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Abstract 

Parameterized stress analysis of bonded joints plays a crucial role in joint 
design and relevant life prediction. This paper provides a refined stress-function 
variational method for stress analysis of single-lap joints subjected to 
mechanical and thermomechanical loads. In the process, two stress functions 
are introduced to approach the interfacial shear and normal (peeling) stresses 
along the bonding line. The axial stresses in the adherends are assumed to be 
linearly varying (i.e., following that of classic Euler-Bernoulli beam), while the 
lateral normal stress and shear stresses are determined by the stress 
equilibrium equations within the framework of elasticity. A set of coupled 4th-
order ordinary differential equations (ODEs) of these stress functions are 
determined via minimizing the complementary strain energy of the joints and 
further solved by using eigenfunctions. The stress field based on the present 
model can satisfy all the traction boundary conditions (BCs), and its accuracy is 
validated by finite element method (FEM). Detailed numerical simulations are 
made to show the capability of the present semi-analytic method for accurately 
predicting the interfacial stresses of single-lap joints under combined 
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mechanical loads of tension, shearing, bending, and thermomechanical loads. 
Detailed scaling analysis is performed to explore the dependencies of interfacial 
stresses upon the joint geometries and material properties of the joint. The 
generality of this procedure guarantees the extensibility of the present semi-
analytic method to other joint systems and loading cases. 

1. Introduction 

Bonded joints are broadly integrated in various mechanical and civil 
structures as load transfer elements, structural transition connectors, 
surface repairing/reinforcing patches, and so on. Subjected to external 
loading or environmental temperature change, high stress concentration 
is triggered near the adherend ends of bonded joints due to the mismatch 
of material properties of the adherends across the bonding lines. The 
existence of high interfacial stresses at adherend ends is one of the main 
factors responsible for the debonding failure of joints as commonly 
observed in engineering practice. Therefore, accurate prediction of the 
debonding stresses in bonded joints is crucial to structural design and 
damage prediction. Due to the structural importance and geometrical 
complexity of bonded joints as well as the concurrence of several 
dissimilar materials at a localized region, the accurate stress analysis of 
joints has been a challenging topic in applied mechanics and structural 
engineering which has been attracted substantial attention in the last six 
decades. 

Historically, Volkersen [1] first conducted the stress analysis of an 
adhesively bonded joint by introducing the concept of differential shear, 
in which the compliant adhesive layer was restrained to deform only in 
shear while the stiff adherends were treated as two tension bars. Goland 
and Reissner [2] furthered Volkersen’s work and treated the adherends 
as slender beam segments. These two studies are generally considered as 
the milestone of joint stress analysis in the literature and commonly cited 
by many researchers. As a matter of fact, a majority of the late 
investigations can be traced to the pioneering studies by Volkersen [1] 
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and Goland and Reissner [2]. Recently, da Silva et al. [3, 4] made a 
detailed comparative study on a variety of analytical models of 
adhesively bonded joints. Among these, a few important theoretical 
contributions are mentioned as follows. Hart-Smith [5, 6] developed the 
elastoplastic strength models of adhesively bonded lap joints based on the 
maximum shear-strain failure criterion, which are capable of 
determining the load-carrying capability of the joints. Based on the 
classic beam theory, Erdogan and Ratwani [7] and Delale et al. [8] took 
into account the contribution of adherend rotation and formulated a set 
of governing equations to determine the debonding stresses of a variety of 
adhesively bonded joints including strap, lap, butt, scarf, and stepped 
joints. However, due to the limitation of the classic beam theory, the 
interfacial shear-stress predicted by all above joint models and a 
significant number of follow-ups cannot satisfy the free-shear stress 
conditions at adherend ends. In addition, treatment of the adhesive layer 
as a shear spring conflicts with the generalized Hooke’s law of the 
adhesive layer. Furthermore, based on theorem of minimum 
complementary strain energy, Chen and Cheng [9-11] proposed an energy 
approach for the stress analysis of lap, butt, scarf, and tubular joints. In 
the case of adhesively bonded single-lap joints, a set of governing 
equations was obtained which consisted of two coupled 4th-order 
ordinary differential equations (ODEs) of two unknown axial tensile 
stresses. This model predicted that the peak shear-stress in the adhesive 
layer locates at a distance of ~20% the adherend thickness from the 
adherend ends, close to those predicted by detailed Finite Element 
Method (FEM). This method was further extended by Wu et al. [12] for 
stress and progressive cracking analysis of circular torsion shafts with 
surface coatings. In addition, with the expanding applications of joining 
technologies in a broad spectrum of industrial sectors, stress analysis of 
joints has been furthered and refined such as the extensive investigations 
of tubular joints [13-18] and nonlinear and high-order analysis of bonded 
joints [19-22], adhesive failure and debonding analysis of adhesively 
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bonded joints [23-32], and development of new concept joints including 
piezoelectric patch-based smart joints [33-36], among others. More 
recently, Khan et al. [37] formulated a theoretical Adhesively Bonded 
Joint (ABJ) model to take into account the effect of transverse shear of 
the ABJ adherends. In the model, the ABJ adherends are treated as 
Timoshenko’s beams and this model was used to guide to reduce the 
interfacial shear and peeling stresses via material tailoring. 

Besides, several recent layerwise joint models have been formulated 
for improved stress analysis of ABJs. For instance, Hadj-Ahmed et al. 
[38] formulated a layerwise ABJ model with the multi-layers of the ABJ 
to be modelled as a stack of Reissner plates that are coupled through the 
interlaminar normal and shear stresses. The governing equations of the 
ABJs are obtained via minimizing the strain energy of the ABJ. Diaz et 
al. [39] also proposed an improved layerwise ABJ model, in which the 
ABJ was modelled as a stack of Reissner-Mindlin plates. As a result, a 
set of eight governing ODEs was obtained via evoking the constitutive 
laws and solved to satisfy the traction BCs. This ABJ model can be well 
validated by FEM for free-edge interfacial stress prediction. Moreover, 
Yousefsani and Tahani [40, 41] provided another version of the layerwise 
ABJ models. In their models, the displacements of artificially divided 
sub-layers of an ABJ were treated as field variables, and a set of 
governing ODEs was obtained via minimizing the potential energy of the 
joint. For accurate interfacial stress prediction, 18 artificial sub-layers 
were used in their numerical examples. Such layerwise ABJ models were 
further extended for stress analysis of smart joints integrated with 
piezoelectric patches in their recent efforts [42]. 

Nevertheless, accurate stress analysis is crucial to formulation of 
robust joint models and the design and failure prediction of bonded joints. 
Though purely numerical stress analysis such as FEM can provide 
detailed understanding of the stress field in a specific joint, 
parameterized analytic and semi-analytic methods are still desired and 
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have their intellectual merits since they enable an explicit interpolation 
of the stress dependency upon the material parameters and geometries 
and can be conveniently used for scaling analysis. Along the vein of stress 
analysis of bonded joints, a reliable stress-function variational method 
has been proposed by Wu and his co-workers [43-46]. This method has 
been used successfully to determine the entire stress field of single-sided 
strap joints [43-46]. In the process, by introducing two unknown 
interfacial shear and normal stress functions, all the stress components 
in the joint were expressed in terms of the unknown stress functions with 
the axial flexural stresses to satisfy that of Euler-Bernoulli beams and 
the left shear and transverse normal stress components to satisfy the 
stress equilibrium equations of elasticity at the given traction boundary 
conditions (BCs). A set of two coupled governing ODEs was obtained 
through minimizing the complementary strain energy of the joint similar 
to those considered by Chen and Cheng [9-11] and Wu et al. [12]. This set 
of ODEs can be solved to satisfy all the traction BCs of the joint, and 
gives the stress field of the joint with improved accuracy. In this work, 
this method is further extended to determine the stress field of a bonded 
single-lap joint made of two dissimilar isotropic, linearly thermoelastic 
adherends. Due to loss of the structural and loading symmetry, the stress 
field of a single-lap joint belongs to a general case of bonded joints 
compared to that of a single-sided strap joint [38]. Thus, the most general 
solution will be derived for the general traction BCs of a bonded single-
lap joint, including the combination of tensile and shear-force as well as 
bending moments. The present work will provide a uniform treatment of 
stress analysis of bonded joints subjected to mechanical and 
thermomechanical loads. Such treatment is useful to the study of 
debonding failure and fracture of bonded joints and other layered 
structures [46-57]. The rest of the paper is planned as follows. Section 2 
presents the theoretical framework of stress-function variational method 
for bonded single-lap joints under the general traction BCs, including 
derivation of the adherend stresses in terms of the interfacial stress 



XIANG-FA WU and ROBERT A. JENSON 84

functions and formulation of the set of governing ODEs. Section 3 
demonstrates the present method for stress analysis of bonded single-lap 
joints subjected to mechanical and thermomechanical loads. Comparisons 
of the results with those given by FEM are made and applications of the 
present study are remarked. The conclusions of the present study are 
drawn in Section 4. 

2. Problem Formulation and Solution 

Consider a bonded single-lap joint made of two homogenous, 
isotropic, linearly thermoelastic adherends as illustrated in Figure 1. 
Both adherends of the joint are treated as slender beams to carry the 
overlapped length L and consistent width b. The thicknesses of the upper 
and lower adherends are designated as 1h  and ,2h  respectively. The 

coordinate systems are established as follows. The x-coordinate is 
selected from the left end of the overlap and directs along the layer 
neutral axis; 1y  and 2y  are the transverse coordinates with the 

individual origins located at the centroids of cross-section of the adherend 
layers, respectively. The joint is subjected to the general traction BCs of 
tensile force ,0P  shear-force ,0V  and bending moments 1M  and 2M  as 

illustrated in Figure 1(b); meanwhile the joint has a uniform temperature 
change T∆  from the reference temperature of thermal-stress-free state. 
Mismatch of the adherend properties across the bonding interface may 
induce high interfacial shear and normal (peeling) stresses at the 
adherend ends as sketched in Figure 1(c). Such high interfacial stresses 
are the main factors responsible for the failure of the bonded joint. 
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Figure 1. Schematic of a bonded single-lap joint: (a) the joint consists of 
two slender adherends, (b) free-body diagram of the joint with effective 
traction boundary conditions, and (c) schematic interfacial shear and 
normal stresses. 

In engineering practice, a complicated three-dimensional (3D) stress 
state exists at the adherend corners of the bonded single-lap joints due to 
the finite width of the joint plus the mismatch of Poisson’s ratios and 
coefficients of thermal expansion of the adherends. Stress analysis of 
such bonded joints usually needs detailed 3D finite element analysis 
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(FEA). To simplify this process, plane-stress and plane-strain states will 
be considered as two limiting cases of engineered bonded joints. Such 
treatment will greatly facilitate the understanding of the scaling 
properties of interfacial stresses in bonded joints with respect to the 
material properties and joint geometries. Besides, for the convenience of 
the derivation hereafter, the following notation convention will be 
implied such that parameters and variables with subscripts 1 and 2 are 
denoted to those of the upper and lower adherends, respectively. In 
addition, the plane-stress results can be conveniently converted to those 
of the plane-strain state by simply replacing the Young’s moduli 

( )2,1=iEi  by ( ),1 2
iiE υ−  Poisson’s ratio ( )2,1=iiυ  by ( ),1 ii υυ −  

and coefficients of thermal expansion ( )2,1=iai  by ( ) .1 ii α+ υ  

2.1. Static equilibrium equations 

For a single lap-joint under general loadings of tension, shearing, and 
bending as well as temperature change, the deformation of the joint 
consists of in-plane elongation and lateral deflection. Similar to our 
recent study of the single-sided strap joint [43-45], the adherends of joint 
are treated as slender Euler-Bernoulli beams. Free-body diagrams 
(FBDs) of the representative segments of the adherends are shown in 
Figures 2(a) and 2(b), respectively. The stress components and the 
corresponding stress resultants, i.e., the axial force ,iS  shear-force ,iQ  

and bending moment ( ),2,1=iMi  are defined to follow the standard 

sign conventions designated in the elementary beam theory; however, the 
sign convention of the shear-stress is opposite to that defined in 
elasticity. For the representative segmental element of the upper 
adherend (see Figure 2(a)), the corresponding static equilibrium 
equations are 

,:0 1 τ−==∑ bdx
dSFx  (1) 
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,:0 1 σ−==∑ bdx
dFy
Q   (2) 

( ).2:0 1
1

1 τ−==∑ bh
dx

dMM Q   (3) 

 
(a)                                                                (b) 

Figure 2. Free-body diagrams of representative segmental elements of 
the adherends: (a) the upper adherend and (b) the lower adherend. 

The static equilibrium equations of the representative segmental 
element of the lower adherend (see Figure 2(b)) are 

,:0 2 τ==∑ bdx
dSFx  (4) 

,:0 2 σ==∑ bdx
dFy
Q  (5) 

( ).2:0 2
2

2 τ−==∑ bh
dx

dMM Q  (6) 

2.2. Stress resultants in adherends 

By adopting the procedure considered recently by the authors [37], 
two interfacial stress functions, i.e., the interface shear τ  and interfacial 
normal (peeling) stress ,σ  are introduced as two independent functions to 
be determined: 

( ) ( ).and xgxf =σ=τ   (7) 
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Shear-free condition at the right and left adherend edges ( 0=x  and L) 
requires 

( ) ( ) .00 == Lff   (8) 

Traction BCs at the both adherend ends the single-lap joint are 

( ) ,0 201 bhpS =   (9) 

( ) ,01 =LS   (10) 

( ) ,0 201 bht=Q   (11) 

( ) ,01 =LQ   (12) 

( ) ,0 11 bMM =   (13) 

( ) ,01 =LM   (14) 

( ) ,002 =S   (15) 

( ) ,202 bhpLS =   (16) 

( ) ,002 =Q   (17) 

( ) ,202 bhtL =Q   (18) 

( ) ,002 =M   (19) 

( ) ( ).22 bMLM −=   (20) 

In the above, ,,, 100 Mtp  and 2M  are the average normal stress and 

shear-stress, and the bending moments per unit width of the joint, 
respectively. In general, the bending moments 1M  and 2M  can carry 

different values subjected to satisfaction of the moment equation, while 
( ) ( )LSS 21 0 −=  and ( ) ( )L22 0 QQ −=  according to the equations of 

static equilibrium of the joint. 
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In the case of thermomechanical stress analysis of the joint due to a 
pure temperature change ,T∆  the right terms of (9), (11), (13), (16), (18), 

and (20) should be set as zero to satisfy the traction-free BCs. In such a 
case, the thermomechanical stress analysis of a single-lap joint is 
equivalent to that of a bi-material thermostat [43-45]. 

By following the similar derivations performed recently by the 
authors [43], all the stress resultants of the segmental elements of the 
upper and lower adherends can be expressed uniformly in terms of f and 
g. In the upper adherend, the stress resultants are 

( ) ( ) ,
0

201 ξξ−= ∫ dbfbhpxS
x

 (21) 

( ) ( ) ,
0

201 ξξ−= ∫ dgbbhtx
x

Q  (22) 

( ) ( ) ( ) .2 0
1

00
2011 ξξ−ξζζ−+= ∫∫∫

ξ
dfbhddgbbxhtbMxM

xx
 (23) 

In the lower adherend, the stress resultants are 

( ) ( ) ,
0

2 ξξ= ∫ dfbxS
x

 (24) 

( ) ( ) ,
0

2 ξξ= ∫ dgbx
x

Q  (25) 

( ) ( ) ( ) .2 0
2

00
2 ξξ−ξζζ= ∫∫∫

ξ
dfbhddgbxM

xx
 (26) 

2.3. Stress components of bonded single-lap joints 

2.3.1. Stress components in the upper adherend 

For slender adherends of the bonded single-lap joint under 
consideration, the axial normal stress in the upper adherend can be 
assumed to follow that of an Euler-Bernoulli beam [43-46]: 
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( ) ( ) ( ) [ xhtM
h

ydfhpI
yxM

bh
S x

xx 2013
1

1
01

1
1

11
1
11 121 +−ξξ−=−=σ ∫  

( ) } ( ) ],2 0
1

00
ξξ−ξζζ− ∫∫∫

ξ
dfhddg

xx
 (27) 

where ( )./ 1201 hhpp =  The corresponding shear-stress ( )1
1xyτ  of the upper 

adherend can be determined by integrating the 2D equilibrium equation 
of a representative stress element: 

( ) ( )

,0
1

11
1 =

∂

τ∂
+

∂
σ∂

yx
xyxx   (28) 

with respect to 1y  from an arbitrary location y to the top surface at 

:211 hy =  

( ) ( )

,01
1

12
1

12
11

1

1

1
=

∂

τ∂
+

∂
σ∂ ∫∫ dyydyx

xyh

y
xxh

y
 (29) 

which leads to 

( ) [( ) ( )] ( )xfyh
hyh

hxy
2
1

2
1

1
1

1
1

1
4

3
2

1
1

−−−−=τ  

( )[ ( ) ].4
6

20
0

2
1

2
1

3
1

htdgyh
h

x
−ξξ−+ ∫   (30) 

In the above, the traction-free BC: ( ) ( ) 02/1
1
1

=τ hxy  at the top surface of 

the upper adherend has been evoked. Besides, transverse normal stress 
( )1

11yyσ  in the upper adherend can be calculated by integrating the 2D 

equilibrium equation of elasticity: 

( ) ( )

,0
1

1

1
111 =

∂

τ∂
+

∂

σ∂

xy
xyyy  (31) 
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with respect to 1y  from an arbitrary location y to the top surface of the 

adherend at 211 hy =  as 

( ) ( )

,01

12
1

1

12
11

1

111

1
=

∂

τ∂
+

∂

σ∂

∫∫ dyxdyy
xyh

y

yyh

y
 (32) 

which yields 

( ) { ( ) ( ) [ ( )1
1

2
1

1
2
1

2
1

1
11

1
1

24
3

42
1

22
1

11
yhh

hyhyhh
hyy −−−−−−=σ  

( )]} ( ) [ ( ) ( )] ( ).83
1

24
6

83
1 3

1
3
1

1
1

2
1

3
1

/3
1

3
1 xgyhyhh

h
xfyh

−−−+−−  (33) 

2.3.2. Stress components in the lower adherend 

By adopting the similar procedure in Subsection 2.3.1, the stress 
components in the lower adherend can be determined as 

( ) ( ) [ ( ) ( ) ],2
121

0
2

003
2

2
022

22
2
22 ξξ−ξζζ−ξξ=−=σ ∫∫∫∫

ξ
dfhddg

h
ydfhI

yM
bh
S xxx

xx  

(34) 

( ) [( ) ( )] ( ) ( )] ( ) ,4
6

4
3

2
1

0

2
22

23
2

2
22

2
2

2
2

2
2
2

ξξ−+−++−=τ ∫ dghy
h

xfhyh
hyh

x
xy  

(35) 

( ) { [ ( ) ( )] [ ( ) ( 2
2
2

3
23

22
2

2
2

2
2
22

2
2

2
483

13
2242

11
22

yhhy
h

hyhhyhyy −++++−=σ  

)]} ( ) [ ( ) ( )] ( ).2483
16

2
2

2
2
2

3
23

23
2

/2 xghyhhy
h

xfh
+−+−+  (36) 
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Compared to those obtained recently [43-46] for specific side-bonded 
strap joints, the stress expressions (27), (30), and (33) have taken into 
account the contribution of the axial normal force, shear force, and 
bending moment; while the stress expressions (34)-(36) of the lower 
adherend have the same expressions as those for single-sided strap joints 
due to the same traction BCs at the left end. In addition, the present 
stress expressions, (i.e., (27), (30), (33), and (34)-(36)) represent the most 
general case, which can be used for the stress determination of any 
bonded joints made of two adherends. The above stress approaches also 
indicate that the axial normal stress varies linearly across the 
adherends, while the statically compatible shear and transverse normal 
stresses vary parabolically and cubically across the adherends, 
respectively. 

2.4. Governing differential equations for the interfacial stresses 
and solution 

The theorem of minimum complementary strain energy is adopted for 
the stress determination of the current single-lap joints similar to those 
reported in the literature [9-12] and also considered in our recent studies 
of progressive cracking of surface coatings [12] and debonding stresses of 
side-bonded strap joints [37-40]. In the present case, the strain energy of 
the joint within the overlapped region ( )Lx ≤≤0  can be expressed as 

{ [ ( ) ( ) ( ) ( ) ] ( ( ) ) } 1
21

1
111112/

2/0 1

1

1

1
2
1 dxdyEbU xyyyyyxxxx

h

h

L
τ

+
+εσ+εσ= ∫∫ −

υ  

{ [ ( ) ( ) ( ) ( ) ] ( ( ) ) } .1
2
1

2
22

1
122222/

2/0 2

2

2
dxdyEb xyyyyyxxxx

h

h

L
τ

+
+εσ+εσ+ ∫∫ −

υ  (37) 

In the above, ( )i
xxε  and ( ) ( )2,1=ε ii

yy  are respectively the axial and 

transverse normal strains of the adherends, which can be determined 
according to the generalized Hooke’s law of isotropic, linearly 
thermoelastic solids. In the plane-stress state, these normal strains are 
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( ) ( ) ( ) ,1 TEE i
i
yy

i
ii

xx
i

i
xx ∆α+σ−σ=ε

υ  (38) 

( ) ( ) ( ) ,1 TEE i
i

xx
i
ii

yy
i

i
yy ∆α+σ−σ=ε

υ  (39) 

where ( )2,1=α ii  are coefficients of thermal expansion of the adherends 

above and below, respectively, and T∆  is the uniform temperature 
change of the joint from a reference temperature of thermal-stress free 
state. Also, the strain energy (37) is an energy functional with respect to 
the interfacial stress functions f and g. In addition, for linearly 
thermoelastic materials, the complementary strain energy of an elastic 
body is equivalent to the corresponding strain energy of this elastic body. 
Thus, according to theorem of minimum complementary strain energy of 
elastic bodies, the strain energy of the joint reaches a stationary point in 
the state of static equilibrium. This yields the necessary condition that 
variation of the strain energy (26) equals to zero [9-12, 43-46]: 

,0=δU   (40) 

i.e., 

{ [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]111111112/

2/0 2
11

1
yyyyyyyyxxxxxxxx

h

h

L
bU εδσ+δεσ+εδσ+δεσ=δ ∫∫ −

 

( ) ( ) ( ) } 1
11

1
1

11

12 dxdyE xyxy δττ
+

+
υ  

{ [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]222222222/

2/0 2
12

2
yyyyyyyyxxxxxxxx

h

h

L
b εδσ+δεσ+εδσ+δεσ+ ∫∫ −

 

( ) ( ) ( ) } ,12
2

22
2

2
22

dxdyE xyxy δττ
+

+
υ  (41) 

where δ  is the mathematical variational operator with respect to either   
f or g. 
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Similar to our recent study [43-46], governing equations of the 
interfacial stress functions f and g can be extracted by substituting the 
stress components (27), (30), (33), and (34)-(36) and strain components 
(38)-(39) into (41) and performing several variational operations and 
mathematical simplifications. As a result, a set of two coupled 4th-order 
ODEs of constant coefficients can be determined: 

( )( ) ( )( ) ( ) ( ) ( ) ( ) ,011211
//

12
//

111211 =+ξ+ξ+ξ+ξ+ξ+ξ DGCFCGBFBGAFA IVIV  

(42) 

( )( ) ( )( ) ( ) ( ) ( )ξ+ξ+ξ+ξ+ξ FCGBFBGAFA IVIV
12

//
22

//
122212  

( ) ,0222 =+ξ+ DGC   (43) 

where 

( ) ( ) ( ) ,1
020

2 ζζ−==ξ ∫ dfhphxFF
x

 (44) 

( ) ( ) ( ) ,1
002

20
2 ζηη==ξ ∫∫

ζ
ddg

hp
hxGG

x
 (45) 

( ),105
1

12
3
1211 ehA +=  (46) 

( ),210
11

12
2
1212 ehA +−=  (47) 

( ),35
13

121222 ehA +=  (48) 

( ),15
4

121211 ehB +−=  (49) 

( ) ( )[ ],51515
1

122112 eB υυ −−−=  (50) 

( ),5
12

12
1

1222 ehB +−= −  (51) 
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( ),4 12
1

1211 ehC += −  (52) 

( ),6 12
2

1212 ehC +−= −  (53) 

( ),12 12
3

1222 ehC += −  (54) 

( ) ( )

( )

( ) ( ) ( )[ ]

( )

( )

( )

( ) ( )

( ) ( )[ ]

( )
































−

∆+α−+α

−∆α−α

−

ξ++

−

∆+α−+α+ξ++

−

∆α−α+ξ++

= −−

−−

−−

statestain-planeloadsthermalpurefor
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1

statestain-planeloadsthermalpurefor,2
1

statestain-planeorstress-planeeitherloadmechanicalpurefor

,6

statestain-planeloadsanicalthermomechfor

,112
16

statestress-planeloadsanicalthermomechfor

,2
16

012211

0121

0
0

2
20

12
12

1
12

012211
0
0

2
20

12
12

1
12

0121
0
0

2
20

12
12

1
12

1

pTE

pTE

p
t

hp
Mhh

pTEp
t

hp
Mhh

pTEp
t

hp
Mhh

D

υυ

υυ

 

(55) 

( )

( )
( )











 ξ+−

=

−

loadthermalpurefor,0
loadsanicalthermomechofmechanicalpurefor

,12
0
0

2
20

13
12

2

p
t

hp
Mh

D  (56) 

,2112 hhh =  (57) 

,2112 EEe =  (58) 

.2hx=ξ  (59) 
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The governing ODEs (42) and (43) and relations (44)-(54), (57), and 
(58) carry the same expressions as those obtained recently [38] for side-
bonded strap joints. In fact, the governing ODEs (42) and (43) are 
universal for stress analysis of any joints made of two bonded adherends. 
In addition, the specific type of the bonded two-adherend joint specifies 
the expressions of (55) and (56), which are in the general case. In the 
special case of ,00 =t  and ( ) ,221201 hhhpM +=  the above derivations 

recover those developed for side-bonded strap joints [44]. In addition, in 
the case of tension-free joints (e.g., pure bending, combination of bending 

and shearing), 1
12
−h  in the first three expression of 1D  in (55) should be 

ignored and 0p  should be understood as a reference stress for 

dimensionless stress expressions. Moreover, the governing ODEs (42) 
and (43) can be utilized for the case of plane-strain joints by replacing iE  

by ( ) iiiE υυ ,1 2−  by ( ),1 ii υυ −  and iα  by ( ) ,1 ii α+ υ  where 2,1=i  

to denote the material properties of the adherends above and below, 
respectively. 

For the convenience of the numerical solving process, the governing 
ODEs (42) and (43) can be further expressed in the matrix format [44-46]: 

[ ]{ ( )} [ ]{ } [ ]{ } { } { },0// =+Φ+Φ+Φ DCBA IV   (60) 

where [A], [B], and [C] are three 22 ×  symmetric real matrices: 

[ ] [ ] ,
2212

1211





==
AA
AA

AA T  (61) 

[ ] [ ] ,
2212

1211












==

BB

BB
BB T  (62) 

[ ] [ ] ,
2212

1211





==
CC
CC

CC T  (63) 
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and { } { },, DΦ  and { }0  are three vectors defined as 

{ } ( ) ( ){ } ,, TGF ξξ=Φ   (64) 

{ } { } ,, 21
TDDD =   (65) 

{ } { } .0,00 T=   (66) 

Similar to the solving procedure considered by Wu and his co-worker   
[44-46], the solution to (60) can be obtained by superimposing the general 
solution { }Ψ  of the corresponding homogeneous ODEs to the particular 

solution { }:0Φ  

{ } { } { },0Φ+Ψ=Φ   (67) 

[ ]{ ( )} [ ]{ } [ ]{ } { },0// =Ψ+Ψ+Ψ CBA IV   (68) 

{ } [ ] { },1
0 DC −−=Φ   (69) 

{ } [ ] { } [ ] ( ).
2

1
6 001

12

12
12

1
0 pt

h
ChDd

dCd
d













−
−=

ξ
−=Φ

ξ −

−−−  (70) 

In the above, the particular solution { }0Φ  has a linear relationship with 

respect to ξ  since [C] is a nonsingular matrix of constant coefficients and 

1D  in (55) has a linear relationship with respect to .ξ  In addition, the 

general solution { }Ψ  to (68) can be assumed to carry the form: 

{ } { } ( ),exp0 λξΨ=Ψ   (71) 

where λ  and { }0Ψ  are respectively the eigenvalue and eigenvector of the 

characteristic equation corresponding to (68): 

[ ]{ } [ ]{ } { }{ } { }.000
2

0
4 =Ψ+Ψλ+Ψλ CBA   (72) 
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The above eigenvalue problem can be converted to a generalized 
eigenvalue problem: 

,0
0

0
1

02

1

0







Ψ
Ψ





 −

λ−=







Ψ
Ψ





 −

BC
I

A
I  (73) 

where 

{ } { }.0
2

1 Ψλ=Ψ  (74) 

The eigenvalue problem (72) can be solved by using standard, robust, 
efficient numerical algorithms available in the literature, (e.g., the eig( ) 
function offered by MatlabTM). Consequently, the general solution (67) 
can be expressed as 

{ } [ { } ( ) { } ( )] ( ){ }.expexp 000

4

1
ξΦ+ξλ−Ψ+ξλΨ=Φ ∑

=
k

k
kk

k
k

k
dc  (75) 

In the above, { } ( )4,3,2,10 =Ψ kk  are the eigenvectors relating the 

corresponding eigenvalues ( ),4,3,2,1=λ kk  respectively; kc  and 

( )4,3,2,1=kkd  are the real or complex coefficients to be determined to 

satisfy the traction BCs (8)-(20), which can be reduced into eight linearly 
independent traction BCs: 

( ) ,00 =F   (76) 

( ) ,12 −=hLF   (77) 

( ) ,00/ =F   (78) 

( ) ,02
/ =hLF   (79) 

( ) ,00 =G   (80) 

( ) ( ) ( ) ,212200
2
2012 hhLpthpMhLG −+=   (81) 

( ) ,00/ =G   (82) 

( ) .002
/ pthLG =   (83) 
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Consequently, substitution of (75) associated with (70) into (76)-(83) 
yields a set of eight linear algebraic equations: 

( )( ),01
0

1,
0

4

1

1,
0

4

1
Φ−=Ψ+Ψ ∑∑

==

k
k

k

k
k

k
dc  (84) 

( ) ( ) [ ( )( )],1expexp 2
1
02

1,
0

4

1
2

1,
0

4

1
hLhLdhLc Φ+−=λ−Ψ+λΨ ∑∑

==
k

k
k

k
k

k
k

k
 

(85) 

( )
,

1
01,

0

4

1

1,
0

4

1
ξ

Φ
−=Ψλ−Ψλ ∑∑

==
d

d
dc k

kk
k

k
kk

k
 (86) 

( ) ( )
( )

,expexp
1
0

2
1,

0

4

1
2

1,
0

4

1
ξ

Φ
−=λ−Ψλ−λΨλ ∑∑

==
d

d
hLdhLc k

k
kk

k
k

k
kk

k
 (87) 

( )( ),02
0

2,
0

4

1

2,
0

4

1
Φ−=Ψ+Ψ ∑∑

==

k
k

k

k
k

k
dc  (88) 

( ) ( )2
2,

0

4

1
2

2,
0

4

1
expexp hLdhLc k

k
k

k
k

k
k

k
λ−Ψ+λΨ ∑∑

==

  

( ) ( ) ( )( ),2 2
2

012200
2
201 hLhhLpthpM Φ−−+=   (89) 

( )
,

2
02,

0

4

1

2,
0

4

1
ξ

Φ
−=Ψλ−Ψλ ∑∑

==
d

d
dc k

kk
k

k
kk

k
 (90) 

( ) ( )
( )

.expexp
2

0
002

2,
0

4

1
2

2,
0

4

1
ξ

Φ
−=λ−Ψλ−λΨλ ∑∑

==
d

d
pthLdhLc k

k
kk

k
k

k
kk

k
 

(91) 
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In the above, 1,
0
kΨ  and ( )4,3,2,12,

0 =Ψ kk  are respectively the first and 

second elements of the k-th eigenvector; ( )1
0Φ  and ( )2

0Φ  are the 1st  and 2nd  

elements of the particular solution vector { },0Φ  respectively. In addition, 

in the case of thermomechanical stress analysis of the joints due to a pure 
temperature change, the right terms of (77), (81), and (83) should be set 
as zero. Accordingly, such modification will further influence the right 
terms of (85), (89), and (91). Once coefficients ( )4,3,2,1=kkc  and 

( )4,3,2,1=kkd  are determined by solving the above set of linear 

algebraic equations (84)-(91) numerically, relations (44), (45), and (75) 
finally determine f and g as 

( ) ( )2
1,

0

4

1
0 exp hxcpxf kk

k
k

k
λλΨ= ∑

=

 

( )
( )

,exp
1
0

2
1,

0

4

1
ξ

Φ
+λ−λΨ− ∑

=
d

d
hxd kk

k
k

k
 (92) 

( ) ( ) ( ).expexp 2
22,

0

4

1
2

22,
0

4

1
0 hxdhxcpxg kk

k
k

k
kk

k
k

k
λ−λΨ+λλΨ= ∑∑

==

 

(93) 

With the interfacial stress functions f and g available from (92) and (93), 
all the stress components in the two adherends can be determined 
according to the stress expressions formulated in Subsection 2.3. By 
comparison with those obtained by Wu and his co-workers [44], it can be 
found that the specific type of bonded two-adherend joint only specifies 
the traction BCs of the joint, which only influence the right terms of     
(84)-(91). This demonstrates the universal treatment of bonded joints 
based on proposed variational stress-function method. 

 



INTERFACIAL STRESSES OF BONDED SINGLE-LAP … 101

3. Model Validation and Discussions 

3.1. Interfacial stresses in a bonded single-lap joint free of shear-
force 

The present variational stress-function method for stress analysis of 
bonded single-lap joints is a generalized version based preliminarily on 
that for side-bonded strap-joints [43-46]. Thus, in the limiting case that 
the shear-force is ignored, ( )0.,i.e 0 =t  such as a cantilevered single-lap 

joint subjected to axial tension as illustrated in Figure 3(a), all the 
derivations formulated in this work will be automatically reduced to 
those of the single-sided strap joint model [43-46]. Since the accuracy of 
interfacial stresses predicted by the latter model in the cases of axial 
tension and pure temperature change has been validated carefully by our 
recent FEM simulations and other results available in the literature    
[44-46]. Such study has demonstrated the validity of the present model in 
the specific mechanical and thermomechanical loading cases. 

 
(a)                                                                       (b) 

Figure 3. Static equivalency between (a) a cantilevered single-lap joint 
and (b) a side-bonded strap joint subjected to axial tension. 

3.2. Interfacial stresses in bonded single-lap joints under shear 
and bending 

Within the present theoretical framework, the adherends of the joint 
model are assumed to be homogeneous, isotropic, linearly elastic solids 
and under small deformation/deflection. Thus, method of superposition 
can be safely used to analyze the interfacial stresses of single-lap joints 
under combined loadings of tension, shearing, bending, and uniform 
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temperature change, i.e., the interfacial stresses can be determined as 
the sum of those based on the external loads one by one. Since the 
interfacial stresses induced by axial tension and uniform temperature 
change have been studied in our recent study [43-46], herein, the present 
single-lap joint model was employed to determine the interfacial stresses 
of a single-lap joint induced by a shear-load (see Figure 4); FEA based on 
a commercial FEM package (ANSYSTM) was conducted to validate the 
model results. The single-lap joint was assumed being made of a steel 
plate as the upper adherend ( )293.0,GPa210 11 == υE  and an 

aluminum plate as the lower adherend ( ).34.0,GPa70 22 == υE  The 

adherends had the same width, other geometries of the joint were: 
mm21 =h  (steel), mm42 =h  (aluminum), and L = 20mm (see Figure 4). 

The average shear traction of the lower adherend was assumed as 
MPa10 =t  being applied at the right end. During the FEM simulation of 

the interfacial stresses, four-node plane-stress element (PLANE182) and 
mapped uniform quadrilateral meshes were utilized. Furthermore, due to 
the specific configuration of the joint, stress singularity exists at the free-
edges of the joint. In an attempt to demonstrate the singular stresses 
near the edges, four mesh sizes, (i.e., ,mm2.02.0,mm4.04.0 ××  

mm,1.01.0 ×  and mm05.005.0 × ) were considered sequentially in the 

FEM simulations. The interfacial shear and normal (peeling) stresses 
along the bonding line are plotted in Figures 5(a) and 5(b). It can be 
found from Figure 5 that the interfacial stresses based on the present 
variational stress-function method predict the stress variations close to 
those based on detailed FEM simulations. The shear-stresses predicted 
by the present method can satisfy the shear-free conditions at the 
adherend ends while the present FEM results do not. Also, it can be 
observed that both the maximum interfacial shear and normal stresses 
appear at the left end of the joint adherend due to the maximum bending 
moment induced by the shear-force at this end. Herein, it needs to be 
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mentioned that since the bonding line of the joint is not located along the 
effective neutral axis of the joint, the bending moment also induces a 
significant shear-stress along the bonding line which is responsible for 
the maximum shear-stress at the left end. Thus, interfacial debonding 
failure mostly appears first at the left edge of the adherends. 

 

Figure 4. Configuration of a cantilevered single-lap joint subjected to a 
vertical shear-force .0Q  
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(a) 

 
(b) 

Figure 5. Variations of the interfacial shear and normal stresses in a 
bonded single-lap joint subjected to a shear-force: (a) interfacial shear-
stress and (b) interfacial normal stress. 
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Furthermore, the present semi-analytic method based on a limited 
number of eigenfunctions exhibits some deviation on the shear-stress 
prediction compared to those of the FEM simulations; however, it 
demonstrates a very high accuracy on the normal stress prediction. 
Moreover, due to existence of the singular stress-field near the adherend 
ends, theoretically, the normal stress will tend to infinity at the free 
edge. Thus, the interfacial stresses predicted by the FEA tend to be 
larger and larger with the finer meshes to be considered as demonstrated 
in Figure 5. Like most joint models available in the literature, the 
present method is unable to predict such stress singularity. However, the 
present method has demonstrated a very good fitting to the interfacial 
stress variations predicted by using FEM that confirms the validity of the 
present method. 

3.3. Scaling analysis of interfacial stresses due to mechanical 
loads 

This section is designated to examine the effects of adherend material 
properties and geometries on the interfacial stress variation of the 
bonded single-lap joint as shown in Figure 4, i.e., scaling analysis. Such 
scaling analysis of interfacial stresses can provide an explicit 
understanding of the dependency of joint interfacial stresses upon 
materials and geometries of the adherends, which is particularly useful 
to joint design and failure analysis. In the analysis, five thickness ratios 
( ),5,2,1,5.0,2.021 =hh  two length ratios ( ),10,52 =hL  and two 

modulus ratios ( )10,321 =EE  are used; Poisson’s ratios of the 

adherends are fixed as 293.01 =υ  and .345.02 =υ  The bonded single-

lap joint is considered in plane-strain state and loaded by a single shear-
force with the average shear-stress 0t  across the cross-section as shown 

in Figure 4. Due to the importance of the interfacial normal stress in 
strength analysis of such joints, the scaling analysis below only considers 
variation of the normal stress. 
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Figure 6 show variations of the dimensionless interfacial normal 
(peeling) stress 0tσ  with the dimensionless distance 2hx  from the 

left adherend-end at varying length, thickness, and modulus ratios, 
respectively. It can be observed that for given overlap length ratio 
( )2hL  (see Figure 4), the maximum normal stress at the left adherend-

end decreases rapidly with the increase of either the thickness ratio 
( )21 hh  or modulus ratio ( );21 EE  however, the maximum normal 

stress at the right adherend-end varies in the opposite tendency to that of 
the left adherend-end. This can be explained such that the bending 
moment induced by the shear-force is located at the left end of the upper 
adherend and at the right end of the lower adherend; as a result, the 
normal stress decreases with increasing moment inertia of the adherend 
cross-sectional area which has a cubic relationship with the thickness 
ratio ( )21 hh  and a linear relationship with the modulus ratio 

( ).21 EE  Furthermore, such variations will be further enhanced with 

the increase of the length ratio ( )2hL  because the larger the length 

ratio ( )2hL  is, the larger is the bending moment to be induced. 

Therefore, the scaling analysis of interfacial stresses can clearly indicate 
the stress dependency upon the material properties, geometries, and 
external loads. Such scaling analysis can be further extended to consider 
the effect of combined loads including mechanical and thermomechanical 
loads, among others. 
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2hx  

(a) 

 
2hx  

(b) 
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2hx  

(c) 

 
2hx  

(d) 

Figure 6. Variations of the dimensionless interfacial normal stress in 
bonded single-lap joints with the dimensionless distance from the right 
adherend-end at varying thickness, modulus, and length ratios. 
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4. Concluding Remarks 

The stress-function variational method has been extended 
successfully for determining the interfacial stresses of bonded single-lap 
joints subjected to mechanical and thermomechanical loads. During the 
process, the axial normal stress was assumed to vary linearly in the 
adherend cross-sections of the joints; the statically compatible in-plane 
shear and transverse normal stresses were determined to vary 
parabolically and cubically in the adherend cross-sections, respectively. 
Two coupled governing ODEs of constant coefficients have been 
formulated successfully, which can be regarded as universal for stress 
analysis of a variety of bonded two-adherend joints with varying traction 
BCs to correspond to specific bonded joints of interest. The joint model 
generalized in this study is capable of providing reliable stress variation 
in bonded joints useful to joint design, structural optimization, and 
strength evaluation. The theoretical merits of the present formulation 
include that all the traction BCs are satisfied exactly and all the material 
and geometrical parameters have been rationally integrated into the 
model. The numerical process corresponding to the present joint model is 
self-consistent, robust, and efficient. 

The joint model formulated in the present work provides an efficient, 
powerful, theoretical tool to understand the scaling behaviour of the 
entire stress field in bonded joints, especially the variation of the 
debonding stresses along the bonding lines. The present formalism can be 
conveniently generalized for developing novel, efficient and reliable joint 
models for stress and strength analysis of adhesively bonded multi-
material and composite joints where knowledge of interfacial and 
interlaminar stresses plays a critical role to understand their strength 
and durability and to improve the relevant structural design and 
manufacturing. 
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