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Abstract 

In this paper, we investigate the uniqueness and existence of solution for 
nonlinear multi-term fractional differential equations with impulsive and 
fractional integral boundary conditions by means of the standard fixed point 
theorems and nonlinear alternative theorem. To illustrate our results, we give 
two examples. 

1. Introduction 

Fractional differential equations appear widely in various fields of 
science and engineering such as physics, the polymer rheology, regular 
variation in thermodynamics and so on [1]-[5]. 

On the other hand, impulsive differential equations provide an exact 
description of the observed evolution processes and they are regarded as 
important mathematical tools for the better understanding of several real 
world problems in applied sciences [6]-[10]. 

In recent years, many scientists have studied the existence and 
uniqueness of the solution for fractional differential equations by using 
analytic and numerical methods. 

In fact, the theory of impulsive differential equations is much richer 
than that of ordinary differential equations without impulse effects since 
a simple impulsive differential equation may enough exhibit several new 
phenomena such as rhythmical beating [11]-[14]. Thus impulsive 
fractional differential equations are widely studied recently [6, 15-22]. 

The investigation for impulsive multi-term fractional differential 
equation with the integral boundary conditions has not been appreciated 
well enough. The integral boundary conditions arise from many 
applications such as blood flow problems, chemical engineering, thermo-
elasticity, underground water flow, and so on [23]-[25]. 

Additionally, it is well known that the integral boundary conditions 
include two-point, multi-point, and nonlocal boundary condition. 
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Guezane-Lakoud et al. [26] proved the existence of solutions for the 
following fractional differential equation with fractional integral 
condition 
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Fu et al. [27] considered the impulsive fractional differential equation 
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According above mentioned paper, in this article, we will investigate 
uniqueness and existence theorems of solution for the following nonlinear 
multi-term fractional differential equations with impulsive and fractional 
integral boundary conditions 
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where ( )txDc α
0  and ( )txDc β

0  are the Caputo fractional derivatives, 

10,21 <β<≤α<  and RRR →××<γ< lf :,21  is a continuous, 

( ) RRR ∈=<<<<<∈ + cbattttCJI mm ,,,10,,, 110kk  are such 

that a ( ) γ+γΓ−≠ Iba ,2  is the Riemann-Liouville fractional integral of 

order ( ) ( ) ( ) ( )+−+ −=∆γ kkkk txtxtxtx ,,  and ( )−ktx  denote the right and the 

left limits of ( )tx  at ( ),,,2,1 mtt == kk  respectively and ( )ktx ′∆  have 

a similar meaning for ( ).tx ′  
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The paper is organized as follows. First, we give some preliminary 
results and present two classical fixed point theorems. In Section 3, we 
present and prove our results which consist of uniqueness and existence 
theorems for solutions of the Equation (1). In Section 4, two examples are 
presented to illustrate our results. The conclusions are given in Section 5. 

2. Preliminaries 

Definition 1 ([28]). The Riemann-Liouville fractional integral of order 
+∈ Rq  of a function [ ]baLf ,1∈  is given by 

( ) ( ) ( ) ( ) .,1: 1 btadftqtfI qt

a
q
a ≤≤−

Γ
= −∫ τττ  

Definition 2 ([28]). The Caputo’s fractional derivative of order +∈α R  
of a function f is given by 
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where nn ≤α<− 1  and ( ) [ ].,1 baLf n ∈  

Lemma 3 ([27]). If ,0>α  then the differential equation 

( ) 00 =α thDc  

has the solutions ( ) 1
1

2
210

−
−++++= n

n tctctccth  and 

( ) ( ) ,1
1

2
21000

−
−

αα +++++= n
n

c tctctccththDI  

where 1,,1,0, −=∈ nici R  and [ ] .1+α=n  

We introduce the following notations: 

[ ] ( ] ( ] ( ] [ ],1,0,1,,,,,,,,0 1121110 ===== −− ltlttlttltl mmmmm  

{ } ( ) { ( ) ( ) ( ),01,00,,::,,,,,\ 21 −+∈→==′ yylCylylPCtttll m RRR k  
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( )0+kty  and ( )0−kty  exist and ( ) ( ) } ( )R,,,1,0 1 lPCptyty ==− kkk  

{ ( ) ( ) ( ) ( ) ( )0,01,00,,,: 1 +′−′+′∈∈= kk tyyylCylPCy RR  and ( )0−′ kty  

exist, }.,1 p=k  

Lemma 4 ([27]). For any ( ),, RlPCy ∈  the impulsive boundary value 

problem 
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 (2) 

has a solution ( )R,1 lPCx ∈  which is given by 
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Theorem 5 (Nonlinear alternative of Leray-Schauder type [16]). 

Let X be a Banach space, C a nonempty convex subset of UX ,  a 

nonempty open subset of C with .0 U∈  Suppose that CUP →:  is a 

continuous and compact map. Then either (a) P has a fixed point in ,U  or 
(b) there exist an Ux ∂∈  (the boundary of U) and ( )1,0∈λ  with 

.Pxx λ=  

Theorem 6 (Schaefer fixed point theorem [16]). 

Let X be a normed space and XXP →:  be a continuous mapping 
which is compact on each bounded subset B of X. Then either (a) the 
equation Pxx λ=  has a solution for ,1=λ  or (b) the set of all such 
solutions of Pxx λ=  is unbounded for .10 <λ<  

3. Main Results 

Let 
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Then the existence of the solutions for the Equation (1) is equivalent to 
the existence of the fixed point of the operator T. 
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Let denote ( ) ( ( ) ( )) ( ( ) ( )) .,,,,,,:, 00 XyxsyDsysfsxDsxsfyxW cc ∈−= ββ  

Theorem 7. Let ( )RRR ,××∈ lCf  and suppose that there exist 

constants ++ ∈∈ RR L,k  and +∗ ∈ RL  such that for any ,, Xyx ∈  the 

following inequality holds: 
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then the Equation (1) has a unique solution Xx ∈  on l. 
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Proof. By Equations (5) and (6), we have 
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and since Td ,10 <<  is a contractive on X. By Banach’s fixed point 

theorem, the Equation (1) has a unique solution Xx ∈  on l and this 
completes the proof. 

Lemma 8. The operator T defined in Equation (4) is completely 
continuous on X. 
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Proof. Since kk JIf ,,  are continuous, we know that T is continuous 

on X. Let XB ⊂  be a bounded set. Then there exist positive numbers 
,, 21 kk  and 3k  such that 
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continuous. This completes the proof. 

Theorem 9. Assume that 
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Suppose that there exists 0>M  such that 
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Then the Equation (1) has at least one solution x in .U  

Proof. We will show that the operator T satisfies the assumptions of 
the nonlinear alternative of Leray-Schauder type. 

First, we know that T is completely continuous by Lemma 8. 
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and 
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By Equations (16) and (17), we have 
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Hence Mx ≠  and consequently, XUT →:  is completely continuous. 

From the choice of the set U, there is no Ux ∂∈  such that Txx λ=  
for some .10 <λ<  Therefore by the nonlinear alternative of Leray-
Schauder type Theorem 5, we know that there exists at least one fixed 

point in U  and this completes the proof. 
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Theorem 10. Let ( )+∞∈ R,JLh  and 1H  and 2H  be positive 

constants. 

If the following inequalities hold for any lt ∈  and ,2,1, =∈ kXx  

,, m  then Equation (1) has at least one solution in X. 

( ( )) ( ) ( ) ( ) .,,,, 210 HxJHxIthtxDxtf c ≤≤≤β
kk  

Proof. Obviously, XXT →:  is completely continuous. 

Now we show that { }10,: <λ<λ=∈= TvvVvV  is a bounded set. 

Let Vx ∈  be such that Txx λ=  for some .10 <λ<  Similarly to 
the proof of Theorem 9, for any ,Jt ∈  we have 

( ) ( ) .maxmax tTxDtTxTxx c
JtJt

β
∈∈

+λ==  

Then 

( ) ( )
( )

( ( ) ( ) )













αΓ
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+γ+αΓ+
+
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+γΓ
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b

htx a 1
1

1
1
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( ) ( ) ( )

)
b
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amH aa +
+

+γΓ+
++

+γΓ+γΓ 22
1 2

1  

( )
( ) ( )

,
22

1

1
2

















+γΓ+
+++

+γΓ

=

=

∑∑ b

ta
mtH a

i
m

i
i

m

i
  (18) 

and 

( ) ( )
( ) ( )

( ( ) ( ) )













αΓ
+

+γ+αΓβ−Γ+
+

+β−αΓ
≤

+γΓ

∗β ba
b

htxD a
c

12
1

1
1

2
0  

( ) ( ) ( )122
1

+γΓβ−Γ+
+

+γΓ b
amH a  
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( ) ( ) ( ) ( ) 















β−Γ
+
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2122

1
2

m
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t
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i
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( ) ( )
.

22 β−Γ+
+
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a  (19) 

By Equations (18) and (19), we have 
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=
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β−Γ
+

+γΓβ−Γ+
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=
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∑
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1
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2
1

m
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t
H

b
amH a

i
m

i
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( ) ( )
.

22 





β−Γ+
+

+γΓ b
c

a  

Hence there exists some 0>M  such that Mx ≤  for all ,Vx ∈  i.e.,      

V is a bounded set. 
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Thus, by Theorem 6, T has at least one fixed point in X. This 
completes the proof. 

4. Examples 

Example 11. 
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we can take .8
1=k  Then since 
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(
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(
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3
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++

Γ+Γ
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ΓΓ

 

and { },,max 21 ddd =  there exists a unique solution by Theorem 7. 

Example 12. 
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Here ( ( ) ( ))
( )

( )( ) [ ],1,0,22arctan,, 2
1

5 ∈π+≤++= −β ttxettxDtxtf
t

xc  

.Xx ∈  Since ( ) 3≤xIk  and ( ) 5≤xJk  for ,Xx ∈  we can take 

( ) 3,22 1 =π+= Hth  and .52 =H  Then by Theorem 10, the problem has 

at least one solution on [ ].1,0  
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5. Conclusion 

By using the standard fixed point theorems and nonlinear alternative 
theorem, we obtained the uniqueness and existence of the solution for 
nonlinear multi-term fractional differential equations with impulsive and 
fractional integral boundary conditions. We generalized the results given 
in [6], [20], [21], [26], [27]. 
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