Transnational Journal of Pure and Applied Mathematics

Vol. 2, Issue 1, 2019, Pages 37-47 Published Online on September 30, 2019 © 2019 Jyoti Academic Press http://jyotiacademicpress.org

STANLEY COHEN-MACAULAY MODULES

SEYED MOHAMMAD AJDANI

Department of Mathematics Islamic Azad University Zanjan Branch Zanjan Iran e-mail: majdani2@yahoo.com

Abstract

Let $S = K[x_1, ..., x_n]$ and M be a finitely generated \mathbb{Z}^n -graded S-module. We say that M is a Stanley Cohen-Macaulay module if $\operatorname{sdim}(M) = \operatorname{sdepth}(M)$, where $\operatorname{sdim}(M) = \min\{\dim(S/P) : P \in \operatorname{Ass}(M)\}$. Let Δ be a simplicial complex on the vertex set $\{x_1, ..., x_n\}$ with $\dim \Delta < n - 2$. Let F be an arbitrary face of Δ^{\vee} and x_0 be a new vertex. A cone from x_0 over F, denoted by $co_{x_0}F$, is the simplex on the vertex set $F \cup \{x_0\}$. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$ and $\Delta' = \Gamma^{\vee}$. It is shown that if $K[\Delta']$ is a Stanley Cohen-Macaulay module then Stanley's conjecture holds for $K[\Delta]$. Moreover, we show that for a monomial ideal I of S if $x_t \in S$ is a regular element on S / I for some $1 \leq t \leq n$, then I is a Stanley Cohen-Macaulay ideal if and only if (I, x_t) is a Stanley Cohen-Macaulay ideal.

Keywords and phrases: Stanley depth, Stanley Cohen-Macaulay, prime filtration.

Communicated by Francisco Bulnes.

Received September 17, 2019

²⁰¹⁰ Mathematics Subject Classification: Primary 13A30, 13C12, 13F55; Secondary 14M12, 14C25, 14C17.

Introduction

Let $S = K[x_1, ..., x_n]$ be a polynomial ring in *n* variables over a field K and M be a finitely generated \mathbb{Z}^n -graded S-module. Let $m \in M$ be a homogeneous element in M and $Z \subseteq \{x_1, ..., x_n\}$. We denote by mK[Z] the K-subspace of M generated by all elements mf, where f is a monomial in K[Z]. The \mathbb{Z}^n -graded K-subspace $mK[Z] \subset M$ is called a Stanley space of dimension |Z|, if mK[Z] is a free K[Z]-module. A Stanley decomposition of M is a presentation of the K-vector space M as a finite direct sum of Stanley spaces

$$\mathcal{D}: M = \bigoplus_{i=1}^r m_i K[Z_i].$$

Set sdepth(\mathcal{D}) = min{[Z_i] : i = 1, ..., r}. The number

 $sdepth(M) = max\{sdepth(D) : D \text{ is a Stanley decomposition of } M\}$

is called Stanley depth of *M*.

Stanley [5] conjectured that depth(M) \leq sdepth(M) for all finitely generated \mathbb{Z}^n -graded S-modules M.

Let *M* be a finitely generated \mathbb{Z}^n -graded *S*-module.

A chain of \mathbb{Z}^n -graded submodules $\mathcal{F} : 0 = M_0 \subset M_1 \subset ... \subset M_r = M$ is called a prime filtration of M if $M_i / M_{i-1} \cong S / P_i(-a_i)$, where $a_i \in \mathbb{Z}^n$ and each P_i is a monomial prime ideal. We call the set $\{P_1, ..., P_r\}$ the support of \mathcal{F} and denote it $\operatorname{supp}(\mathcal{F})$. Herzog et al. proved in [2, Proposition 1.3] that if \mathcal{F} is a prime filtration of M, then

 $\min\{ \dim(S / P) : P \in \mathcal{F} \le \operatorname{depth}(M), \operatorname{sdepth}(M) \le \min\{ \dim(S / P) : P \in \operatorname{Ass}(M) \}.$

In [1, Proposition 1.2.13], it was shown that $depth(M) \le \min\{(S / P) : P \in Ass(M)\}$.

In this paper, we study some results about Stanley Cohen-Macaulay S-modules. For this, we say that a finitely generated \mathbb{Z}^n -graded S-module M is Stanley Cohen-Macaulay module if $\operatorname{sdim}(M) = \operatorname{sdepth}(M)$. We denote $\operatorname{sdim}(M) = \min\{\operatorname{dim}(S / P) : P \in \operatorname{Ass}(M)\}.$

This paper is organized as follows. In Section 1, we recall some notation and definitions which will be needed later. In Section 2, we study some results about Stanley Cohen-Macaulay ideals and Stanley dimensions. For this, we say that a monomial ideal I is Stanley Cohen-Macaulay ideal if S / I is a Stanley Cohen-Macaulay S-module. As a main result of this section we prove that for a monomial ideal I of S if $x_t \in S$ is a regular element on S / I for some $1 \le t \le n$. Then I is a Stanley Cohen-Macaulay ideal, see Theorem 2.4. Also, in the general case, we show that if M is a Stanley Cohen-Macaulay module, then M is not Cohen-Macaulay module, see Example 2.1. In Section 3, we let Δ be a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with dim $\Delta < n - 2$. It is shown that if $K[\Delta']$ is a Stanley Cohen-Macaulay module, then Stanley's conjecture holds for $K[\Delta]$, where $\Delta' = \Gamma^{\vee}$, $\Gamma = \Delta^{\vee} \cup co_{x_0}F$ and $co_{x_0}F$ is the simplex on the vertex set $F \cup \{x_0\}$, see Theorem 3.2.

1. Preliminaries

In this section we fix some notation and recall some definitions.

A simplicial complex Δ on the vertex set $V = \{x_1, ..., x_n\}$ is a collection of subsets of V, with the property that:

(a) $\{x_i\} \in \Delta$, for all *i*;

(b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

An element of Δ is called a *face* of Δ and complement of a face F is $V \setminus F$ and it is denoted by F^c . Also, the complement of the simplicial complex $\Delta = \langle F_1, \ldots, F_r \rangle$ is $\Delta^c = \langle F_1^c, \ldots, F_r^c \rangle$. The dimension of a face F of Δ , dim F, is |F| - 1, where |F| is the number of elements of F and dim $\emptyset = -1$. The faces of dimensions 0 and 1 are called vertices and edges, respectively. A non-face of Δ is a subset F of V with $F \notin \Delta$, we denote by $\mathcal{N}(\Delta)$, the set of all minimal non-faces of Δ . The maximal faces of Δ under inclusion are called *facets* of Δ . The dimension of the simplicial complex Δ , dim Δ , is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called *pure*. For $F \subset \{x_1, \ldots, x_n\}$, we set:

$$\mathbf{x}_F = \prod_{x_i \in F} x_i.$$

We define the facet ideal of Δ , denoted by $I(\Delta)$, to be the ideal of Sgenerated by $\{\mathbf{x}_F : F \in \mathcal{F}(\Delta)\}$. The non-face ideal or the Stanley-Reisner ideal of Δ , denoted by I_{Δ} , is the ideal of S generated by square-free monomials $\{\mathbf{x}_F : F \in \mathcal{N}(\Delta)\}$. Also we call $K[\Delta] := S / I_{\Delta}$ the Stanley-Reisner ring of Δ . We define Δ^{\vee} , the Alexander dual of Δ , by

$$\Delta^{\vee} = \{ V \setminus F : F \notin \Delta \}.$$

It is known that for the complex Δ one has $I_{\Delta^{\vee}} = I(\Delta^c)$. For a squarefree monomial ideal $I = (M_1, ..., M_q) \subset S = K[x_1, ..., x_n]$, the *Alexander dual* of *I*, denoted by I^{\vee} , is defined to be:

$$I^{\vee} = P_{M_1} \cap \cdots \cap P_{M_n},$$

where P_{M_i} is prime ideal generated by $\{x_j : x_j | M_i\}$.

Definition 1.1. Let M be a finitely generated \mathbb{Z}^n -graded S-module. Then the Stanley dimension of M is given by

 $\operatorname{sdim}(M) = \min\{\operatorname{dim}(S/P) : P \in \operatorname{Ass}(M)\}.$

Definition 1.2. Let M be a finitely generated \mathbb{Z}^n -graded S-module. M is Stanley Cohen-Macaulay module if sdim(M) = sdepth(M).

We also say that $x \in S$ is an *M*-regular element if xz = 0 for $z \in M$ implies z = 0, in other words, if x is not a zero-divisor on *M*.

Remark 1.3. Let M be a finitely generated \mathbb{Z}^n -graded S-module, and M_P be localization of M with respect to prime ideal P. Then it is easy to see that $sdim(M_P) = 0$.

Example 1.4. Let $I = (\{x_i x_j : 1 \le i < j \le m\})$ be a monomial ideal of S. Villarreal [7] showed that this ideal is the edge ideal of a complete graph. On the other hand, complete graphs are Cohen-Macaulay so I is a Cohen-Macaulay ideal. Therefore S / I is a Cohen-Macaulay. Ass $(S/I) = \{(x_1, ..., \hat{x_i}, ..., x_n)\}$, where $(x_1, ..., \hat{x_i}, ..., x_n)$ means that omit variable x_i .

Without loss of generality consider $P = (x_1, ..., x_{n-1})$.

Now localize (S / I) with respect to prime ideal P so $(S / I)_P = (S_P / PS_P)$. By part (i) of Lemma 2.2 one has sdim(S / I) = dim(S / I) = 1and $sdim(S / I)_P = sdim(S_P / PS_P) = dim(S_P / PS_P) = 0$.

Definition 1.5. A monomial ideal I is called Stanley Cohen-Macaulay ideal if S / I is a Stanley Cohen-Macaulay S-module.

2. Stanley Cohen-Macaulay Ideals and Stanley Dimensions

Let $I \subset S$ be a monomial ideal of $S = K[x_1, ..., x_n]$ and $x_t \in S$ for some $1 \leq t \leq n$ be regular on S / I. In this section, we show that I is a Stanley Cohen-Macaulay ideal if and only if (I, x_t) is a Stanley Cohen-Macaulay ideal. The following example shows that in general if M is a Stanley Cohen-Macaulay module, then M is not Cohen-Macaulay module.

Example 2.1. Let $S = K[x_1, x_2]$ and $M = S / (x_1^2, x_1x_2)$, then M is Stanley Cohen-Macaulay S-module. Because sdim(M) = sdepth(M) = 0. On the other hand, depth(M) = 0, dim(M) = 1.

Lemma 2.2. Let M be a finitely generated \mathbb{Z}^n -graded S-module, and M Cohen-Macaulay module. Then

(i) $\operatorname{sdim}(M) = \operatorname{dim}(M)$,

(ii) If Stanley's conjecture holds for the module M, then M is a Stanley Cohen-Macaulay module.

Proof. (i) Since depth(M) = dim(S/P) for all $P \in Ass(M)$ then depth(M) = sdim(M).

On the other hand, depth(M) = dim(M) therefore sdim(M) = dim(M).

(ii) We know that $depth(M) \le sdepth(M) \le sdim(M)$ and M is Cohen-Macaulay. So sdim(M) = sdepth(M). **Proposition 2.3.** Let $I = (u_1, ..., u_r)$ be a monomial ideal, and $x_t \in S$ for some $1 \le t \le n$ be regular on S / I. Then

(i) $x_t \nmid u_i$ for all i = 1, ..., r;

(ii) $I = \bigcap_{i=1}^{l} Q_i$ is the minimal primary decomposition of I if and only if $(I, x_t) = \bigcap_{i=1}^{l} (Q_i, x_t)$ is the minimal primary decomposition of (I, x_t) .

Proof. (i) Suppose on the contrary that there exists $d \in [r]$ such that $x_t \mid u_d$ and $u_d = x_t f_d$ for some $f_d \in S$.

This implies that $f_d \notin I$ and $x_t(f_d + I) = I$ which is a contradiction.

(ii) Let $I = \bigcap_{i=1}^{l} Q_i$ is the minimal primary decomposition of I. We claim that $\bigcap_{i=1}^{l} (Q_i, x_t)$ is the minimal primary decomposition of (I, x_t) . We first prove that $(I, x_t) = \bigcap_{i=1}^{l} (Q_i, x_t)$. Let $u \in (I, x_t)$ then we have to consider two cases: If $x_t \nmid u$, then one has $u \in I$ and $u \in Q_i$ for all i = 1, ..., l. This implies that $u \in (Q_i, x_t)$ for all i = 1, ..., l and $u \in \bigcap_{i=1}^{l} (Q_i, x_t)$. If $x_t \mid u$, then $u \in (Q_i, x_t)$ for all i = 1, ..., l and $u \in \bigcap_{i=1}^{l} (Q_i, x_t)$. Assume $w \in \bigcap_{i=1}^{l} (Q_i, x_t)$. Then we have $w \in (Q_i, x_t)$ for all i = 1, ..., l so $u \in \bigcap_{i=1}^{l} (Q_i, x_t)$. Assume $w \in \bigcap_{i=1}^{l} (Q_i, x_t)$. Then we have $w \in (Q_i, x_t)$ for all i = 1, ..., l. If $x_t \mid w$, then $w \in (I, x_t)$. Otherwise, we have $w \in Q_i$ for all i = 1, ..., l thus $w \in I$ and $w \in (I, x_t)$. Now we show that (Q_i, x_t) is a primary ideal for all i = 1, ..., l. Let $fg \in (Q_i, x_t)$, where $f, g \in S$ and $g \notin (Q_i, x_t)$ and $g \notin Q_i$. If $fg \in Q_i$, then there exists $n \in \mathbb{N}$ such that $f^n \in Q_i$ so $f^n \in (Q_i, x_t)$. If $fg \in (x_t)$ and $g \notin (x_t)$, then there exists $m \in \mathbb{N}$ such that $f^m \in (x_t)$ and $f^m \in (Q_i, x_t)$. It suffices to show that decomposition is minimal. Suppose on the contrary that there exists $d \in [l]$ such that $\bigcap_{i=1, i \neq d}^{l} (Q_i, x_t) \subset (Q_d, x_t)$ so $\bigcap_{i=1, i \neq d}^{l} Q_i \subset Q_d$, which is a contradiction. Let $(I, x_t) = \bigcap_{i=1}^{l} (Q_i, x_t)$ is the minimal primary decomposition of (I, x_t) , then $(I, x_t) \setminus (x_t) = \bigcap_{i=1}^{l} ((Q_i, x_t) \setminus (x_t))$. Therefore $I = \bigcap_{i=1}^{l} Q_i$ is the minimal primary decomposition of I.

Theorem 2.4. Let $I \subset S$ be a monomial ideal of $S = K[x_1, ..., x_n]$ and $x_t \in S$ for some $1 \leq t \leq n$ be regular on S / I. Then $\operatorname{sdim}(S / (I, x_t)) = \operatorname{sdim}(S / I) - 1$. In particular, I is a Stanley Cohen-Macaulay ideal if and only if (I, x_t) is a Stanley Cohen-Macaulay ideal.

Proof. By part (ii) of Lemma 2.2 and the definition of Stanley dimension we have $\operatorname{sdim}(S / (I, x_t)) = \operatorname{sdim}(S / I) - 1$. Let *I* be a Stanley Cohen-Macaulay ideal, then $\operatorname{sdim}(S / I) = \operatorname{sdepth}(S / I)$. Also $\operatorname{sdim}(S / (I, x_t)) = \operatorname{sdim}(S / I) - 1$. On the other hand, Rauf [6, Theorem 2.4.1] proved that

 $\operatorname{sdepth}(S / (I, x_t)) = \operatorname{sdepth}(S / I) - 1.$ Therefore $\operatorname{sdim}(S / (I, x_t)) = \operatorname{sdepth}(S / (I, x_t)).$ Now let (I, x_t) is a Stanley Cohen-Macaulay ideal, then

 $\operatorname{sdim}(S / (I, x_t)) = \operatorname{sdim}(S / I) - 1 = \operatorname{sdepth}(S / (I, x_t)) = \operatorname{sdepth}(S / I) - 1.$ So $\operatorname{sdim}(S / I) = \operatorname{sdepth}(S / I).$

3. Simplicial Complexes and Stanley Cohen-Macaulay Modules

Let Δ be a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with dim $\Delta < n - 2$. Let F be an arbitrary face of Δ^{\vee} and x_0 be a new vertex. A cone from x_0 over F, denoted by $co_{x_0}F$, is the simplex on the vertex set $F \cup \{x_0\}$. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$ and $\Delta' = \Gamma^{\vee}$. In this section we want to show that if $K[\Delta']$ is a Stanley Cohen-Macaulay module, then Stanley's conjecture holds for $K[\Delta]$. For the proof we shall need

Lemma 3.1. Let Δ be a simplicial complex on the vertex set $\{x_1, ..., x_n\}$ with dim $\Delta < n-2$. Let F be an arbitrary face of Δ^{\vee} and x_0 be a new vertex. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$ and $\Delta' = \Gamma^{\vee}$. Let $S = K[x_1, ..., x_n]$ and $\varphi : S[x_0] \rightarrow S$ be the K-algebra homomorphism with $x_i \mapsto x_i$ for i = 1, ..., n and $x_0 \mapsto 1$, then $\varphi(I_{\Delta'}) = I_{\Delta}$.

Proof. Set $S = K[x_1, ..., x_n]$, $S' = S[x_0]$ and $G(I_{\Delta}) = \{m_1, ..., m_d\}$, where $G(I_{\Delta})$ is the set of minimal monomial generators of I_{Δ} . Then

$$I_{\Delta^{\vee}} = P_{G_1} \cap \ldots \cap P_{G_d} \subset S,$$

where G_1, \ldots, G_d are all facets of Δ^{\vee} and $m_j = \prod_{x_i \in G_j} x_i$. We may assume $F \subset G_1$ without loss of the generality. Then

$$I_{\Gamma} = P_{F \cup \{x_0\}} \cap (P_{G_1}S' + (x_0)) \cap \dots \cap (P_{G_d}S' + (x_0)) \subset S'.$$

Hence

$$I_{\Gamma^{\vee}} = I_{\Delta'} = \{m_0, \, x_0 m_1, \, \dots, \, x_0 m_d\}S',$$

where $m_0 = \prod_{x_i \in P_F \cup \{x_0\}} x_i$. Since $\{x_1, \ldots, x_n\} \setminus G_1 \subset \{x_1, \ldots, x_n\} \setminus F$, then m_0 is divisible by m_1 . Now we prove that $\varphi(I_{\Delta'}) = I_{\Delta}$. Suppose $u \in \varphi(I_{\Delta'})$, then there exists $v \in I_{\Delta'}$ such that $u = \varphi(v)$. If $x_0 \nmid v$, then $u = \varphi(v) = v$ and $u \in I_{\Delta}$. If $x_0 \mid v$, then we have to consider two cases.

Case 1. If $m_0 | v$, then $v = m_0 g$, where $g \in S'$. So $\varphi(v) = m_0 \varphi(g)$ and $m_0 | u$ and $m_1 | u$. Therefore $u \in I_{\Delta}$.

Case 2. If $m_0 \nmid v$, then there exists $i \in [d]$ such that $x_0m_i \mid v$ and $m_i \mid \varphi(v) = u$. Hence $\varphi(I_{\Delta'}) \subset I_{\Delta}$. We prove the opposite inclusion. We consider a monomial $w \in I_{\Delta}$. Then there exists $i \in [d]$ such that $m_i \mid w$ and $w = m_i f$, where $f \in S$. We set $w' = x_0m_i f \in I_{\Delta'}$, then $\varphi(w') = w \in \varphi(I_{\Delta'})$ and $I_{\Delta} \subset \varphi(I_{\Delta'})$.

Now we are ready to prove the main result of this paper.

Theorem 3.2. Let Δ be a simplicial complex on the vertex set $\{x_1, \ldots, x_n\}$ with dim $\Delta < n-2$. Let F be an arbitrary face of Δ^{\vee} and x_0 be a new vertex. Set $\Gamma = \Delta^{\vee} \cup co_{x_0}F$ and $\Delta' = \Gamma^{\vee}$. If $K[\Delta']$ is a Stanley Cohen-Macaulay module, then Stanley's conjecture holds for $K[\Delta]$.

Proof. Since $K[\Delta']$ is a Stanley Cohen-Macaulay module then depth $(K[\Delta']) \leq$ sdepth $(K[\Delta'])$. By Lemma 3.1 and [4, Corollary 3.2], we have sdepth $(K[\Delta']) \leq$ sdepth $(K[\Delta]) + 1$. Kimura [3, Lemma 2.2] proved that projective dimensions of $K[\Delta']$ and $K[\Delta]$ are equal. So it is easy to see that depth $(K[\Delta']) =$ depth $(K[\Delta]) + 1$. Therefore the assertion is proved.

References

- [1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Revised Edition, Cambridge, 1996.
- [2] J. Herzog, M. Vladoiu and X. Zheng, How to compute the Stanley depth of a monomial ideal, Journal of Algebra 322(9) (2009), 3151-3169.

DOI: https://doi.org/10.1016/j.jalgebra.2008.01.006

[3] K. Kimura, Arithmetical rank of Cohen-Macaulay squarefree monomial ideals of height two, Journal of Commutative Algebra 3(1) (2011), 31-46.

DOI: https://doi.org/10.1216/JCA-2011-3-1-31

- [4] S. Nasir, Stanley decompositions and localization, Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie 51(99)-2 (2008), 151-158.
- [5] R. P. Stanley, Linear Diophantine equations and local cohomology, Inventiones Mathematicae 68(2) (1982), 175-193.

DOI: https://doi.org/10.1007/BF01394054

- [6] A. Rauf, Stanley Decomposition of Multigraded Modules and Reductions Modulo Regular Elements, PhD Thesis.
- [7] R. H. Villarreal, Monomial Algebras, Marcel Dekker, 2001.