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Abstract

Let G be a graph of order n. The incidence energy, denoted IE(G), of G is

defined as the sum of the singular values of the incidence matrix of G. It has

been showed that IE(G) = Zn l,lqi , where ¢;,1<1i<n, are the signless
i=

Laplacian eigenvalues of G. In this note, we present some upper bounds for the

incidence energy of a graph.

1. Introduction

We consider only finite undirected graphs without loops or multiple
edges. Notation and terminology not defined here follow that in [1]. Let G
be a graph with n vertices and m edges. We use §(G) and A(G) to denote

the minimum and maximum degrees of the vertices in the graph G,

respectively. The distance between two distinct vertices in a connected
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graph G is defined as the number of edges in a shortest path that
connects the two vertices in G. The diameter of a connected graph G is
defined as the largest distance among the distances between all pairs of
distinct vertices in G. The eigenvalues of G are the eigenvalues of the

adjacency matrix, denoted A(G), of G. The signless Laplacian matrix,
denoted Q(G), of G is defined as A(G) + D(G), where D(G) is a diagonal
matrix such that the (i, i)-entries of D(G) are the degrees of vertices in

G. The eigenvalues, denoted g; with 1 <i < n, of Q(G) are called the

signless Laplacian eigenvalues of G. For a matrix M, we use M’ to

denote its transpose of M.

Gutman [5] introduced the concept of energy of a graph. The energy
of a graph G is defined as the sum of the absolute values of the
eigenvalues of G. Nikiforov [14] extended the concept of energy of a graph
to the energy of any matrix M. The energy of a matrix is defined as the
sum of the singular values of M, where the singular values of M are the
square roots of the eigenvalues of the matrix MM®. Based on Nikiforov’s
definition of the energy of a matrix, Jooyandeh et al. [8] introduced the
concept of incidence energy of a graph. The incidence energy, denoted

IE(G), of a graph G is defined as the energy of the incidence matrix of G.

Namely, IE(G) is the sum of the singular values of the incidence matrix

of G. Gutman et al. [6] showed that in fact IE(G) = Z?:l Ja; .

The upper bounds for IE(G) of a graph G have been obtained in

recent years. Some of them can be found in [7], [18], [17], [4], [13], and
[9]. In this note, we will present additional upper bounds for IE(G) of a

graph G. The remainder of this note is organized as follows. In Section 2,
we will present our main result and its proofs. Our main result gives a

generic upper bound for IE(G) of a connected graph G. In Section 3, we

will use our main result and some existing upper bounds of the largest
signless Laplacian eigenvalue of a graph to obtain some concrete upper
bounds for IE(G) of a graph G.
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2. The Main Result and its Proofs

The main result of this note is as follows.

Theorem 1. Let G be a connected graph with n > 4 vertices and m

edges. Then

IE < Jqr + \/Zm(n —rll)(n -2)
with equality if and only if G is a complete graph.

Proof of Theorem 1. Notice that ¢; > 4Tm with equality if and only

if G is a regular graph (see Conjecture 5 on page 17 in [3]). From Cauchy-

Schwartz inequality and ZZL: 19 = 2m, we have that

n n
1E = Z«/Qi =N@ +q2 + Z\/Qi
i=1 i=3

< «/EM/EH/(H—Z)Z%
=

= Va1 ++a +\/(n—2){zqi -q _QQ]
i=1

= Va1 + gy +J(n-2)2m - g1 - q)

< oy + Va3 +|(n-2)@m -4 gy,

Now consider the function

f(x) = JL\/(n—z)(zm—‘*Tm—x).
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It can be verified that f(x) attains its maximum when x = —ZZZin__l?)-
Thus
4m
@+\/(n—2)(2m—T—Q2)
om(n — B 4_m ~ 2m(n — 2))
: \/ n(n - 1) \/(n 2)|2 n(n - 1)
B \/Zm(n -1)(n-2)
= - .
Therefore
4
15 < gy +ag +ln - 2)(2m - 4™ g)
<oy + P00,
If

15 - M+\/2m(n—i)(n—2),

then, from the above proofs, we have that G is regular, ¢q; = 4Tm’
qg = %, and g3 = -+ = q,. Thus, from Z?zlqi = 2m, we have
that
_ _2m-q; -qs _ 2m(n—2)
I3 =" =dn = n-2  nn-1)

Therefore G has two distinct signless Laplacian eigenvalues. Recall that
the diameter of a connected graph is less than or equal to the number of
the distinct signless Laplacian eigenvalues minus one (see Proposition
2.3 on page 508 in [11]). Hence the diameter of G is one. So G is a
complete graph.
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If G is a complete graph, then ¢; = 2(n-1),q9 = =¢q, = (n-2)

and therefore

IE =g =2(n—1) +(n - 1Wn -2 :*/a+\/2m(n_,1l)(n_2)-
i=1

Therefore the proof of Theorem 1 is completed. O
3. Additional Upper Bounds for IE

Theorem 1 implies that every upper bound for ¢; can yield an upper
bound for IE. Recall the following upper bounds for the largest signless

Laplacian eigenvalues.

Theorem 2. Let G be a connected graph with n vertices and m edges.
Then

_ 5-1+E -1 +82m + A2 — (n - 1)3)

<y B

with equality if and only if G is a regular graph.

Theorem 2 above is Theorem 2.1 on page 910 in [2] (also see Theorem
3.1 on page 805 in [10]).

Theorem 3. Let G be a connected graph with n vertices and m edges.
Then

i A+8—1+\/(A+8—1)2+8(2m—(n—1)8)
o 2

q su

with equality if and only if G is a regular graph.

Theorem 3 above is Theorem 2.2 on page 910 in [2] (also see the
proofs of Theorem 4 on page 137 in [12]).
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Theorem 4. Let G be a connected graph with n vertices and m edges.
Then

_ 2m+ \/m(n3 —n? - 2mn + 4m)
n

gr Sug:
with equality if and only if G is a complete graph K,,.

Theorem 4 above is Theorem 2.3 on page 910 in [2] (also see [15]).

Theorem 5. Let G be a connected graph with n vertices and m edges.
Then

2
uy = 8;1+\/2(A2+6)+(2m—n6)+@

IA

a1

with equality if and only if G is a regular graph.
Theorem 5 above is Lemma 2.3 on page 2860 in [16].
From Theorems 1, 2, 3, 4, and 5, we have the following corollary.

Corollary 1. Let G be a connected graph of order n(n > 4) and m
edges. Then, for each i with 1 < i < 4,

IE < Ju + \/2m(n —’11)(n -2)
with equality if and only if G is a complete graph K,,.
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