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Abstract 

We presented here an improvement of Hermite-Hadamard inequality as a linear 
combination of its end-points. Improvements of the second order with 
applications in Theory of Means are also given. 

1. Introduction 

A function RR →⊂If :  is said to be convex on an non-empty 
interval I if the inequality 

( ) ( ) ( ),yqfxpfqypxf +≤+   (1.1) 

holds for all Iyx ∈,  and all non-negative .1;, =+ qpqp  
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If the inequality (1.1) reverses, then f is said to be concave on I [1]. 

Let RR →⊂If :  be a convex function on an interval I and 

Iba ∈,  with .ba <  Then 

( ) ( ) ( ) ( ) .2
1

2
bfafdttfab

baf
b

a

+≤
−

≤+ ∫   (1.2) 

This double inequality is well known in the literature as Hermite-
Hadamard (HH) integral inequality for convex functions. See, for 
example, [2] and references therein. 

If f is concave, both inequalities in (1.2) hold in the reversed direction. 

Our task in this paper is to improve the inequality (1.2) in a simple 
manner, i.e., to find some positive constants δγβα ,,,  such that the 

relations 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ),2
1

2
bafbfafdttfab

bafbfaf
b

a

+β++α≤
−

≤+δ++γ ∫  

(1.3) 

hold for any convex f. 

Taking ( ) { },0, R∈= CCttf  it can be easily seen that both 

conditions 

,12;12 =δ+γ=β+α   (1.4) 

are necessary for (1.3) to hold. 

Denote 

( ) ( ) ( ) ( )( ) ( ),2:,;,, bafbfafbaMM f
+δ++γ=δγ=δγ  

and 

( ) ( ) ( ) ( )( ) ( ).2:,;,, bafbfafbaNN f
+β++α=βα=βα  



SOME IMPROVEMENTS OF HERMITE-HADAMARD … 3

Since 

( ) ( ) ( ( ) ( ) ) ( )222, bafbfafN +β++α=βα  

 { ( ) ( ) ( )} ( ) ( ) ,22,2max bfafbafbfaf +=++≤  

and, consequently, 

 ( ) ( ) ( ( ) ( ) ) ( )222, bafbfafM +δ++γ=δγ  

   { ( ) ( ) ( )} ( ),22,2min bafbafbfaf +=++≥  

it follows that the inequality (1.3) represents a refinement of Hermite-
Hadamard inequality (1.2). 

Now, it can be seen that the bound ( )1,0M  is best possible in general 

case. Indeed, let ( ]21,0∈γ  be fixed and the relation 

( ) ( ) ,,;1,0
1

0
dttfM f ∫≤δγ  

holds for arbitrary convex f. 

Then the convex function ( ) γ= 1ttf  gives a counter-example. 

This means that the left-hand side of Hermite-Hadamard inequality 
cannot be improved, in general, by the form of (1.3). 

Nevertheless, such improvement is possible for some special classes 
of convex functions (see Corollary 2.9 below). 

In case of the bound ( ),, βαN  we found the value ( )21,41N  for 
which the right-hand side of (1.3) holds for any integrable convex 
function. Since ( )βα,N  is monotone increasing in ,α  because 

( ) ( ) ( ) ( ) ,022,;, ≥+−+=βα
α

bafbfafbaNd
d

f  

it follows that the right-hand side of (1.3) also holds for all 
[ ].21,41∈α  
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In general, the bound ( )21,41N  is best possible, as the example 

( ) [ ]aatttf ,, −∈=  shows. 

2. Results and Proofs 

We shall begin with the known estimation, cf. ([3], Corollary 3.2). 

Theorem 2.1. Let RR →⊂If :  be a convex function on an interval 

I and ., Iba ∈  Then 

( ) ( ) ( )( ) ( ) ( ).21,41:22
1

4
11 Nbafbfafdttfab

b

a
=+++≤

− ∫   (2.2) 

If f is a concave function on I, then the inequality is reversed. 

Proof. We shall derive the proof by Hermite-Hadamard inequality 
itself. Indeed, applying twice the right part of this inequality, we get 

( ) ( ( ) ( )),22
12 2 bafafdttfab

ba

a

++≤
− ∫

+

 

and 

( ) ( ( ) ( )).22
12

2

bfbafdttfab
b

ba
++≤

− ∫ +
 

Summing, the result appears. Therefore, HH inequality has the self-
improving property. 

For the second part, note that concavity of f implies convexity of – f 
on I. Hence, applying (2.2) we get the result.   

For the sake of further refinements, we shall consider in the sequel 

functions from the class ( )( ) ,, N∈mIC m  i.e., functions which are 

continuously differentiable up to m-th order on an interval .R⊂I  

We give firstly a sharp improvement of Theorem 2.1. 
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Theorem 2.3. Let ( )( )ICf 2∈  be convex on I together with its second 

derivative. Then for each ,,, baIba <∈  

( ) ( ) ( ) ( ) ( ) [ ( ) ( )].96
121,41248

22
bfafabdttfabNbafab b

a
′′+′′−≤

−
−≤+′′− ∫  

If f is convex and f ′′  concave on I, then 

( ) [ ( ) ( )] ( ) ( ) ( ) ( ).248
121,4196

22 bafabdttfabNbfafab b

a

+′′−≤
−

−≤′′+′′− ∫  

Proof. We need the following two assertions. 

Lemma 2.4 ([4]). If h is convex on [ ]baI ,=  and, for ,, Iyx ∈  

,bayx +=+  then 

( ) ( ) ( ) ( ) ( ).22 bhahyhxhbah +≤+≤+  

Remark 2.5. Note that this result is a pre-HH inequality, i.e., HH 
inequality is its direct consequence. Indeed, let pbqayqbpax +=+= ,  

for .1,0, =+≥ qpqp  Then Iyx ∈,  and .bayx +=+  Hence, 

( ) ( ) ( ) ( ) ( ).22 bhahpbqahqbpahbah +≤+++≤+  

Integrating this expression over [ ]1,0∈p  we obtain the HH inequality. 

Lemma 2.6. Let ( )( )ICf 2∈  and .,, baIba <∈  Then the following 

identity holds: 

( ) ( ) ( ) ( ) [ ( ) ( )] ,116
121,41

1

0

2
dtyfxfttabdttfabN

b

a
′′+′′−−=

−
− ∫∫  

with ( ) ( ).212:,212: tatbytbtax −+=−+=  

It is not difficult to prove this identity by double partial integration of 
its right-hand side. 
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Since bayx +=+  and f ′′  is convex/concave, applying Lemma 2.4 

the proof readily follows.   

Another improvement of HH inequality is given in the next 

Theorem 2.7. Let ( )( )ICf 4∈  and .,, baIba <∈  If f ′′  is convex on 

I, then 

( ) ( ),32,611 Ndttfab
b

a
≤

− ∫  

and the coefficients 32,61  are best possible for this class of functions. If 

f ′′  is concave on I, then the reversed inequality takes place. 

Proof. Note that the coefficients 61  and 32  are involved in well-

known Simpson’s rule which is of importance in numerical integration. It 
says that 

Lemma 2.8 ([5]). For an integrable f, we have 

( ) ( ) ( )( ) ( ),,90
143

1
31

45
321

3

1
xxfhfffhdttf

x

x
<ξ<ξ−++=∫  

where ( )ii xff =  and .: 2312 xxxxh −=−=  

Now, taking ( ) ,,2, 321 bxbaxax =+==  we get ( ) .2abh −=  

Also, convexity/concavity of f ′′  on I implies that ( )( ) 04 ξf  and the proof 

follows.   

Combining this theorem with the results of Theorem 2.1, we get 

Corollary 2.9. Let ( )( ).4 ICf ∈  If f is convex and f ′′  concave 

functions on I, then 

( ) ( ) ( ).21,41132,61 NdttfabN
b

a
≤

−
≤ ∫  
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Analogously, let f be concave and f ′′  a convex function on I, then 

( ) ( ) ( ).32,61121,41 NdttfabN
b

a
≤

−
≤ ∫  

Those formulae gives a proper answer, regarding this class of functions, to 
the problem posed in Introduction. 

Further refinement of the assertion from Theorem 2.7 is possible. 

Theorem 2.10. For ( )( ),4 ICf ∈  let f ′′  be convex on I. Then 

( ) ( )[ ] ( ) ( )dttfab
bafbfaf

b

a∫−
−+++≤ 1

23
2

6
10  

( ) [ ( ) ( ) ( )].22324
2 bafbfafab +′′−′′+′′−≤  

If f ′′  concave on I, then 

( ) [ ( ) ( ) ( )]246
110 bafbfafdttfab

b

a

+++−
−

≤ ∫  

( ) [ ( ) ( ( ) ( ))].22324
2

bfafbafab ′′+′′−+′′−≤  

The above theorem sharply refines Simpson’s rule for this class of 
functions. 

Proof. The left part is proved in Theorem 2.7. For the right part we 
shall use an integral identity. 

Lemma 2.11. 

( ) ( ) ( ) ( ) [ ( ) ( )] ,3248
132,61

1

0

2
dtyfxfttabdttfabN

b

a
′′+′′−−=

−
− ∫∫  

where x and y are the same as in Lemma 2.6. 

Writing, 

( ) [ ] ( ) [ ] ( ) [ ] ,233232
1

32

32

0

1

0
dtttdtttdttt ⋅−−⋅−=⋅− ∫∫∫  
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and applying Lemma 2.4 to each integral separately, the result appears 
since 

( ) ( ) .27
42332

1

32

32

0
=−=− ∫∫ dtttdttt  

 

3. Applications in Means Theory 

A mean is a map ,: +++ →× RRRM  with a property 

{ } ( ) { },,max,,min babaMba ≤≤  

for each ., +∈ Rba  

Hence M is necessary reflexive, ( ) ., aaaM =  

Most known ordered family of means is the following family ∆  of 
elementary means: 

,: SAILGH ≤≤≤≤≤∆  

where 

( ) ( ) ( ) ( ) ;loglog:,;:,;112:, 1
ab

abbaLLabbaGGbabaHH
−
−====+== −  

( ) ( ) ( ) ( ) ( ) ,:,;2:,;1:, 1 ba
b

ba
a

babaSSbabaAAabebaII abab ++==+==== −  

are the harmonic, geometric, logarithmic, identric, arithmetic, and Gini 
mean, respectively. 

Generalized arithmetic mean αA  is defined as 

( ) .0,2:,

0

1









≠α

==








 +
==

ααα

αα

abGA

ba
baAA  
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Power-difference mean αK  is defined as 

( ) ( ) ( )

( ) ( )













=

=

−≠α
−

−
+α
α

==

−

αα

+α+α

αα

.,,

;,,

;1,0,1

:,

1

0

11

baL
abbaK

baLbaK
ba
ba

baKK  

It is well known that both means are monotone increasing with α  
and, evidently, 

.,,,, 121211 AKGKHKAAHA ===== −−−  

As an illustration of our results, we shall give firstly some sharp 
approximations of logarithmic and identric means. 

Theorem 3.1. The inequality ALG ≤≤  can be improved to 

( ) ( ) ( ) ( ).23
1

81
223

1 2 GALGAL
GAGA +≤≤+−−+  

Similarly, an approximation of L1  in terms of the arithmetic and 

harmonic means is given by 

( ) ( ) ( ).34
6

111
2
1

6 22 AHH
HAA

LHAA
HA −−≤−+≤−  

Proof. Applying Theorem 2.10 with ,tef =  we obtain 

( ) yx
eeeee

yx
yx

yx

−
−−++≤

+
2

3
2

6
10  

( ) ( ).2324
2

2 yx
eeeyx yx

+

−+−≤  

Since x and y are arbitrary real numbers, putting ,log,log aybx ==  we 

get 
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 ( ) ( ) ( )GAabLGA −−≤−+≤ 162
loglog23

10
2

 

( ) ( ) ( ) ( ) ( ),81
2loglog

162
4 2222 GAL

GAGAGAab
ab +−=+−

−
−=  

and the proof is done. 

For the second part, applying Theorem 2.3 with ,2,1 3tftf =′′=  

we get 

( ) ( ) ( ) ( ).11
48

1
2
111

4
11

24 33

2

3

2

ba
ab

LAbaA
ab +−≤−++≤−  

Now, the identities ( ) ( ) 22 ,4,211 GAHHAAabHba =−=−=+  

yields the proof.  

Some interesting inequalities for the identric mean follows. 

Theorem 3.2. For arbitrary positive a, b, we have 

( ( ) ( ));21
162exp

2
31323132

HAH
HAGAIGA +−≤≤  

( ( ) ) .81
4exp 3134

2
3134 −− ≤≤−− SAIAH

HASA  

Proof. Applying Theorem 2.10 with f = – log t, we obtain the proof. 

For the second part we need the next, 

Lemma 3.3. For ,, +∈ Rba  we have 

( ) ( ) ( ( ) ( )( )
( ) ( ) )baHbaA

baHbaAbaSbaA ,,
,,

81
4exp,,

2
3234 −

−  

( ) ( ) ( ).,,, 323422 baSbaAbaI ≤≤  

Indeed, for ,log ttf =  we get 

( ) ( ( )) ( ).,log4
loglog

4
11 22

2222
baIbabaab

aabbdttfab
b

a

+=+−
−
−=

− ∫  
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Since ,1 tf =′′  Theorem 2.10 yields 

( ) ( ) ( )Aba
abAAbbaa 211

324log3
2loglog6

1 2
−+−−++  

( ) ( ) ,log3
2loglog6

1,log4
22 AAbbaabaIba ++≤+≤  

and the proof follows by dividing the last expression with .2Aba =+  

Now, combining this assertion with the identity ( ) ( ) ( ),,,, 22 baSbaIbaI =  

we obtain the desired inequality.  

Finally, we give bounds of power-difference means in terms of the 
generalized arithmetic mean. 

Theorem 3.4. For +∈ Rba,  and ,1≥α  we have 

( ) ( )( ) ( ) ( ).,,,,2
1 baAbaKbaAbaA ααα ≤≤+   (3.5) 

For ,1<α  the inequality (3.5) is reversed. 

Proof. Let ( ) .0,1 ≠α= α
α ttg  Since αg  is concave for ,1≥α  

Theorem 2.1 combined with HH inequality gives 

( )αα
α

++




 + 11

1

4
1

22
1 yxyx  

.21
11111 αα+α+





 +≤

−
−

+α
α≤ yx

yx
yx  

Now, simple change of variables αα == byax ,  yields the result. 

For the second part, note that αg  is convex for 1<α  and repeat the 

procedure. 

 

The above inequality is refined by the following: 
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Theorem 3.6. We have, 

( ) ( ) ( );1,2131,,23
1

U∞−∈α+≤≤ ααα AAKA  

( ) [ );,1,23
1 ∞∈α≤≤+ ααα AKAA  

( ) ( ) [ ].21,31,2
1

3
1 ∈α+≤≤+ ααα AAKAA  

Proof. Observe that α′′g  is convex for ( ) ( )1,2131, U−∞∈α  and 

concave for ( ) ( ).,121,31 ∞∈α U  Hence, applying Theorem 2.7 and 

Corollary 2.9 together with HH inequality, we obtain the result. 

 

An inequality for the reciprocals follows. 

Theorem 3.7. For ,2−≥β  we have 

.11
2
111

11 







+≤≤

+ββ+β AHKA  

For ,2−<β  the inequality is reversed. 

Proof. This is a consequence of Theorem 3.4. Indeed, putting there 
1−β−=α  and using identities 

,,,
1 H

abAA
abAK

abK ===
+β

α
β

α  

the proof appears. 

 

Further improvements of this type by Theorem 3.6 are possible but it 
is left to the readers. 
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4. Addendum 

Theorems proved above are the source of a plenty of interesting 
inequalities from Classical Analysis. As an illustration we shall give here 
a couple of Cusa-type inequalities. 

Theorem 4.1. The inequality 

,3
2cos3

1sin
2
1cos2

1 +≤≤+ xx
xx  

holds for .2π≤x  

Also, 

,3
2cosh3

1sinh
4
3cosh4

1 +≤≤+ xx
xx  

holds for ( ) .23 23≤x  

Proof. For the first part one should apply Corollary 2.9 to the 
function ( ) ttf cos−=  on a symmetric interval [ ] [ ].2,2, ππ−⊂−∈ xxt  

Similarly for the second part, one should apply Theorem 2.10 with 

( ) .tetf =  
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