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Abstract 

The completely monotonicity, convexity and inequalities are obtained involving 
p-generalized sigmoid function, and the properties can also generalize to its    
m-order derivative. 

1. Introduction 

The sigmoid function, which is also known as the standard logistic 
function is defined as 
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The sigmoid function plays important role in many scientific disciplines 
including biology, machine learning, probability and statistics, 
demography, ecology, population dynamics, and mathematical psychology 
(see [2, 12], and the references therein). 

Specially, the function is widely applied in artificial neural networks, 
where it plays as an activation function at the output of each neuron (see 
[3, 4, 5, 8, 13]). As well, in the business field, the function been used to 
study performance growth in manufacturing and service management 
(see [11]). Another area of application is in the field of medicine, where 
the function is used to model the growth of tumors or to study 
pharmacokinetic reactions (see [12]). It is also used in forestry. For 
instance, in [6], a generalized form of the function is applied to predict 
the site index of unmanaged loblolly and slash pine plantations in East 
Texas. Moreover, it also can be used in computer graphics or image 
processing to enhance image contrast (see [7, 10]). 

The above important roles of the function makes its properties a 
matter of interest and hence worth studying. In the recent work [9], 
Ezeafulukwe et al. studied some analytic properties of the function such 
as convexity and starlikeness in a unit disc. In [14], Nantomah study the 
properties such as inequalities, subadditivity, convexity and super-
multiplicativity of the sigmoid function. 

In this paper, we study the properties of p-generalized sigmoid 
function such as inequalities, subadditivity, convexity and super-
multiplicativity. 

2. Main Results 

We define the p-generalized sigmoid function as 
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where .0>p  We can easily calculate the first and second derivatives of 

the generalized sigmoid function 
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for all ( )., ∞+−∞∈x  From (5), we can get that ( )xSp  is increasing on 

( )., ∞+−∞∈x  Moreover, the p-generalized sigmoid function have the 

following properties: 
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with C is a constant of integration. The derivative of (15) gives the           
p-generalized sigmoid function. 
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Lemma 2.1. The function 
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is decreasing for all ( )∞+∈ ,0x  and increasing for all ( ).0,−∞∈x  

Proof. For 
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which indicates that ( ) 0<′ xv  for ( ).,0 ∞+∈x  That is ( )xv  decreasing 

for all ( ).,0 ∞+∈x  And ( ) 0>′ xv  for ( ).0,−∞∈x  That is ( )xv  increasing 

for all ( ).0,−∞∈x   

Theorem 2.2. The p-generalized sigmoid function satisfies the 
inequality 

( ) ( ) ( ) ( ).,,, ∞+−∞∈+<+ yxallforySxSyxS ppp   (18) 

Namely, the function ( )xSp  is subadditive on ( )., ∞+−∞  

Proof. The case 0== yx  is trivial. Hence we only prove the case 
( )∞+∈ ,0, yx  and the case ( ).0,, −∞∈yx  Let 
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For any fixed y, we have 
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For ( )xv  is decreasing on ( ),,0 ∞+  we get ( )yxg ,  is decreasing on ( ).,0 ∞+  

Then for ( ),,0 ∞+∈x  we can have 
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For ( )xv  is increasing on ( ),0,−∞  we get ( )yxg ,  is increasing on ( ).0,−∞  

Then for ( ),0,−∞  we can have 
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That completes the proof.  

Theorem 2.3. The function ( )xSp  satisfies the following inequalities: 
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Hence, the function 
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Thus ( )xv  and ( )xG  are decreasing. Hence, for ( ),, ∞+−∞∈x  we get 
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That completes the proof.   

From the definition of MN-convex, MN-concave and logarithmically 
concave and the Corollary 2.5 in [1], we can get the following. 

Theorem 2.4. The function ( )xSp  

(1) is GG-convex on ( );1,0  

(2) is AH-concave on ( );,0 ∞  

(3) is logarithmically concave on ( ).,0 ∞  

Theorem 2.5. The function ( )xSp  satisfies the following inequalities: 
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Proof. For ( ],1,0, ∈yx  we have xxy ≤  and .yxy ≤  Since ( )xSp  is 

increasing, we get 

( ) ( ),0 xSxyS pp ≤<   (34) 

( ) ( ).0 ySxyS pp ≤<   (35) 

Product (34) and (35), we get (32). Using the similar method, we can get 
(33).   

Theorem 2.6. The function ( )xSp  is super-multiplicative on ( ).,1 ∞  

Namely, 
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for all ( )., ∞+−∞∈z  Hence ( ) ( ) ( ) ( ).2 ySxSxySxyS pppp >>   
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