Research and Communications in Mathematics and Mathematical Sciences Vol. 10, Issue 1, 2018, Pages 13-23 ISSN 2319-6939 Published Online on February 06, 2018 © 2018 Jyoti Academic Press http://jyotiacademicpress.org

GLOBAL PROPERTIES OF THE SYMMETRIZED S-DIVERGENCE

SLAVKO SIMIĆ

Mathematical Institute SANU Kneza Mihaila 36 11000 Belgrade Serbia e-mail: ssimic@turing.mi.sanu.ac.rs

Abstract

In this paper, we give a study of the symmetrized divergences $U_s(p,q) = K_s(p||q) + K_s(q||p)$ and $V_s(p,q) = K_s(p||q)K_s(q||p)$, where K_s is the relative divergence of type $s, s \in \mathbb{R}$. Some basic properties as symmetry, monotonicity, and log-convexity are established. An important result from the Convexity Theory is also proved.

1. Introduction

Let

$$\Omega^+ = \{ p = \{ p_i \} \mid p_i > 0, \sum p_i = 1 \},$$

be the set of finite discrete probability distributions.

²⁰¹⁰ Mathematics Subject Classification: 60E15.

Keywords and phrases: relative divergence of type *s*, monotonicity, log-convexity. Received December 23, 2017

One of the most general probability measures which is of importance in Information Theory is the famous Csiszár's f-divergence $C_f(p||q)$ [1], defined by

Definition 1. For a convex function $f : (0, \infty) \to \mathbb{R}$, the *f*-divergence measure is given by

$$C_f(p\|q) \coloneqq \sum q_i f(p_i / q_i),$$

where $p, q \in \Omega^+$.

Some important information measures are just particular cases of the Csiszár's *f*-divergence.

For example,

(a) taking $f(x) = x^{\alpha}$, $\alpha > 1$, we obtain the α -order divergence defined by

$$I_{\alpha}(p\|q) \coloneqq \sum p_i^{\alpha} q_i^{1-\alpha}.$$

Remark. The above quantity is an argument in well-known theoretical divergence measures such as Renyi α -order divergence $I_{\alpha}^{R}(p||q)$ or Tsallis divergence $I_{\alpha}^{T}(p||q)$, defined as

$$I_{\alpha}^{R}(p\|q) \coloneqq \frac{1}{\alpha - 1} \log I_{\alpha}(p\|q); \quad I_{\alpha}^{T}(p\|q) \coloneqq \frac{1}{\alpha - 1} (I_{\alpha}(p\|q) - 1).$$

(b) for $f(x) = x \log x$, we obtain the Kullback-Leibler divergence ([4]) defined by

$$K(p\|q) \coloneqq \sum p_i \log(p_i / q_i);$$

(c) for $f(x) = (\sqrt{x} - 1)^2$, we obtain the Hellinger distance

$$H^{2}(p, q) \coloneqq \sum (\sqrt{p}_{i} - \sqrt{q}_{i})^{2};$$

14

(d) if we choose $f(x) = (x - 1)^2$, then we get the χ^2 -distance

$$\chi^2(p, q) \coloneqq \sum (p_i - q_i)^2 / q_i.$$

The generalized measure $K_s(p||q)$, known as the relative divergence of type s [8], or simply s-divergence, is defined by

$$K_{s}(p \| q) \coloneqq \begin{cases} \left(\sum p_{i}^{s} q_{i}^{1-s} - 1\right) / s(s-1), & s \in \mathbb{R} / \{0, 1\}; \\ K(q \| p), & s = 0; \\ K(p \| q), & s = 1. \end{cases}$$

It include the Hellinger and χ^2 distances as particular cases.

Indeed,

$$\begin{split} K_{1/2}(p\|q) &= 4(1 - \sum \sqrt{p_i q_i}) = 2\sum \left(p_i + q_i - 2\sqrt{p_i q_i}\right) = 2H^2(p, q);\\ K_2(p\|q) &= \frac{1}{2}\left(\sum \frac{p_i^2}{q_i} - 1\right) = \frac{1}{2}\sum \frac{\left(p_i - q_i\right)^2}{q_i} = \frac{1}{2}\chi^2(p, q). \end{split}$$

The *s*-divergence represents an extension of Tsallis divergence to the real line and accordingly is of importance in Information Theory. Main properties of this measure are given in [8].

Theorem A. For fixed $p, q \in \Omega^+$, $p \neq q$, the s-divergence is a positive, continuous and convex function in $s \in \mathbb{R}$.

We shall use in this article a stronger property.

Theorem B. For fixed $p, q \in \Omega^+$, $p \neq q$, the s-divergence is a logconvex function in $s \in \mathbb{R}$.

Proof. This is a corollary of an assertion proved in [6]. It says that for arbitrary positive sequence $\{x_i\}$ and associated weight sequence $q \in Q$ (see Appendix), the quantity λ_s defined by

$$\lambda_s := \frac{\sum q_i x_i^s - (\sum q_i x_i)^s}{s(s-1)}$$

is logarithmically convex in $s \in \mathbb{R}$.

Putting there $x_i = p_i / q_i$, we obtain that $\lambda_s = K_s(p||q)$ is log-convex in $s \in \mathbb{R}$. Hence, for any real *s*, *t*, we have that

$$K_{s}(p||q)K_{t}(p||q) \ge K_{\frac{s+t}{2}}^{2}(p||q).$$

Among all mentioned measures, only Hellinger distance has a symmetry property $H^2 = H^2(p, q) = H^2(q, p)$. Our aim in this paper is to investigate some global properties of the symmetrized measures $U_s = U_s(p,q) = U_s(q,p) \coloneqq K_s(p||q) + K_s(q||p)$ and $V_s = V_s(p,q) = V_s(q,p)$ $\coloneqq K_s(p||q)K_s(q||p)$. Since Kullback and Leibler themselves in their fundamental paper [4] (see also [3]) worked with the symmetrized variant $J(p,q) \coloneqq K(p||q) + K(q||p) = \sum (p_i - q_i) \log(p_i/q_i)$, our results can be regarded as a continuation of their ideas.

2. Results and Proofs

We shall give firstly some properties of the symmetrized divergence $V_s = K_s(p||q)K_s(q||p).$

Proposition 2.1. (1) For arbitrary, but fixed probability distributions $p, q \in \Omega^+, p \neq q$, the divergence V_s is a positive and continuous function in $s \in \mathbb{R}$.

(2) V_s is a log-convex (hence convex) function in $s \in \mathbb{R}$.

(3) The graph of V_s is symmetric with respect to the line s = 1/2, bounded from below with the universal constant $4H^4$ and unbounded from above.

(4) V_s is monotone decreasing for $s \in (-\infty, 1/2)$ and monotone increasing for $s \in (1/2, +\infty)$.

(5) The inequality

$$V_s^{t-r} \le V_r^{t-s} V_t^{s-r}$$

holds for any r < s < t.

Proof. The part (1) is a simple consequence of Theorem A above.

The proof of part (2) follows by using Theorem B. Namely, for any $s, t \in \mathbb{R}$, we have

$$\begin{split} V_{s}V_{t} &= \left[K_{s}(p\|q)K_{s}(q\|p)\right]\left[K_{t}(p\|q)K_{t}(q\|p)\right] \\ &= \left[K_{s}(p\|q)K_{t}(p\|q)\right]\left[K_{s}(q\|p)K_{t}(q\|p)\right] \\ &\geq \left[K_{\frac{s+t}{2}}(p\|q)\right]^{2}\left[K_{\frac{s+t}{2}}(q\|p)\right]^{2} = \left[V_{\frac{s+t}{2}}\right]^{2}. \end{split}$$

(3) Note that

$$K_s(p||q) = K_{1-s}(q||p); K_s(q||p) = K_{1-s}(p||q).$$

Hence $V_s = V_{1-s}$, that is, $V_{1/2-s} = V_{1/2+s}$, $s \in \mathbb{R}$.

Also,

$$V_s = K_s(p||q)K_s(q||p) = K_s(p||q)K_{1-s}(p||q) \ge K_{1/2}^2(p||q) = 4H^4.$$

(4) We shall prove only the "increasing" assertion. The other part follows from graph symmetry.

Therefore, for any 1/2 < x < y, we have that

$$1 - y < 1 - x < x < y.$$

Applying Proposition X (see Appendix) with a = 1 - y, b = y, s = 1 - x, t = x; $f(s) := \log K_s(p||q)$, we get

$$\log K_{x}(p\|q) + \log K_{1-x}(p\|q) \le \log K_{y}(p\|q) + \log K_{1-y}(p\|q),$$

that is $V_x \leq V_y$ for x < y.

(5) From the parts (1) and (2), it follows that log V_s is a continuous and convex function on \mathbb{R} . Therefore, we can apply the following alternative form [2]:

Lemma 2.2. If $\phi(s)$ is continuous and convex for all s of an open interval I for which $s_1 < s_2 < s_3$, then

$$\phi(s_1)(s_3 - s_2) + \phi(s_2)(s_1 - s_3) + \phi(s_3)(s_2 - s_1) \ge 0.$$

Hence, for r < s < t, we get

$$(t-r)\log V_s \le (t-s)\log V_r + (s-r)\log V_t,$$

which is equivalent to the assertion of part (5).

Properties of the symmetrized measure $U_s := K_s(p||q) + K_s(q||p)$ are very similar; therefore some analogous proofs will be omitted.

Proposition 2.3. (1) The divergence U_s is a positive and continuous function in $s \in \mathbb{R}$.

(2) U_s is a log-convex function in $s \in \mathbb{R}$.

(3) The graph of U_s is symmetric with respect to the line s = 1/2, bounded from below with $4H^2$ and unbounded from above.

(4) U_s is monotone decreasing for $s \in (-\infty, 1/2)$ and monotone increasing for $s \in (1/2, +\infty)$.

(5) The inequality

$$U_s^{t-r} \leq U_r^{t-s} U_t^{s-r}$$

holds for any r < s < t.

Proof. (1) Omitted.

(2) Since both ${\it K}_{\it s}$ and ${\it V}_{\it s}$ are log-convex functions, we get

$$\begin{split} &U_{s}U_{t} - U_{\frac{s+t}{2}}^{2} \\ &= \left[K_{s}(p\|q) + K_{s}(q\|p)\right] \left[K_{t}(p\|q) + K_{t}(q\|p)\right] - \left[K_{\frac{s+t}{2}}(p\|q) + K_{\frac{s+t}{2}}(q\|p)\right]^{2} \\ &= \left[K_{s}(p\|q)K_{t}(p\|q) - K_{\frac{s+t}{2}}(p\|q)^{2}\right] + \left[K_{s}(q\|p)K_{t}(q\|p) - K_{\frac{s+t}{2}}(q\|p)^{2}\right] \\ &+ \left[K_{s}(p\|q)K_{t}(q\|p) + K_{s}(q\|p)K_{t}(p\|q) - 2K_{\frac{s+t}{2}}(p\|q)K_{\frac{s+t}{2}}(q\|p)\right] \\ &\geq \left[K_{s}(p\|q)K_{t}(p\|q) - K_{\frac{s+t}{2}}(p\|q)^{2}\right] + \left[K_{s}(q\|p)K_{t}(q\|p) - K_{\frac{s+t}{2}}(q\|p)^{2}\right] \\ &+ 2\left[\sqrt{V_{s}V_{t}} - V_{\frac{s+t}{2}}\right] \geq 0. \end{split}$$

(3) The graph symmetry follows from the fact that $U_s = U_{1-s}$, $s \in \mathbb{R}$. We also have, due to arithmetic-geometric inequality, that

$$U_s \ge 2\sqrt{V_s} \ge 4H^2.$$

Finally, since $p \neq q$ yields max $\{p_i \mid q_i\} = p_* \mid q_* > 1$, we get

$$K_s(p\|q) > \frac{q_*(p_* / q_*)^s - 1}{s(s-1)} \to \infty(s \to \infty).$$

It follows that both $U_{\boldsymbol{s}}$ and $V_{\boldsymbol{s}}$ are unbounded from above.

(4) Omitted.

(5) The proof is obtained by another application of Lemma 2.2 with $\phi(s) = \log U_s$.

Remark 2.4. We worked here with the class Ω^+ for the sake of simplicity. Obviously that all results hold, after suitable adjustments, for arbitrary probability distributions and in the continuous case as well.

19

Remark 2.5. It is not difficult to see that the same properties are valid for normalized divergences $U_s^* = \frac{1}{2}(K_s(p||q) + K_s(q||p))$ and $V_s^* = \sqrt{K_s(p||q)K_s(q||p)}$, with

$$2H^2 \le V_s^* \le U_s^*.$$

References

- I. Csiszár, Information-type measures of difference of probability functions and indirect observations, Studia Sci. Math. Hungar 2 (1967), 299-318.
- [2] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1978.
- [3] F. R. S. Harold Jeffreys, An invariant form for the prior probability in estimation problems, Proc. Roy. Soc. Lon. Ser. A 186(1007) (1946), 453-461.

DOI: https://doi.org/10.1098/rspa.1946.0056

- [4] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Stat. 22(1) (1951), 79-86.
- [5] S. Kullback, Information Theory and Statistics, John Willey & Sons, New York, 1959.
- [6] S. Simic, On logarithmic convexity for differences of power means, J. Inequal. Appl., Article ID 37359 (2007), p. 8.

DOI: https://doi.org/10.1155/2007/37359

[7] S. Simic, On a new moment inequality, Statist. Probab. Lett. 78(16) (2008), 2671-2678.

DOI: https://doi.org/10.1016/j.spl.2008.03.007

[8] I. J. Taneja, New developments in generalized information measures, Advances in Imaging and Electron Physics 91 (1995), 37-135.

DOI: https://doi.org/10.1016/S1076-5670(08)70106-X

[9] I. Vajda, Theory of Statistical Inference and Information, Kluwer Academic Press, London, 1989.

3. Appendix

A convexity property

Most general class of convex functions is defined by the inequality

$$\frac{\phi(x) + \phi(y)}{2} \ge \phi(\frac{x+y}{2}). \tag{3.1}$$

A function which satisfies this inequality in a certain closed interval I is called convex in that interval. Geometrically, it means that the midpoint of any chord of the curve $y = \phi(x)$ lies above or on the curve.

Denote now by Q the family of weights, i.e., positive real numbers summing to 1. If ϕ is continuous, then much more can be said, i.e., the inequality

$$p\phi(x) + q\phi(y) \ge \phi(px + qy)$$
 (3.2)

holds for any $p, q \in Q$. Moreover, the equality sign takes place only if x = y or ϕ is linear (cf. [2]).

We shall prove here an interesting property of this class of convex functions.

Proposition X. Let $f(\cdot)$ be a continuous convex function defined on a closed interval [a, b] := I. Denote

$$F(s, t) \coloneqq f(s) + f(t) - 2f(\frac{s+t}{2}).$$

Then

$$\max_{s,t\in I} F(s,t) = F(a,b). \tag{1}$$

Proof. It suffices to prove that the inequality

$$F(s, t) \le F(a, b)$$

holds for a < s < t < b.

In the sequel we need the following assertion (which is of independent interest).

Lemma 3.3. Let $f(\cdot)$ be a continuous convex function on some interval $I \subseteq \mathbb{R}$. If $x_1, x_2, x_3 \in I$ and $x_1 < x_2 < x_3$, then

(i)
$$\frac{f(x_2) - f(x_1)}{2} \le f(\frac{x_2 + x_3}{2}) - f(\frac{x_1 + x_3}{2});$$

(ii)
$$\frac{f(x_3) - f(x_2)}{2} \ge f(\frac{x_1 + x_3}{2}) - f(\frac{x_1 + x_2}{2})$$

Proof. We shall prove the first part of the lemma; the proof of second part goes along the same lines.

Since $x_1 < x_2 < \frac{x_2 + x_3}{2} < x_3$, there exist p, q; 0 < p, q < 1, p + q = 1such that $x_2 = px_1 + q \frac{x_2 + x_3}{2}$.

Hence,

$$\frac{f(x_1) - f(x_2)}{2} + f\left(\frac{x_2 + x_3}{2}\right) \ge \frac{1}{2} \left[f(x_1) - \left(pf(x_1) + qf\left(\frac{x_2 + x_3}{2}\right)\right) \right] + f\left(\frac{x_2 + x_3}{2}\right) \\ = \frac{q}{2} f(x_1) + \frac{2 - q}{2} f\left(\frac{x_2 + x_3}{2}\right) \ge f\left(\frac{q}{2}x_1 + \frac{2 - q}{2}\left(\frac{x_2 + x_3}{2}\right)\right) = f\left(\frac{x_1 + x_3}{2}\right).$$

Now, applying the part (i) with $x_1 = a$, $x_2 = s$, $x_3 = b$ and the part (ii) with $x_1 = s$, $x_2 = t$, $x_3 = b$, we get

$$\frac{f(s)-f(a)}{2} \le f\left(\frac{s+b}{2}\right) - f\left(\frac{a+b}{2}\right);\tag{2}$$

$$\frac{f(b) - f(t)}{2} \ge f(\frac{s+b}{2}) - f(\frac{s+t}{2}), \tag{3}$$

respectively.

Subtracting (2) from (3), the desired inequality follows.

Corollary 3.4. Under the conditions of Proposition X, we have that the double inequality

$$2f(\frac{a+b}{2}) \le f(t) + f(a+b-t) \le f(a) + f(b)$$
(4)

holds for each $t \in I$.

Proof. Since the condition $t \in I$ is equivalent with $a + b - t \in I$, applying Proposition X with s = a + b - t we obtain the right-hand side of (4). The left-hand side inequality is obvious.

Remark 3.5. The relation (4) is a kind of pre-Hermite-Hadamard inequalities. Indeed, integrating both sides of (4) over I, we obtain the famous H-H inequality

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(t)dt \leq \frac{f(a)+f(b)}{2},$$

since $\int_{a}^{b} f(a+b-t)dt = \int_{a}^{b} f(t)dt$.