 

( )( ) ( ) ( )( ) ( ) ( ) ,and
221 TT xxxx BXXBXX ==   (9) 

where 
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By using Equations (8) and (9), we have the matrix relation 

( )( ) ( ) ( )( ) ( ) ( ) .and 221 TTTT xxxx DBXJDBXJ ==   (10) 
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Since TD  is an inverse matrix, by using relations (8) and (10) as follows 
[25] 
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we gain the relation between the matrix ( )xJ  and its derivatives ( )( )x1J  

and ( )( )x2J  as 

( )( ) ( ) ( )( ) ( ) ,and 221 PJJPJJ xxxx ==   (11) 

so that 

( ) ( ) .2,1,1 == − kkk TTT DBDP  

In the same way to Equation (9), the derivatives ( )( )t1Q  and ( )( )t2Q  can 

be expressed as follows [23] 
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3. Method for Solution 

With the aid of the relations (7), (11) and (12), we first gain the 
matrix forms of the terms ( )txxx ,ν  and ( )txtt ,ν  of Equation (1) and 

( )txt ,ν  given in Equation (4) as 

( ) ( ) ( ) ,, APQJ txtxt =ν   (13) 
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( ) ( ) ( ) ,, 2 AQPJ txtxuxx =   (14) 

and 

( ) ( ) ( ) ., 2APQJ txtxutt =   (15) 

We substitute the expressions (14) and (15) into Equation (1) and then 
find the matrix equation as 

( ) ( ) ( ) ( ){ } ( ).,22 txqtxtx =− AQPJPQJ   (16) 

Briefly, Equation (16) can be expressed in the matrix form as 

( ) ( ),,, txqtx =AW   (17) 

where 

( ) [ ] ( ) ( ) ( ) ( ) ( ) ( ) .1,,1,0,, 222
11,1 2 +=−==
+×

NtQxJtQxJwtx N …kk PPW  

When we substitute the collocation points defined by 

,,,1,0,,,1,0,, NjNijN
TtiN

lx ji …… ====  (18) 

into Equation (17), we obtain a system of the matrix equations 

( ) ( ) ( ) ( ) ( ).,22
jijiji txqtxtx =− QPJPQJ  

Briefly, the main matrix equation of this system is written as 

.QWA =   (19) 

In here, 
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and 

[ ( ) ( ) ( ) ( ) ( ) ( ) qtxqtxqtxqtxqtxqtxq NN ,,,,,, 1110101000=F  
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Since we find the matrix forms of the conditions (2)-(4), we first 
substitute the relations (7) and (13) into Equations (2)-(4) and thus the 
corresponding matrix forms of the conditions (2)-(4) are written as 

( ) ( ) ( ) ( ) ,0,00, 1 lxxfxx ≤≤== AQJν   (20) 

( ) ( ) ( ) ( ) ,0,00, 2 lxxfxxt ≤≤== APQJν   (21) 

( ) ( ) ( ) ( ) .0,0,0 1 Tttgtt ≤≤== AQJν   (22) 

To get the matrix form of the condition (5), we put Equation (7) into the 
condition (5) 
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and thus, we have the matrix form of the condition (5) as 
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so that 
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When the collocation points (18) is placed into the matrix forms (20)-(23), 
we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),00,,00, 21 iiitiii xfxxxfxx ==== APQJAQJ νν  

( ) ( ) ( ) ( ) ( ) ( ).,0,0 21 jj
T

jjj tgttgtt === AQLDAQJν  
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Hence, the fundamental matrix equations of the conditions (2)-(5) are 
written as follows, respectively, 

[ ] [ ],;or 11 FUFUA =  

[ ] [ ],;or 22 FUFAU =  
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To find the solution of Equation (1) under conditions (2)-(5), we form the 
augmented matrix [15] as 
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Thus, the Bessel coefficients matrix is 

.QWA
~~~~ 1−






=  

In here, 



 Q;W

~~~~  is computed by using the Gauss elimination technique 

and then removing the zero rows of gauss eliminated matrix. The Bessel 
coefficients matrix is easily calculated by using the command 

‘ QWA ~\~= ’ in MATLAB. The determined coefficients is placed in 

Equation (6) and thus, we obtain the desired approximate solution 

( ) ( ).,, ,,
00

txJatx srsr

N

s

N

r
N ∑∑

==

=ν  (25) 

4. Error Estimation for Solution 

In this section, by using error computation [28, 29] and the residual 
correction technique [30, 31], error estimation is made for the suggested 
method. For our purpose, we deal with the residual function for the 
present method as 

( ) [ ( )] ( ).,,, txqtxLtxR NN −= ν   (26) 
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Here, ( )txN ,ν  is the Bessel series solution (25) of the problem (1)-(5). 

Hence, ( )txN ,ν  satisfies the equation 
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Now, let us define the error function as 

( ) ( ) ( ).,,, txtxtxe NN νν −=   (29) 

Here, ( )tx,ν  is the exact solution of the problem (1)-(5). 

By using Equations (1)-(5) and (27)-(28), we obtain the error 
differential equation 

( )[ ] ( )[ ] ( )[ ] ( ),,,,, txRtxLtxLtxeL NNN −=−= νν  

with the homogeneous conditions 
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or clearly, the error problem is 
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The error problem (30) in the same way as in Section 3 is solved and thus 
we gain the approximation, ( )txe MN ,,  to ( )., txeN  
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Consequently, if the exact solution of Equation (1) is not known, then 
the error function can be guessed by ( ).,, txe MN  

5. Numerical Examples 

In this section, some examples will be investigated to show the 
reliability and the efficiency of the proposed scheme in this paper. The 
errors have been computed by using 

( ) ( ) ( ) ( )( ) ,,,,,
21

2

00
22 













−=−= ∫∫ dxdttxtxtxtxL N

lT

N νννν  

and 

( ) ( ) ( ) ( ){ }.0,0,,,max,, TtlxtxtxtxtxL NN ≤≤≤≤−=−= ∞∞ νννν  

Application of the error estimation introduced in Section 4 is made in 
Example 1. The computations associated with the examples have been 
done on an Intel PC using MATLAB. 

Example 1 ([12]). We first consider Equations (1)-(5) with ,1== Tl  

( ) ( ) ( ) ( ) ttx tetetgtgxexfxf −−−− +−==== 1
2121 2,0,,0  and ( ) =txq ,  

( ) .2 txetx −−−−  The exact solution of the problem is [2, 10] ( ) ., txxtetxu −−=  

By applying the scheme described in Section 3, we find the 
approximate solutions of the problem for N = 3, 5, 7, 10. In Table 1, we 
show the values of 2L  and ∞L  for N = 3, 5, 7, 10. The actual and the 

estimated maximum absolute errors are tabulated for some values ( )., MN  

In addition, Figure 1(a)-(d) show graphs of the absolute error functions 
( ) ( ) ( )txtxtxe NN ,,, νν −=  for N = 3, 5, 7, 10. The estimated absolute 

error functions, ( )txe MN ,,  for ( ) ( ) ( )8,7,4,3, =MN  are given in Figure 

1(e)-(f). It is observed from Figure 1 and Table 2 that the error estimation 
defined in Section 4 is very accurate. 
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Table 1. The errors 2L  and ∞L  for Example 1 

N 3 5 7 10 

2L  31089.3 −×  51089.6 −×  71019.4 −×  91006.1 −×  

∞L  21058.3 −×  31005.1 −×  6109.7 −×  9102.4 −×  

 

Table 2. Comparison of maximum absolute errors (actual and 
estimation) for some values ( )MN ,  for Example 1 

( )MN ,  
Actual maximum  
absolute error ∞L  

Estimated maximum 
absolute error 

( )4,3  2105809.3 −×  2109944.1 −×  

( )5,4  3101408.8 −×  4102206.6 −×  

( )6,4  3101408.8 −×  4106640.3 −×  

( )7,5  1.0435e-003 2.5119e-004 

( )8,7  6108252.7 −×  6103249.1 −×  

( )9,8  7108052.5 −×  7107452.2 −×  

( )10,9  8106434.8 −×  8109753.6 −×  

( )11,10  9102730.4 −×  8103826.3 −×  
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(a) Plot of the absolute error function ( )txe ,3  for N = 3. 

 
 (b) Plot of the absolute error function ( )txe ,5  for N = 5. 
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(c) Plot of the absolute error function ( )txe ,7  for N = 7. 

 
(d) Plot of the absolute error function ( )txe ,10  for N = 10. 
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(e) Plot of the absolute error function ( ).,4,3 txe  

 
(f) Plot of the absolute error function ( ).,8,7 txe  

Figure 1. For Example 1 (a)-(d), graphs of the absolute error functions 
( ) ( ) ( )txtxtxe NN ,,, νν −=  for N = 3, 5, 7, 10 and (e)-(f) the estimated 

absolute error functions, ( )txe MN ,,  for ( ) ( ),4,3, =MN  ( ).8,7  
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Example 2 ([11]). As a second example, let us consider Equations   
(1)-(5) with ( ) ( ) ( ) ( ) ( )txqtgtgxfxfTl ,,0,0,0,0,1 2121 ======  

( )
( )

( )2
222

2
2 1ln6

1
2

1
432 t

tt
txx ++











+
+

+

−−=  and the exact solution 

( )tx,ν  ( ) ( ).321ln 22 xxt −+=  

By using the presented technique with N = 3, 7, 10, the approximate 
solutions are computed for N = 3, 7, 10 of the Example 2. Table 3 presents 
some values of absolute error functions ( ) ( ) ( )txtxtxe NN ,,, νν −=  for 

N = 3, 7, 10. In Figure 2, the absolute error functions ( ) ( )txtxeN ,, ν=  

( )txN ,ν−  for N = 3, 7, 10 are plotted. Table 3 and Figure 2 show that 

the accuracy increases when N is increased. 

 

 

 

 

 

 

 

 



ŞUAYİP YÜZBAŞI 80

 
(a) Plot of the absolute error function ( )txe ,3  for N = 3. 

 
(b) Plot of the absolute error function ( )txe ,7  for N = 7. 



BESSEL COLLOCATION APPROACH FOR … 81

 
 (c) Plot of the absolute error function ( )txe ,10  for N = 10. 

Figure 2. Graphs of the absolute error functions ( ) ( )txtxeN ,, ν=  

( )txN ,ν−  for N = 3, 7, 10. 

Table 3. Comparison of the absolute errors of ( )tx,ν  for N = 3, 7, 10 of 

Example 2 

( )ji tx ,  ( )ji txeN ,,3 3=  ( )ji txeN ,,7 7=  ( )ji txeN ,,10 10=  

(0, 0) 5.1378e-005 3.4366e-005 1.8486e-006 

(0.1, 0.1) 1.2218e-003 2.3335e-005 4.2913e-007 

(0.2, 0.2) 1.7303e-003 2.2185e-006 5.6527e-007 

(0.3, 0.3) 9.2713e-004 3.2261e-005 1.9086e-006 

(0.4, 0.4) 5.9512e-004 1.7129e-005 6.2070e-007 

(0.5, 0.5) 1.6496e-003 1.7738e-007 1.7617e-006 

(0.6, 0.6) 1.2108e-003 1.1823e-004 7.7937e-006 

(0.7, 0.7) 1.0464e-003 2.2970e-004 8.7023e-007 

(0.8, 0.8) 4.6978e-003 8.0386e-005 1.3817e-005 

(0.9, 0.9) 9.1120e-003 4.8088e-004 2.3497e-005 

(1,1) 1.4561e-002 1.8319e-003 1.0376e-004 
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Example 3 ([10]). Finally, we consider Equations (1)-(5) with ,1== Tl  

( ) ( ) ( ) ( ) ( ) ( ) 0,sin,cos,0 2121 =π=ππ== tgttgxxfxf  and ( ) .0, =txq  The 

exact solution of this problem is ( ) ( ) ( ).sincos, txtx ππ=ν  

Table 4 denotes a comparison of the present method and the         
finite difference method [10] for N = 7. This comparison shows that our 
method is very effective. Also, we give the absolute error function  

( ) ( ) ( )txtxtxe ,,, 77 νν −=  for N = 7 in Figure 3. 

Table 4. Comparison of the absolute errors for ( )5.0,ixν  of the Example 3 

Present method 
ix  Finite difference 

method [10]  ( )5.0,,7 7 ixeN =  

0.1 1.5e-003 2.8149e-004 

0.2 1.4e-003 2.5674e-004 

0.3 1.7e-003 1.6368e-004 

0.4 1.6e-003 7.3575e-005 

0.5 1.5e-003 5.5188e-005 

0.6 1.5e-003 2.5172e-004 

0.7 1.9e-003 5.3196e-004 

0.8 1.8e-003 7.8042e-004 

0.9 1.7e-003 7.6521e-004 

1 1.6e-003 2.6242e-004 
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Plot of the absolute error function ( )txe ,7  for N = 7. 

Figure 3. Graphs of the absolute error functions ( ) ( )txtxeN ,, ν=  

( )txN ,ν−  for N = 7. 

6. Conclusion 

In this article, a collocation approach is presented for the 
approximate solutions of onedimensional wave equation subject to 
Dirichlet, Neumann boundary and nonlocal integral conditions. We 
demonstrate the accuracy and efficiency of our technique with examples. 
It seems from Tables and Figures that the errors decrease as N is 
increased. By using the error estimation introduced in Section 4, the 
absolute error functions are estimated and they are shown in Figure 1(e)-(f). 
It is seen from Figure 1 and Table 2 that the error estimation is very 
effective. When the exact solution of the problem is not known, then the 
errors can be guessed with the error function ( ).,, txe MN  In addition, we 

compare our method with the finite difference method [1] and this 
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comparison indicates that our method is very effective and accurate and 
easy to apply as well. The approximate solutions of Equation (1) by the 
suggested method are calculated easily in shorter time with the computer 
programs such as MATLAB, Maple, and Mathematica. 

References 

 [1] B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley New, York, 1960. 

 [2] A. Bouziani, Strong solution for a mixed problem with nonlocal condition for certain 
pluriparabolic equations, Hiroshima Mathematical Journal 27(3) (1997), 373-390. 

DOI: https://doi.org/10.32917/hmj/1206126957  

 [3] I. S. Gordeziani and G. A. Avalishvili, On the constructing of solutions of the 
nonlocal initial boundary value problems for one-dimensional medium oscillation 
equations, Matematicheskoe Modelirovanie 12(1) (2000), 94-103. 

 [4] B. Jumarhon and S. McKee, On a heat equation with nonlinear and nonlocal 
boundary conditions, Journal of Mathematical Analysis and Applications 190(3) 
(1995), 806-820. 

DOI: https://doi.org/10.1006/jmaa.1995.1113  

 [5] S. Mesloub and A. Bouziani, On a class of singular hyperbolic equation with a 
weighted integral condition, International Journal of Mathematics and 
Mathematical Sciences 22(3) (1999), 511-519. 

DOI: http://dx.doi.org/10.1155/S0161171299225112  

 [6] L. S. Pulkina, A non-local problem with integral conditions for hyperbolic equations, 
Electronic Journal of Differential Equations (1999), 1-6; Article 45. 

 [7] M. Renardy, W. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, 
Longman Science and Technology, England, 1987. 

 [8] V. V. Shelukhin, A non-local in time model for radionuclides propagation in Stokes 
fluids, dynamics of fluids with free boundaries, Siberian Branch of the Russian 
Academy of Sciences, Institute of Hydrodynamics 107 (1993), 180-193. 

 [9] A. Bouziani, Initial-boundary value problem with a nonlocal condition for a viscosity 
equation, International Journal of Mathematics and Mathematical Sciences 30(6) 
(2002), 327-338. 

DOI: http://dx.doi.org/10.1155/S0161171202004167 

 [10] M. Dehghan, On the solution of an initial-boundary value problem that combines 
Neumann and integral condition for the wave equation, Numerical Methods for 
Partial Differential Equations 21(1) (2005), 24-40. 

DOI: https://doi.org/10.1002/num.20019  



BESSEL COLLOCATION APPROACH FOR … 85

 [11] S. A. Yousefi, Z. Barikbin and M. Dehghan, Bernstein Ritz-Galerkin method for 
solving an initial-boundary value problem that combines Neumann and integral 
condition for the wave equation, Numerical Methods for Partial Differential 
Equations 26(5) (2010), 1236-1246. 

DOI: https://doi.org/10.1002/num.20521  

 [12] F. Shakeri and M. Dehghan, The method of lines for solution of the one-dimensional 
wave equation subject to an integral conservation condition, Computers & 
Mathematics with Applications 56(9) (2008), 2175-2188. 

DOI: https://doi.org/10.1016/j.camwa.2008.03.055  

 [13] M. Dehghan and A. Saadatmandi, Variational iteration method for solving the wave 
equation subject to an integral conservation condition, Chaos, Solitons & Fractals 
41(3) (2009), 1448-1453. 

DOI: https://doi.org/10.1016/j.chaos.2008.06.009  

 [14] W. T. Ang, A numerical method for the wave equation subject to a non-local 
conservation condition, Applied Numerical Mathematics 56(8) (2006), 1054-1060. 

DOI: https://doi.org/10.1016/j.apnum.2005.09.006  

 [15] A. Saadatmandi and M. Dehghan, Numerical solution of the one-dimensional wave 
equation with an integral condition, Numerical Methods for Partial Differential 
Equations 23(2) (2007), 282-292. 

DOI: https://doi.org/10.1002/num.20177  

 [16] S. T. Mohyud-Din, A. Yıldırım and Y. Kaplan, Homotopy perturbation method for 
one-dimensional hyperbolic equation with integral conditions, Zeitschrift für 
Naturforschung A 65(12) (2010), 1077-1080. 

DOI: https://doi.org/10.1515/zna-2010-1210  

 [17] R. Jiwari, Lagrange interpolation and modified cubic B-spline differential 
quadrature methods for solving hyperbolic partial differential equations with 
Dirichlet and Neumann boundary conditions, Computer Physics Communications 
193 (2015), 55-65. 

DOI: https://doi.org/10.1016/j.cpc.2015.03.021  

 [18] M. Ramezani, M. Dehghan and M. Razzaghi, Combined finite difference and spectral 
methods for the numerical solution of hyperbolic equation with an integral condition, 
Numerical Methods for Partial Differential Equations 24(1) (2008), 1-8. 

DOI: https://doi.org/10.1002/num.20230  

 [19] M. Dehghan and M. Lakestani, The use of cubic B-spline scaling functions for solving 
the one-dimensional hyperbolic equation with a nonlocal conservation condition, 
Numerical Methods for Partial Differential Equations 23(6) (2007), 1277-1289. 

DOI: https://doi.org/10.1002/num.20209  

 



ŞUAYİP YÜZBAŞI 86

 [20] M. Dehghan, A computational study of the one-dimensional parabolic equation 
subject to nonclassical boundary specifications, Numerical Methods for Partial 
Differential Equations 22(1) (2006), 220-257. 

DOI: https://doi.org/10.1002/num.20071  

 [21] M. Dehghan, Efficient techniques for the second-order parabolic equation subject to 
nonlocal specifications, Applied Numerical Mathematics 52(1) (2005), 39-62. 

DOI: https://doi.org/10.1016/j.apnum.2004.02.002  

 [22] B. Bülbül and M. Sezer, A Taylor matrix method for the solution of a two-
dimensional linear hyperbolic equation, Applied Mathematics Letters 24(10) (2011), 
1716-1720. 

DOI: https://doi.org/10.1016/j.aml.2011.04.026  

 [23] Ş. Yüzbaşı and N. Şahin, Numerical solutions of singularly perturbed one-
dimensional parabolic convection-diffusion problems by the Bessel collocation 
method, Applied Mathematics and Computation 220 (2013), 305-315. 

DOI: https://doi.org/10.1016/j.amc.2013.06.027  

 [24] Ş. Yüzbaşı, A collocation method based on Bernstein polynomials to solve nonlinear 
Fredholm–Volterra integro-differential equations, Applied Mathematics and 
Computation 27 (2016), 142-154. 

DOI: https://doi.org/10.1016/j.amc.2015.09.091  

 [25] Ş. Yüzbaşı, A Numerical method for solving second-order linear partial differential 
equations under dirichlet, Neumann and robin boundary conditions, International 
Journal of Computational Methods 14(2) (2017), 1-20; Article ID 1750015. 

DOI: https://doi.org/10.1142/S0219876217500153  

 [26] V. Kumar, R. K. Gupta and R. Jiwari, Lie group analysis, numerical and non-
traveling wave solutions for the (2 + 1)-dimensional diffusion–advection equation 
with variable coefficients, Chinese Physics B 23(3) (2014); Article 030201. 

DOI: https://doi.org/10.1088/1674-1056/23/3/030201  

 [27] R. Jiwari, S. Pandit and M. E. Koksal, A class of numerical algorithms based on 
cubic trigonometric B-spline functions for numerical simulation of nonlinear 
parabolic problems, Computational and Applied Mathematics 38(3) (2019); Article 140.  

DOI: https://doi.org/10.1007/s40314-019-0918-1 

 [28] J. P. Mahmoud, M. Y. Rahimi-Ardabili and S. Shahmorad, Numerical solution of the 
system of fredholm integro-differantial equations by the Tau method, Applied 
Mathematics and Computation 168(1) (2005), 465-478. 

DOI: https://doi.org/10.1016/j.amc.2004.09.026  

 

 



BESSEL COLLOCATION APPROACH FOR … 87

 [29] S. Shahmorad, Numerical solution of the general form linear Fredholm–Volterra 
integro-differential equations by the Tau method with an error estimation, Applied 
Mathematics and Computation 167(2) (2005), 1418-1429. 

DOI: https://doi.org/10.1016/j.amc.2004.08.045  

 [30] İ. Çelik, Collocation method and residual correction using Chebyshev series, Applied 
Mathematics and Computation 174(2) (2006), 910-920. 

DOI: https://doi.org/10.1016/j.amc.2005.05.019  

 [31] F. A. Oliveira, Collocation and residual correction, Numerische Mathematik 36(1) 
(1980), 27-31. 

DOI: https://doi.org/10.1007/BF01395986  

g 


