SOME UPPER BOUNDS FOR THE INCIDENCE ENERGY OF A CONNECTED GRAPH

RAO LI
Department of Mathematical Sciences
University of South Carolina Aiken
Aiken, SC 29801
USA
e-mail: raol@usca.edu

Abstract

Let G be a graph of order n. The incidence energy, denoted $\operatorname{IE}(G)$, of G is defined as the sum of the singular values of the incidence matrix of G. It has been showed that $\operatorname{IE}(G)=\sum_{i=1}^{n} \sqrt{q_{i}}$, where $q_{i}, 1 \leq i \leq n$, are the signless Laplacian eigenvalues of G. In this note, we present some upper bounds for the incidence energy of a graph.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow that in [1]. Let G be a graph with n vertices and m edges. We use $\delta(G)$ and $\Delta(G)$ to denote the minimum and maximum degrees of the vertices in the graph G, respectively. The distance between two distinct vertices in a connected
graph G is defined as the number of edges in a shortest path that connects the two vertices in G. The diameter of a connected graph G is defined as the largest distance among the distances between all pairs of distinct vertices in G. The eigenvalues of G are the eigenvalues of the adjacency matrix, denoted $A(G)$, of G. The signless Laplacian matrix, denoted $Q(G)$, of G is defined as $A(G)+D(G)$, where $D(G)$ is a diagonal matrix such that the (i, i)-entries of $D(G)$ are the degrees of vertices in G. The eigenvalues, denoted q_{i} with $1 \leq i \leq n$, of $Q(G)$ are called the signless Laplacian eigenvalues of G. For a matrix M, we use M^{t} to denote its transpose of M.

Gutman [5] introduced the concept of energy of a graph. The energy of a graph G is defined as the sum of the absolute values of the eigenvalues of G. Nikiforov [14] extended the concept of energy of a graph to the energy of any matrix M. The energy of a matrix is defined as the sum of the singular values of M, where the singular values of M are the square roots of the eigenvalues of the matrix $M M^{t}$. Based on Nikiforov's definition of the energy of a matrix, Jooyandeh et al. [8] introduced the concept of incidence energy of a graph. The incidence energy, denoted $I E(G)$, of a graph G is defined as the energy of the incidence matrix of G. Namely, $I E(G)$ is the sum of the singular values of the incidence matrix of G. Gutman et al. [6] showed that in fact $\operatorname{IE}(G)=\sum_{i=1}^{n} \sqrt{q_{i}}$.

The upper bounds for $I E(G)$ of a graph G have been obtained in recent years. Some of them can be found in [7], [18], [17], [4], [13], and [9]. In this note, we will present additional upper bounds for $\operatorname{IE}(G)$ of a graph G. The remainder of this note is organized as follows. In Section 2, we will present our main result and its proofs. Our main result gives a generic upper bound for $\operatorname{IE}(G)$ of a connected graph G. In Section 3, we will use our main result and some existing upper bounds of the largest signless Laplacian eigenvalue of a graph to obtain some concrete upper bounds for $I E(G)$ of a graph G.

2. The Main Result and its Proofs

The main result of this note is as follows.
Theorem 1. Let G be a connected graph with $n \geq 4$ vertices and m edges. Then

$$
I E \leq \sqrt{q_{1}}+\sqrt{\frac{2 m(n-1)(n-2)}{n}}
$$

with equality if and only if G is a complete graph.
Proof of Theorem 1. Notice that $q_{1} \geq \frac{4 m}{n}$ with equality if and only if G is a regular graph (see Conjecture 5 on page 17 in [3]). From CauchySchwartz inequality and $\sum_{i=1}^{n} q_{i}=2 m$, we have that

$$
\begin{aligned}
I E & =\sum_{i=1}^{n} \sqrt{q_{i}}=\sqrt{q_{1}}+\sqrt{q_{2}}+\sum_{i=3}^{n} \sqrt{q_{i}} \\
& \leq \sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{(n-2) \sum_{i=3}^{n} q_{i}} \\
& =\sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{(n-2)\left(\sum_{i=1}^{n} q_{i}-q_{1}-q_{2}\right)} \\
& =\sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{(n-2)\left(2 m-q_{1}-q_{2}\right)} \\
& \leq \sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{(n-2)\left(2 m-\frac{4 m}{n}-q_{2}\right) .}
\end{aligned}
$$

Now consider the function

$$
f(x)=\sqrt{x}+\sqrt{(n-2)\left(2 m-\frac{4 m}{n}-x\right)} .
$$

It can be verified that $f(x)$ attains its maximum when $x=\frac{2 m(n-2)}{n(n-1)}$. Thus

$$
\begin{aligned}
\sqrt{q_{2}} & +\sqrt{(n-2)\left(2 m-\frac{4 m}{n}-q_{2}\right)} \\
& \leq \sqrt{\frac{2 m(n-2)}{n(n-1)}}+\sqrt{(n-2)\left(2 m-\frac{4 m}{n}-\frac{2 m(n-2)}{n(n-1)}\right)} \\
& =\sqrt{\frac{2 m(n-1)(n-2)}{n}} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
I E & \leq \sqrt{q_{1}}+\sqrt{q_{2}}+\sqrt{(n-2)\left(2 m-\frac{4 m}{n}-q_{2}\right)} \\
& \leq \sqrt{q_{1}}+\sqrt{\frac{2 m(n-1)(n-2)}{n}}
\end{aligned}
$$

If

$$
I E=\sqrt{q_{1}}+\sqrt{\frac{2 m(n-1)(n-2)}{n}},
$$

then, from the above proofs, we have that G is regular, $q_{1}=\frac{4 m}{n}$, $q_{2}=\frac{2 m(n-2)}{n(n-1)}$, and $q_{3}=\cdots=q_{n}$. Thus, from $\sum_{i=1}^{n} q_{i}=2 m$, we have that

$$
q_{3}=\cdots=q_{n}=\frac{2 m-q_{1}-q_{2}}{n-2}=\frac{2 m(n-2)}{n(n-1)}
$$

Therefore G has two distinct signless Laplacian eigenvalues. Recall that the diameter of a connected graph is less than or equal to the number of the distinct signless Laplacian eigenvalues minus one (see Proposition 2.3 on page 508 in [11]). Hence the diameter of G is one. So G is a complete graph.

If G is a complete graph, then $q_{1}=2(n-1), q_{2}=\cdots=q_{n}=(n-2)$ and therefore

$$
I E=\sum_{i=1}^{n} q_{i}=\sqrt{2(n-1)}+(n-1) \sqrt{n-2}=\sqrt{q_{1}}+\sqrt{\frac{2 m(n-1)(n-2)}{n}} .
$$

Therefore the proof of Theorem 1 is completed.

3. Additional Upper Bounds for IE

Theorem 1 implies that every upper bound for q_{1} can yield an upper bound for $I E$. Recall the following upper bounds for the largest signless Laplacian eigenvalues.

Theorem 2. Let G be a connected graph with n vertices and m edges. Then

$$
q_{1} \leq u_{1}:=\frac{\delta-1+\sqrt{(\delta-1)^{2}+8\left(2 m+\Delta^{2}-(n-1) \delta\right)}}{2}
$$

with equality if and only if G is a regular graph.
Theorem 2 above is Theorem 2.1 on page 910 in [2] (also see Theorem 3.1 on page 805 in [10]).

Theorem 3. Let G be a connected graph with n vertices and m edges. Then

$$
q_{1} \leq u_{2}:=\frac{\Delta+\delta-1+\sqrt{(\Delta+\delta-1)^{2}+8(2 m-(n-1) \delta)}}{2}
$$

with equality if and only if G is a regular graph.
Theorem 3 above is Theorem 2.2 on page 910 in [2] (also see the proofs of Theorem 4 on page 137 in [12]).

Theorem 4. Let G be a connected graph with n vertices and m edges. Then

$$
q_{1} \leq u_{3}:=\frac{2 m+\sqrt{m\left(n^{3}-n^{2}-2 m n+4 m\right)}}{n}
$$

with equality if and only if G is a complete graph K_{n}.
Theorem 4 above is Theorem 2.3 on page 910 in [2] (also see [15]).
Theorem 5. Let G be a connected graph with n vertices and m edges.
Then

$$
q_{1} \leq u_{4}:=\frac{\delta-1}{2}+\sqrt{2\left(\Delta^{2}+\delta\right)+(2 m-n \delta)+\frac{(\delta-1)^{2}}{4}}
$$

with equality if and only if G is a regular graph.
Theorem 5 above is Lemma 2.3 on page 2860 in [16].
From Theorems 1, 2, 3, 4, and 5, we have the following corollary.
Corollary 1. Let G be a connected graph of order $n(n \geq 4)$ and m edges. Then, for each i with $1 \leq i \leq 4$,

$$
I E \leq \sqrt{u_{i}}+\sqrt{\frac{2 m(n-1)(n-2)}{n}}
$$

with equality if and only if G is a complete graph K_{n}.

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, MacMillan, London and Elsevier, New York, 1976.
[2] Y. Chen and L. Wang, Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph, Linear Algebra and its Applications 433(5) (2010), 908-913.

DOI: https://doi.org/10.1016/j.laa.2010.04.026
[3] D. Cvetković, Peter Rowlinson and S. Simić, Eigenvalue bounds for the signless Laplacian, Publications de l'Ínstitute Mathématique, Nouvelle série, tome 81(95) (2007), 11-27.

DOI: https://doi.org/10.2298/PIM0795011C
[4] K. Ch. Das and I. Gutman, On incidence energy of graphs, Linear Algebra and its Applications 446 (2014), 329-344.

DOI: https://doi.org/10.1016/j.laa.2013.12.026
[5] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz 103 (1978), 1-22.
[6] I. Gutman, D. Kiani and M. Mirzakhah, On incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 62(3) (2009), 573-580.
[7] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra and its Applications 431(8) (2009), 1223-1233.

DOI: https://doi.org/10.1016/j.laa.2009.04.019
[8] M. Jooyandeh, D. Kiani and M. Mirzakhah, Incidence energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 62(3) (2009), 561-572.
[9] E. Kaya and A. Dilek Maden, A generalization of the incidence energy and the Laplacian-energy-like invariants, MATCH Communications in Mathematical and in Computer Chemistry 80(2) (2018), 467-480.
[10] J. S. Li and Y. L. Pan, Upper bounds for the Laplacian graph eigenvalues, Acta Mathematica Sinica, English Series 20(5) (2004), 803-806.

DOI: https://doi.org/10.1007/s10114-004-0332-4
[11] M. Liu and B. Liu, The signless Laplacian spread, Linear Algebra and its Applications 432(2-3) (2010), 505-514.

DOI: https://doi.org/10.1016/j.laa.2009.08.025
[12] H. Liu, M. Lu and F. Tian, On the Laplacian spectral radius of a graph, Linear Algebra and its Applications 376 (2004), 135-141.

DOI: https://doi.org/10.1016/j.laa.2003.06.007
[13] A. Dilek Maden, New bounds on the incidence energy, Randić energy and Randić Estrada index, MATCH Communications in Mathematical and in Computer Chemistry 74(2) (2015), 367-387.
[14] V. Nikiforov, The energy of graphs and matrices, Journal of Mathematical Analysis and Applications 326(2) (2007), 1472-1475.

DOI: https://doi.org/10.1016/j.jmaa.2006.03.072
[15] T. Wang, The largest eigenvalue on the signless Laplacian of a graph, J. Leshan Teachers College 20 (2005), 14-15.
[16] J. Wang, F. Belardo, Q. Huang and B. Borovićanin, On the two largest Q-eigenvalues of graphs, Discrete Mathematics 310(21) (2010), 2858-2866.

DOI: https://doi.org/10.1016/j.disc.2010.06.030
[17] W. Wang and D. Yang, Bounds for incidence energy of some graphs, Journal of Applied Mathematics (2013), Article ID 757542, 7 pages. DOI: http://dx.doi.org/10.1155/2013/757542
[18] B. Zhou, More upper bounds for the incidence energy, MATCH Communications in Mathematical and in Computer Chemistry 64(1) (2010), 123-128.

