Research and Communications in Mathematics and Mathematical Sciences Vol. 10, Issue 1, 2018, Pages 1-12 ISSN 2319-6939 Published Online on January 22, 2018 © 2018 Jyoti Academic Press http://jyotiacademicpress.org

SOME CHARACTERIZATION OF LACUNARY UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SEQUENCES

FIKRET ČUNJALO

Department of Mathematics Faculty of Natural Sciences and Mathematics University of Sarajevo Bosnia and Herzegovina e-mail: fcunjalo01@hs-hkb.ba

Abstract

In the [3] is proven that sequence S_{ij} uniformly statistically converges to L if and only if it there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ uniform density zero and subsequence S(x) defined by, $S_{ij}(x) = S_{ij}$ for $(i, j) \in A^c$, converges to L, in the Pringsheim's sense. In this paper, it is proven that analog is valid and for lacunary uniformly statistical convergence. Double sequence S_{ij} lacunary uniformly statistically converges to L if and only if it there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ lacunary uniform density zero and subsequence S(x) defined by, $S_{ij}(x) = S_{ij}$ for $(i, j) \in A^c$, converges to L, in the Pringsheim's sense. The subsequence S(x) lacunary uniformly statistically converges to L if and only if it there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ lacunary uniform density zero and subsequence S(y) defined by, $S_{ij}(y) = S_{ij}(x)$ for $(i, j) \in A^c$, such that $\lim_{i \to \infty} (\lim_{j \to \infty} S_{ij}(y)) = L$.

²⁰¹⁰ Mathematics Subject Classification: Primary: 40B05; Secondary: 40A35, 40G15. Keywords and phrases: multiple sequences, uniform statistical convergence. Communicated by Erdinc Dundar.

Received December 29, 2017; Revised January 15, 2018

1. Introduction

The concept of the statistical convergence of a sequences of real numbers was introduced by Fast [9]. Furthermore, Gökhan et al. [12] introduced the notion of pointwise and uniform statistical convergent of double sequences of real-valued function. Dündar and Atay [4-8] investigated the relation between *I*-convergence of double sequences. Fridy and Orhan [11] have studied lacunary statistical convergence of single sequences. Petterson and Savaş in [13] defined the lacunary statistical analogue for double sequences. Now, we recall that the definitions of concepts of ideal convergence and basic concepts [1, 2, 10]. The sequence S_{ij} of real numbers converges to *L* in the Pringsheim's sense, if for $\forall \varepsilon > 0$, $\exists K > 0$ such that

$$|S_{ij} - L| \leq \varepsilon, \ \forall i, \ j \geq K.$$

We write $\lim_{i, j \to \infty} S_{ij} = L$.

Let $K \subset \mathbb{N} \times \mathbb{N}$. Let K_{nm} be the number of $(i, j) \in K$ such that $i \leq n, j \leq m$. If

$$d_2(K) = \lim_{n, m \to \infty} \frac{K_{nm}}{nm}$$

in the Pringsheim's sense then, we say that *K* has double natural density. Let is sequence S_{ij} of real numbers and $\varepsilon > 0$. Let

$$A(\varepsilon) = \{(i, j) \in \mathbb{N} \times \mathbb{N} : |S_{ij} - L| \ge \varepsilon\}.$$

The sequence $S = S_{ij}$ statistically converges to $L \in \mathbb{R}$ if $d_2(A(\varepsilon)) = 0$ for $\forall \varepsilon > 0$.

We write $st - \lim S_{ij} = L$. Let is set $X \neq \emptyset$. A class *I* of subsets of *X* is said to be an ideal in *X* provided the following statements hold:

- (i) $\emptyset \in I$;
- (ii) $A, B \in I \Rightarrow A \cup B \in I$;
- (iii) $A \in I, B \subset A \Rightarrow B \in I$.

The ideal is called nontrivial if $I \neq \{\emptyset\}$ and $X \in I^c$. A nontrivial ideal I is called admissible if it contains all the singleton sets. A nontrivial ideal I on $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I for each $i \in \mathbb{N}$.

A nonempty family F of subsets of a set X is called a *filter* if

(i) $\emptyset \in F^c$; (ii) $A, B \in F \Rightarrow A \cap B \in F$; (iii) $A \in F, A \subset B \Rightarrow B \in F$.

In this paper, the focus is put on ideal $I_u \subset 2^{\mathbb{N}\times\mathbb{N}}$ defined by: subset A belongs to the I_u if

$$\lim_{p, q \to \infty} \frac{1}{pq} |\{i < p, j < q : (n+i, m+j) \in A\}| = 0$$

uniformly on $n, m \in \mathbb{N}$ in the Pringsheim's sense. That is subset A of the set $\mathbb{N} \times \mathbb{N}$ is uniformly density zero.

The sequence $S = S_{ij}$ uniformly statistically converges to L if for any $\varepsilon > 0$

$$\{(i, j) \in \mathbb{N} \times \mathbb{N} : |S_{ij} - L| \ge \varepsilon\} \in I_u.$$

That is sequence $S = S_{ij}$ uniformly statistically converges to L if $\forall \varepsilon, \varepsilon' > 0, \exists K > 0$ such that

$$\frac{1}{pq}|\{i < p, j < q : |S_{n+i,m+j} - L| \ge \varepsilon\}| < \varepsilon', \forall p, q \ge K, \forall n, m \in \mathbb{N}.$$

We write $U st - \lim S_{ij} = L$.

We denote with *X* a set of all double sequences of 0's and 1's, i.e.,

$$X = \{x = x_{ij} : x_{ij} \in \{0, 1\}, i, j \in \mathbb{N}\}.$$

Let sequence $S = S_{ij}$ and $x \in X$. Then with S(x) we denote a sequence defined following way:

$$S_{ij}(x) = S_{ij}, \text{ for } x_{ij} = 1.$$

The subsequence S(x) of sequence S uniformly statistically converges to L if $\forall \varepsilon, \varepsilon' > 0, \exists K > 0$ such that for $\forall p, q \ge K$ and $\forall n, m \in \mathbb{N}$ provided that $x_{nm} = 1$, we have

$$\frac{|\{i < p, j < q : |S_{n+i,m+j} - L| \ge \varepsilon, x_{n+i,m+j} = 1\}|}{|\{i < p, j < q : x_{n+i,m+j} = 1\}|} \le \varepsilon'.$$

We write $U st - \lim S_{ij}(x) = L$.

By a lacunary sequence we mean an increasing sequence $\Theta = (k_r\,)$ such that

$$k_0 = 0$$
 and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$.

Let

$$I_{1} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \leq k_{1}\},\$$

$$I_{2} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \leq k_{2}\} \setminus I_{1}, ...,\$$

$$I_{r} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i, j \leq k_{r}\} \setminus (I_{r-1}[\bigcup I_{r-2}[\bigcup ...[\bigcup I_{1}]), \text{ for }$$

The sequence S_{ij} lacunary statistically converges to L if $\forall \varepsilon > 0$, we have

 $\forall r \in \mathbb{N}.$

$$\lim_{r \to \infty} \frac{1}{|I_r|} |\{(i, j) \in I_r : |S_{ij} - L| \ge \varepsilon\}| = 0.$$

We write $S_{\Theta} - \lim S_{ij} = L$.

Fridy proved that if $S = S_i$ sequence of real numbers and $\Theta = (k_r)$ lacunary sequence such that

$$1 < \liminf \frac{k_r}{k_{r-1}} \le \limsup \frac{k_r}{k_{r-1}} < \infty.$$

Then, sequence $S = S_i$ statistically convergent if and only if it lacunary statistically convergent.

Let $S = S_{ij}$ double sequence of real numbers and $\Theta = (k_r)$ lacunary sequence of natural numbers.

A sequence $S = S_{ij}$ lacunary uniformly statistically converges to real number L if $\forall \varepsilon, \varepsilon' > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r > r_0$ and $\forall n, m \in \mathbb{N}$, we have

$$\frac{1}{|I_r|}|\{(i, j) \in I_r : |S_{n+i, m+j} - L| \ge \varepsilon\}| \le \varepsilon',$$

Write $U st_{\Theta} - \lim S_{ij} = L$.

The subset A of the set $\mathbb{N} \times \mathbb{N}$ is lacunary uniformly density zero if $\forall \varepsilon > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r > r_0$ and $\forall n, m \in \mathbb{N}$, we have

$$\frac{1}{|I_r|}|\{(i, j) \in I_r : (n+i, m+j) \in A\}| \le \varepsilon.$$

2. New Results

Theorem 2.1. Let is $\Theta = (k_r)$ lacunary sequence and $S = S_{ij}$ double sequence. Then, $U \operatorname{st}_{\Theta} - \lim S_{ij} = L$ if and only if it $\exists A \subset \mathbb{N} \times \mathbb{N}$ lacunary uniformly density zero and $\lim_{i, j \to \infty} S_{ij}(x) = L$, in the Pringsheim's sense, for

$$x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}$$

Proof. Let is $U \operatorname{st}_{\Theta} - \lim S_{ij} = L$. Then there is a sequence of natural numbers $(u_r)_{r=2}^{\infty}$ such that for $\forall l \ge u_r$ and $\forall n, m \in \mathbb{N}$, we have

$$\frac{1}{|I_l|} \left| \left\{ (i, j) \in I_l : |S_{n+i, m+j} - L| \ge \frac{1}{r} \right\} \right| \le \frac{1}{r}.$$

Let

$$A = \bigcup_{r=2}^{\infty} \bigcup_{n,m=1}^{\infty} \left\{ (n+i,m+j) : (i,j) \in \bigcup_{l=u_r}^{u_{r+1}-1} I_l, |S_{n+i,m+j} - L| \ge \frac{1}{r} \right\}.$$

We define $x \in X$ the following way:

$$x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}$$

For $\forall \varepsilon > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall r \ge r_0$ we have $\frac{1}{r} \le \varepsilon$. From the definition of the sequence x, such that for $l \ge u_{r_0}$ and $\forall n, m \in \mathbb{N}$ provided that $x_{n+i,m+j} = 1$, we have

$$|S_{n+i,m+j}(x) - L| = |S_{n+i,m+j} - L| \le \varepsilon.$$

Hence, for $\forall i, j \ge k_{u_m}$ and $\forall i, j \in \mathbb{N}$ provided that $x_{ij} = 1$, we have

$$|S_{ij}(x) - L| \leq \varepsilon.$$

Hence, the subsequence S(x) converges to L, in the Pringsheim's sense. For $\forall l \ge u_{r_0}$ and $\forall n, m \in \mathbb{N}$ valid

$$\frac{1}{|I_l|} |\{(i, j) \in I_l : (n+i, m+j) \in A\}|$$
$$= \frac{1}{|I_l|} \left| \{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \frac{1}{r} \} \right| \le \frac{1}{r} \le \varepsilon$$

Hence,

$$\lim_{l \to \infty} \frac{1}{|I_l|} |\{(i, j) \in I_l : (n+i, m+j) \in A\}| = 0, \text{ uniformly for } \forall n, m \in \mathbb{N}.$$

$$x_{ij} = \begin{cases} 1, & (i, j) \notin A, \\ 0, & (i, j) \in A. \end{cases}$$

For $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that for $\forall n, m \ge N$, we have

$$|S_{nm}(x) - L| \le \varepsilon.$$

For $\forall l \in \mathbb{N}$ such that $k_{l-1} > N$. Then,

$$\begin{split} &\frac{1}{|I_l|} |\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon\}| \\ &= \frac{1}{|I_l|} |\{(i, j) \in I_l : n+i < N \lor m+j < N, |S_{n+i, m+j} - L| \ge \varepsilon\}| \\ &+ \frac{1}{|I_l|} |\{(i, j) \in I_l : n+i, m+j \ge N, |S_{n+i, m+j} - L| \ge \varepsilon\}| \\ &\leq \frac{2N(k_l - k_{l-1})}{k_l^2 - k_{l-1}^2} + \frac{1}{|I_l|} |\{(i, j) \in I_l : n+i, m+j \ge N, (n+i, m+j) \in A\}| \\ &\leq \frac{2N(k_l - k_{l-1})}{k_l^2 - k_{l-1}^2} + \frac{1}{|I_l|} |\{(i, j) \in I_l : (n+i, m+j) \in A\}|. \end{split}$$

Obviously, the first summand converges to zero uniformly on $n, m \in \mathbb{N}$. The second summand converges to zero uniformly on $n, m \in \mathbb{N}$ due to the assumption.

So,
$$U st_{\Theta} - \lim S_{ij} = L$$
.

Definition 2.2. The subsequence S(x) of S lacunary uniformly statistically converges to L if $\forall \varepsilon, \varepsilon > 0, \exists r_0 \in \mathbb{N}$ such that for $\forall l > r_0$ and $\forall n, m \in \mathbb{N}$ provided that $x_{nm} = 1$, we have

$$\frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon, x_{n+i, m+j} = 1\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \le \epsilon.$$

Write $U st_{\Theta} - \lim S_{ij}(x) = L$.

The characterization is true for subsequences.

Corollary 2.3. Let $x \in X$ and $S = S_{ij}$ double sequence and $\Theta = (k_r)$ lacunary sequence, then

 $U \operatorname{st}_{\Theta} - \lim S_{ij}(x) = L$ if and only if it $\exists A \subseteq \{(n, m) : x_{nm} = 1\}$ such that

$$\lim_{l \to \infty} \frac{|\{(i, j) \in I_l : (n+i, m+j) \in A\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} = 0,$$

uniformly for $\forall n, m \in \mathbb{N}$ provided that $x_{nm} = 1$ and for subsequence S(y) of the sequence S valid:

$$\lim_{i\to\infty}(\lim_{j\to\infty}S_{ij}(y))=L,$$

for

$$y_{ij} = \begin{cases} 1, & (i, j) \notin A, x_{ij} = 1, \\ 0, & (i, j) \in A, x_{ij} = 0. \end{cases}$$

Proof. Let $U st_{\Theta} - \lim S_{ij}(x) = L$. Then there is a sequence of natural numbers $(u_r)_{r=2}^{\infty}$ such that for $\forall l > u_r$ and $\forall n, m \in \mathbb{N}$ provided that $x_{nm} = 1$, we have

$$\frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \frac{1}{r}, x_{n+i, m+j} = 1\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \le \frac{1}{r}$$

Let

$$A = \bigcup_{r=2}^{\infty} \bigcup_{n,m=1}^{\infty} \left\{ (n+i, m+j) : (i, j) \in \bigcup_{l=u_r}^{u_{r+1}-1} I_l, |S_{n+i,m+j} - L| \ge \frac{1}{r}, x_{n+i,m+j} = 1 \right\}.$$

For $\forall \varepsilon > 0, \ \exists r_0 \in \mathbb{N}$ such that for $\forall r > r_0$ we have $\frac{1}{r} \leq \varepsilon$.

Let $u_r \leq l < u_{r+1}.$ Then, for $\forall l > u_{r_0}$ and $\forall n, \, m \in \mathbb{N}\,$ provided that $x_{nm}\,=\, 1, \,\, {\rm we \,\, have}\,$

$$\begin{aligned} & \frac{|\{(i, j) \in I_l : (n+i, m+j) \in A\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \\ & = \frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \frac{1}{r}, x_{n+i, m+j} = 1\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \le \frac{1}{r} \le \varepsilon. \end{aligned}$$

Let $l > u_{n_0}$, $(n + i, m + j) \in A^c$, $(i, j) \in I_l$, $x_{n+i, m+j} = 1$, then

$$|S_{n+i,m+j} - L| \leq \frac{1}{r} < \varepsilon.$$

Hence, for $n > k_{u_{n_0}} \lor m > k_{u_{n_0}+1}$ provided that $x_{nm} = 1$, we have

$$|S_{nm} - L| \le \varepsilon.$$

Hence,

$$\lim_{i\to\infty}(\lim_{j\to\infty}S_{ij}(y))=L,$$

for

$$y_{ij} = \begin{cases} 1, & (i, j) \notin A, x_{ij} = 1, \\ 0, & (i, j) \in A, x_{ij} = 0. \end{cases}$$

Let $\exists A \subseteq \{(n, m) : x_{nm} = 1\}$ such that

$$\lim_{l \to \infty} \frac{|\{(i, j) \in I_l : (n+i, m+j) \in A\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} = 0,$$

uniformly $\forall n, m \in \mathbb{N}$ provided that $x_{nm} = 1$ and for subsequence S(y) of the sequence S valid:

$$\lim_{i\to\infty}(\lim_{j\to\infty}S_{ij}(y))=L,$$

for

$$y_{ij} = \begin{cases} 1, & (i, j) \notin A, x_{ij} = 1, \\ \\ 0, & (i, j) \in A, x_{ij} = 0. \end{cases}$$

Then, $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that for $\forall n \ge N \lor \forall m \ge N$ provided that $x_{nm} = 1$ and $(n, m) \in A^c$, we have

$$|S_{nm} - L| < \varepsilon.$$

Then,

$$\begin{aligned} \frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon, \ x_{n+i, m+j} = 1\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \\ &= \frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon, \ x_{n+i, m+j} = 1, \ n+i, \ m+j \le N\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \\ &+ \frac{|\{(i, j) \in I_l : |S_{n+i, m+j} - L| \ge \varepsilon, \ x_{n+i, m+j} = 1, \ n+i > N \lor m+i > N\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} \\ &\leq \frac{N^2}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|} + \frac{|\{(i, j) \in I_l : (n+i, m+j) \in A\}|}{|\{(i, j) \in I_l : x_{n+i, m+j} = 1\}|}.\end{aligned}$$

Obviously, the first summand converges to zero uniformly on $n, m \in \mathbb{N}$. The second summand converges to zero uniformly on $n, m \in \mathbb{N}$ due to the assumption. So, $U \operatorname{st}_{\Theta} - \lim S_{ij}(x) = L$.

References

 B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl. 309(1) (2005), 70-90.

DOI: https://doi.org/10.1016/j.jmaa.2004.12.020

[2] M. Balcerzak, K. Dems and A. Komisarski, Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328(1) (2007), 715-729.

DOI: https://doi.org/10.1016/j.jmaa.2006.05.040

- [3] F. Čunjalo and F. Destović, Subsequence characterization of uniform statistical convergence of double sequences, Research and Communications in Mathematics and Mathematical Sciences 9(1) (2017), 37-50.
- [4] E. Dündar, On rough I₂-convergence of double sequences, Numerical Functional Analysis and Optimization 37(4) (2016), 480-491.

DOI: https://doi.org/10.1080/01630563.2015.1136326

- [5] E. Dundar and B. Atay, I_2 -convergence of double sequences of function, Electronic Journal of Mathematical Analysis and Application 3(1) (2015), 111-121.
- [6] E. Dündar and B. Altay, I₂-convergence and I₂-Cauchy double sequences, Acta Mathematica Scientia 34(2) (2014), 343-353.

DOI: https://doi.org/10.1016/S0252-9602(14)60009-6

 [7] E. Dündar and B. Altay, I₂-Uniform convergence of double sequences of functions, Filomat 30(5) (2016), 1273-1281.

DOI: https://doi.org/10.2298/FIL1605273D

- [8] E. Dündar and B. Atay, On some properties of I₂-convergence and I₂-Cauchy of double sequences, Gen. Math. Notes 7(1) (2011), 1-12.
- [9] H. Fast, Sur la convergenc statistique, Colloq. Math. 2(3-4) (1951), 241-244.
- [10] J. A. Fridy, On statistical convergence, Analysis 5(4) (1985), 301-314.

DOI: https://doi.org/10.1524/anly.1985.5.4.301

- [11] J. A. Fridy and J. A. Orhan, Lacunary statistical convergence, Pacific J. Math. 160(1) (1993), 43-51.
- [12] A. Gökhan, M. Güngör and M. Et, Statistical convergence of double sequences of real-valued functions, Int. Math. Forum 2(5-8) (2007), 365-374.

DOI: http://dx.doi.org/10.12988/imf.2007.07033

[13] R. F. Petterson and E. Savaş, Lacunary statistical convergence of double sequences, Math. Comm. 10(1) (2005), 55-61.

12