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Abstract 

The existing forward equation defines a probability current that disagrees with 
the random paths. A new one is adequate. With respect to that, the existing Ito 
paths consist of most probable increments (rather than mean ones), with 
Gaussian deviations. Further new features are the compliance with prediction 
theory and the agreement with physical steady states. Multiplicative noise, in 
particular the “spurious drift”, does no longer show up in the relevant 
equations. 

1. Introduction 

Stochastic differential equations (SDEs) give rise to some problems 
when the coupling with the standard noise sources (Wiener processes) 
depends on the random state (“multiplicative noise”) [1-6]. The stochastic 
integration is then only defined up to a parameter ( 0,10 ≤α≤α  for 
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Ito, 21  for Stratonovich and 1 for “anti-Ito”), and attempts to specify α  

in physics met with inconsistencies (the “Ito or Stratonovich dilemma” 
[7]). It will now be shown that the reason is mathematical: short-time 
solutions of the forward or Fokker-Planck equation (FPE) are not 
Gaussian, and the path increments must be related with the most 
probable value rather than with the mean. This is required for 
integrating the increments in the mean square sense. 

The reasoning consists of several steps. Inspection of the probability 
current at a density maximum (transient or steady) first shows the need 
for supplying the existing random increments by an extra term (occurring 
in the FPE). Formally, this amounts to replacing α  by 1−α  in the SDE, 
while the FPE is unchanged. The next step concerns the fact that SDE 
yields Gaussian path increments in dt. This disagrees with the oblique 
solution of the FPE, but for the (mean square) integration of the path 
increments it is sufficient to know the Gaussian that fits the oblique 
density at its maximum. That substitute is given by the SDE when 

,1=α  i.e., for the anti-Ito FPE, corresponding to the Ito SDE. This is the 

only possibility. The Ito increments are thereby centered at their most 
probable value. 

The optimum prediction now agrees with the general theory [1, 3]; it 
is the expectation, determined by the noiseless motion. The anti-Ito FPE 
describes the equilibrium states which are important in physics. It is a 
remarkable new finding that these are approached and determined by 
the Ito paths (with the mean, i.e., the noiseless motion, tending to the 
density maximum). 

The above results are confirmed by a tensor argument. The “spurious 
drift” arising with multiplicative noise is not a tensor. The request of 
compatibility with the tensor laws excludes its occurrence. This readily 
imposes the Ito sense of the SDE, and among the equilibrium states it 
singles out those of the anti-Ito FPE. 
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As usual, random values will be denoted by uppercase and fixed ones 
by lowercase letters. 

2. Background 

2.1. Generalities 

The continuous Markov process ( )tX  is supposed to obey the SDE 

( ) ( ) ( ) ( ) ,or WdXBdtXaXddWXbdtXadX iii +=+= k
k  (2.1) 

with smooth functions ( ) ( )., XbXa ii k  As usual, (2.1) denotes an integral 

equation, with a “sense” specified by ( ).10 ≤α≤α  The (independent) Wiener 

processes ( )tWk  obey ( ) ( ) 00 >=−< kk WtW  and [ ( ) ( )] .0 2 tWtW >=−< kk   

The existing expression for the increments, with given ( ) xtX =  and 

,0≥dt  is 

( ) ( ) ( ) ( ) ( ),dtodtxaWdxBdtxaxdttX Sp +α++=−+  (2.2) 

see [1-6], where ( ) ( ),: tWdttWWd −+=  and with the “spurious” drift 

( ) ( ) ( ) ( ) .,: ,
k

k
k

k
iTjijSpi BBxbxbxa ==  (2.3) 

The time evolution of the probability density ( )txw ,  of ( )tX  is 

determined by the Fokker-Planck equation [1-6]. Its “drift” is given by 
the expectation of (2.2) 

( ) [ ( ) ( )] ( ),dtodtxaxaxdttX Sp +α+>=−+<   (2.4) 

more precisely by 

( ) ( ),xaxa Spα+   (2.5) 
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and the “diffusion matrix” by 

( ) ( ) ( ).xBxBxD T=   (2.6) 

The explicit FPE reads 

[ ( ) ( ) ( ) ] .21 ,,, i
iSpii

t wDwaaw k
k+α+−=  (2.7) 

When B  is diagonal (as, e.g., in one dimension), the spurious drift is 

determined by D  

.2, kkiSpi Da =   (2.8) 

This expression always holds when Spa  is supposed to vanish when ( )xD  

is constant, as it will be assumed in what follows. 

A short proof: 

A general B  can be written as OD  with an orthogonal .O  Setting 

WdDWdOD
~

:=  defines the new Wiener increments ( ) ,
~

: WdWdxO =  

which for each x  are stochastically equivalent with Wd  [1]. This 

eliminates ,O  and (2.3) becomes [( ) ] ,,
ik

k DD  which equals (2.8) by 

diagonalizing at each .x  This is but the simplest version: each orthogonal 

( )xQ  defines a possible ( ) ,:
~

WdxWd Q=  but only O=Q  yields a zero 

Spa  when D  is constant. For the full variety of ,Spa  see [8]. 

2.2. The “noise-generated drift” 

By ( ) ,,,, k
k

k
k

k
k wDwDwD iii +=  and by exhibiting the “noise-

generated drift” 

( ) ,21: , kkiNGi Da −=   (2.9) 
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the FPE can be rewritten in the form 

[ ( ) ].2, wDwaaaw NGSpt ∇++α+−⋅∇=  

Clearly NGa  originates from the unequal expulsion by diffusion at 

neighbouring sites (the effect of thermodiffusion [9]). It is absent in the 
SDE, and mainly also in the path increments (2.2) and (2.4), although its 
impact is a real phenomenon. By (2.8), it follows that 

,SpNG aa −=  (2.10) 

and the FPE assumes the form 

{ [ ( ) ] }.21, wDwaaw Spt ∇+−α+−⋅∇=   (2.11) 

With the probability current 

[ ( ) ] ,21: wDwaaJ Sp ∇−−α+=   (2.12) 

the FPE reduces to the continuity equation 0, =⋅∇+ Jw t  expressing 

the impossibility of a spontaneous birth and death of the paths. 

The “propagator” ( ) ,0,,, 0 ≥txtxg  is the solution of (2.11) with 

( ) ( ),,0, 00 xxxxg −δ=  asymptotically for .0→t  

3. The New Path Increments 

Consider any (transient) smooth maximum of the density ( )., txw  

There the current (2.12) is [ ( ) ] ,1 waaJ Sp−α+=  while the mean 

increment (2.4) always equals ( ) .dtaaXd Spα+>=<  This shows that 

(2.2) and (2.4) must be completed by dtadta NGSp =−  (while (2.1) 

remains unchanged). The resulting new random increment is 

( ) ( ) ( ) ( ) ( ) ( ) .:1 XdtodtxaWdxBdtxaxdttX Sp ∆=+−α++=−+  (3.1) 
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This reduces α  by 1 for the paths, but not for the FPE. The Ito increment 

( ) ( ) ,WdxBdtxaX +=∆  (3.2) 

belongs thus to the FPE 

( ),2, wDwaw t ∇+−⋅∇=  (3.3) 

with the current 

.2wDwaJ ∇−=   (3.4) 

Clearly the paths given by (3.2) follow the noiseless motion in the mean. 

4. The Propagators and their Maxima 

Explicit solution for time-dependent FPEs are only available for 
.21=α  The maxima of further propagators can be obtained by specific 

methods. For simplicity this will now be shown in one dimension, with 
0≡a  and for the initial value .00 =x  

(a) 21=α  

The FPE ( ) [ ( ) ( ) ] ( )bbabDwbwbbw Spt ′==′′+′−= ,21 22
,  is exactly 

solved by 

( ) ( ) ( ) ( ) ( ) ( ) .where,2exp2, 1

0

2211 ξξ=−π= −−− ∫ dbxztztxbtxw
x

 

(4.1) 

The maximum point is given by ,011 =′−′− −− zwztwbb  which by 
1−=′ bz  reduces to .0=+′ tzb  With bxz ≈  for small dt this results 

in 

.ˆ dtabdtbx NG=′−≈   (4.2) 
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This differs from the mean ,22 dtabdtb Sp=′  even by the sign. The 

propagator is thus oblique for each .0>dt  

(b) 1=α  

The FPE reads ( ) ( ) .22, wDwDwDw t ′′+′′=′′=  At the maximum 

of w this reduces to ,2, wDw t ′′=  which does not involve any 

derivatives of D. The result is thus locally same as for a constant D, i.e., 

( ) ( ) ( ) { ( ) )[ ]},02/exp020,, 22121 dtDxDdtdtxg −π≈ −−  (4.3) 

a Gaussian centered at the starting point. The full propagator is the 
oblique density 

( ) ( ) ( ) { [ ( ) ] ( )[ ]}.02/0exp20,, 22121 dtDdtaxxDdtdtxg Sp−−π= −−  

(4.4) 

With ( ) ( ) ( ) ( ) ( ) ( )[ ]0/0exp000 DDxDDxDxD ′≈′+≈  it is easily seen that 

(4.3) is recovered, but the tails of (4.4) are asymmetric and yield the well-
known mean ( ) .0 dtaSp  The further evolution is determined by 

,2wDJ ′−=  which shows that the maximum stays at .0=x  

With a non-singular D  (4.4) can be generalized to 

( ) ( ) [ ( )] 212 det20,, −−π= xDdtdtxg n  

{ [ ( ) ] ( ) [ ( ) ] }.2/000exp 1 dtdtaxDdtax Sp
T

Sp −−−× −  

The full solution with an initial delta-function will be discussed below in 
the Chapter 6. 
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(c) 0=α  

The FPE is ( ) ,2,
″= Dww t  and the substitution uDw =:  results in 

.2,
″= Duu t  Near 0=x  this is solved by ( ) ( ) { 22121 exp02 xDdt −π −−  

( ) )[ ]},02/ dtD  and by Duw =  it follows that w is maximum at 

( ) ( ) .020 dtadtD NG=′−   (4.5) 

In all cases 0≠a  replaces x  by ( )dtax 0−  in the exponent. 

5. The Integral for the Random Paths 

The (Riemannian) sum of consecutive increments converges in the 
mean square sense when in each time interval the most probable value is 
taken, together with the Gaussian deviations given by the second 
derivatives of the density at the top (these must be negative). Note that 
the increments (3.1) – as well as (2.2) – are Gaussian distributed, by the 
fact that all coefficients are fixed at their initial value .x  As the 
preceding Chapter 4 shows, (3.1) agrees with the oblique propagator (in 
the above way) when 1=α  for the FPE, and therefore 0=α  for the 
SDE. This singles out the Ito paths, and their increments are focused on 
the most probable values, determined by the FPE (3.3). This is the core of 
the paper, and it contrasts with the existing theory. 

The oblique propagator provides some irrelevant information, like, 
e.g., its mean value. That phenomenon does not persist for possible 
steady densities solving (3.3), see also the Chapter 8. It is however 
essential for understanding the paradox that the exact (oblique) 
propagators do not satisfy the equation by Chapman-Kolmogorov CKE 
[10], while the resolving process is Markovian. 
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6. The Optimum Prediction 

Given an initial 0x  it is interesting to know the most probable value of 

( )tX  at each .0>t  According to the general theory [1, 3], this is given by 

the conditional expectation, in view of (3.2) thus by the noiseless motion. 
The Ito-FPE would however yield a different value: already for small t 
the result (4.5) rather locates the maximum at [ ( ) ( )] .2 000 txaxax Sp−+  

This is another flaw removed by the new FPE. 

For a nonsingular D  one can say more about the density with the 

initial ( ).0xx −δ  After dt it is the Gaussian with mean ( )dtxax 00 +  and 

variance ( ) .0 dtxD  Iterated use of the CKE with the Gaussian 

approximation of the propagator then shows that the maximum moves 
with the noiseless motion. The maximum property thus holds for each 

.0>t  

7. Change of the Variables 

It is assumed that the SDE is consistent with any new variables 

( ).xy  In the noiseless case ( )axB == ,0  this means that ( ii dyy =  

) ( ) ,kkkk adxdyxdx i=  so that a  is a contravariant vector. It is further 

supposed that a  does not depend on .0≠B  Since (by definition) x  is a 

contravariant vector, and ( )tW  is understood to remain the same, the 

rows of B  are also contravariant vectors, and D  is a twice contravariant 

tensor, see also [5]. When D  is nonsingular, it can be transformed to 

unity by ( )xz  given by [ ( )] ,21 xdxDzd −=  i.e., by ( )dxxbdz 1−=  in one 

dimension, see [2, 4, 6]. Clearly Spa  then vanishes, which means that it 

is not a tensor. The conditional increment must thus not involve ,Spa  

whence 0=α  is the only possibility for the SDE. This restates the above 
finding in an independent way. 
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8. Steady Densities 

It is now assumed that ( )xa  excludes any escapes to infinity, so that 

a steady density ( )xw  may exist. It is a well-known idea to introduce a 

parameter ε  indicating the noise strength That ε  then appears as a 
factor of NGaD,  and .Spa  Consistently, ( )xw  is expressed as  

( ) ( ) [ ( ) ]εφ−ε= xNxw exp:  with the “quasipotential” ( ),xφ  see, e.g., [11, 12]. 

It is then easily shown that (3.3) results in 

( ) ( ) .022 =φ∇+⋅∇ε+φ∇+⋅φ∇ DaDa   (8.1) 

For weak noise one may neglect the second term. The remaining “eikonal 
equation” 

( ) 02 ≈φ∇+⋅φ∇ Da   (8.2) 

holds in any variables ( ) :xy  The current (3.4) can be rewritten as 

( ),2φ∇+= DawJ  which shows that caDa =φ∇+ :2  is a 

contravariant vector, and therefore ( )xφ  a scalar. The scalar product 

ca⋅φ∇  vanishes thus in all variables. 

Stationarity for all 0>ε  requires that 

,0=⋅∇ ca   (8.3) 

and (8.2) is then exact. By (8.3) ca  is source-free (solenoidal), a property 

that also holds for any ( ).xy  It further follows that ( )xφ  must be 

smooth. 

“Detailed balance” [5] provides a solution satisfying (8.3). Since (8.2) 
is of the first order, it can be solved by characteristics [11]. In two 
dimensions a generating function ( )xχ  obeys a simpler equation [12]. 

This becomes linear by (8.3), with the left-hand side ,χ∇⋅a  and it can 

thus be solved in domains attracted by a  to a point. 
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Both the steady density and the increment (3.2) thus obey the tensor 
laws. This is new, and it strongly supports the new findings. The relevant 
equations (3.2) and (8.2) do not involve a derivative of D  and are thus 

the same, whether or not D  depends on x  (note that (4.4) was not used 

for the paths). 

Remark. The above procedure is inappropriate for :1<α  since Spa  

is ( ),εO  it would only appear in the second term of (8.1), but by (2.12) 

( )xw  is maximum where ( ) ,01 =−α+ Spaa  while (8.2) states that 

0=φ∇  where .0=a  

Recall that the Ito paths follow the noiseless motion leading to the 
attractor of .a  There the steady density is maximum for the FPE (3.3) 
with .1=α  This is not really new, but with the existing FPE it would not 
be consistent. 

For advanced models with equilibrium states, see, e.g., [13]. 
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