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Abstract 

A particularly important problem which awaits a full mathematical theory, 
concerns the dynamical behaviour of complex systems comprising multiple, 
interacting, heterogeneous components. There are many technological examples 
of such systems, including the so-called Internet-of-Things featuring collections 
of heterogeneous, autonomous machines and algorithms. Nature also arguably 
features examples in living systems, perhaps even the brain itself. The question 
therefore arises: How can such systems be represented mathematically and 
what features of their behaviour can be calculated? Here we discuss such a 
mathematical theory for representing the collective behaviour of a generic 
multi-agent population. A key feature of this approach is to account for the 
strong correlations that develop between agents’ actions – and in particular, 
their strategies. 

1. Introduction 

It is now well-known that much of the natural, informational, 
sociological, and economic world features a complex system in one form of 
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another [1-8]. Though there is no unique definition of a complex system, 
the qualification for classification can be thought of in terms of common 
features which distinguish it: specifically, many interacting components, 
non-stationarity, feedback and adaptation at the macroscopic and/or 
microscopic level, evolution, coupling with the environment, and 
dynamics that depend upon the particular realization of the system. Most 
importantly, complex systems have the ability to produce large 
macroscopic changes which appear spontaneously but have long-lasting 
consequences [9, 10]. 

John Casti has pointed out (see p. 213 of [4]) that ‘.... a decent 
mathematical formalism to describe and analyze the [so-called] El Farol 
Problem would go a long way toward the creation of a viable theory of 
complex, adaptive systems’. This El Farol Problem was originally 
proposed by Brian Arthur [11] to elucidate the key features of a complex 
system in a minimal yet generic everyday setting. The El Farol Problem 
features a collection of decision-making potential bar-goers, who 
repeatedly try to predict whether they should attend a potentially 
overcrowded bar on a given night each week. Though they have no 
information about the others predictions, they are each aware of the 
same string of previous outcomes (‘overcrowded’ or ‘undercrowded’) 
covering some limited number of previous occasions. As a result, no 
‘typical’ agent exists, since all such typical agents would then make the 
same decision, hence rendering their common prediction scheme useless 
[12]. A simplified binary form of the El Farol Problem was introduced by 
Challet and Zhang [13] called the Minority Game (MG) [14-42]. The 
Minority Game features a population of N heterogeneous agents with 
limited capabilities and information, who repeatedly compete to be in the 
minority group [43, 44]. 

Here we give a presentation of a mathematical theory for the 
emergent phenomena observed in such a system. Specifically, we present 
a mathematical theory for the Minority Game [26, 27] which can explain 
the emergent ability of the system to exhibit large changes which are 
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well beyond the fluctuations expected in a null model (i.e., coin-toss) 
system. When tossing N coins, it is well-known that it becomes 
practically impossible that nearly all show ‘Heads’ as N becomes large 
(i.e., vanishingly small probability). However instead of the usual 

resulting N  behaviour from such a null model coin-toss (i.e., random) 
system, we show in this paper that the fluctuations can be of order N and 
hence of order of the size of the system itself. This emergent property will 
obviously play a very important role in determining what could go wrong 
in a real-world system, and with what probability. Likewise, ignoring it 
will significantly undervalue the risk of large changes. The mathematical 
theory that we present to describe this is built around the idea of 
crowding (i.e., correlations) in strategy-space, rather than the precise 
rules of the game itself, and it only makes modest assumptions about the 
game’s dynamical behaviour. Hence it should have rather general 
applicability to populations of semi-autonomous, adaptive objects being 
fed the same information. 

The contents of the paper are as follows. In Section 2, we give a 
background to the problem. In Section 3, we introduce and specify the 
model. In Section 4, we present the Crowd-Anticrowd formalism that we 
use to mathematically describe the emergence of large changes in the 
system. In Section 5, we provide an application of this to a generalized 
version of the model, the alloy Minority Game. Finally, in Section 6, we 
provide our conclusions. 

2. Background 

The mathematical approach is to incorporate accurately the 
correlations in strategies followed by the agents. Specifically, the Crowd-
Anticrowd theory that we adopt considers groups containing like-minded 
agents (‘Crowd’) and opposite-minded agents (‘Anticrowd’), in such a way 
that the strong strategy correlations are confined within each group, 
leaving weakly interacting Crowd-Anticrowd groups which then behave 
in an uncorrelated way with respect to each other. Each group G contains 
a crowd of agents using strategies which are positively-correlated, and a 
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complementary anticrowd using strategies which are strongly negatively-
correlated to the crowd. 

Hence a given group G might contain [ ]tnR  agents who are all using 

strategy R and hence act as a crowd (e.g., by attending the bar en masse 
in the El Farol Problem) together with [ ]tnR  agents who are all using the 

opposite strategy R  and hence act as an anticrowd (e.g., by staying away 
from the bar en masse). Most importantly, the anticrowd [ ]tnR  will 

always take the opposite decisions to the crowd [ ]tnR  regardless of the 

current circumstances in the game, since the strategies R and R  imply 
the opposite action in all situations. Since all the strong correlations have 
been accounted for within each group, these individual groups 
{ } nGGGG ,,, 21 …=  will then act in an uncorrelated way with respect to 

each other, and hence can be treated as n uncorrelated stochastic 
processes. The global dynamics of the system is then given by the sum of 
the n uncorrelated stochastic processes generated by the groups 
{ } .,,, 21 nGGGG …=  We note that alternative theories have been 

proposed [15-19, 21, 37, 38, 40, 41], however such theories are unable to 
reproduce the original numerical results of [23] over the full range of 
parameter space, since they miss an accurate description of the 
correlations between agents’ strategies. 

3. Setup of the B-A-R (Binary Agent Resource) System 

The generic form of the B-A-R (Binary Agent Resource) system is 
shown in Figure 1. At timestep t, each agent (e.g., a bar customer, a 
commuter, or a market agent) decides whether to enter a game where the 
choices are action 1+  (e.g., attend the bar, take route A, or buy) and 
action 1−  (e.g., go home, take route B, or sell). We denote the number of 
agents choosing 1−  as [ ],1 tn−  and the number choosing 1+  as [ ].1 tn+  

The ‘excess demand’ is 

[ ] [ ] [ ].11 tntntD −+ −=   (1) 
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Figure 1. Schematic of B-A-R (Binary Agent Resource) system. At 
timestep t, each agent decides between action 1−  and action 1+  based on 
the predictions of the S strategies that he possesses. A total of [ ]tn 1−  

agents choose ,1−  and [ ]tn 1+  choose .1+  In the simplified case that each 

agent’s confidence threshold for entry into the game is very small, then 
[ ] [ ] Ntntn =+ +− 11  (i.e., all agents play at every timestep). Agents may 

be subject to some underlying network structure which may be static or 
evolving, and ordered or disordered. The strategy allocation, and hence 
heterogeneity in the population, provides a further source of disorder 
which may be static (i.e., quenched) or evolving. The ‘Game-master’  
aggregates the agents’ actions and then announces the global outcome. 
All strategies are then rewarded/penalized according to whether they had 
predicted the winning/losing action. Adapted from [43]. 

The global information available to the agents is a common memory 
of the recent history, i.e., the most recent m global outcomes. For 
example, for ,2=m  the possible forms are 10,01,00 ………  or 11…  

which we denote simply as 10,01,00  or 11. Hence at each timestep, the 
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recent history constitutes a particular bit-string of length m. For general 

m, there will be mP 2=  possible history bit-strings. These history bit-
strings can alternatively be represented in decimal form: { ,,1,0 …=µ  

},1−P  where 0=µ  corresponds to 1,00 =µ  corresponds to 01 etc. A 

strategy consists of a predicted action, 1−  or ,1+  for each possible history 

bit-string. Hence there are P2  possible strategies. For ,2=m                 

for example, there are therefore 16 possible strategies. In order to mimic 
the heterogeneity in the system, a typical game setup would have each 
agent randomly picking S strategies at the outset of the game. In the 
Minority Game, these strategies are then fixed for all time – however a 
more general setup would allow the strategies held, and hence the 
heterogeneity in the population, to change with time. The agents then 
update the scores of their strategies after each timestep with 1+  (or 1− ) 
as the pay-off for predicting the action which won (or lost). This binary 
representation of histories and strategies is due to Challet and Zhang 
[14]. The rules of the game determine the subsequent game dynamics, 
and can be generalized in principle to a range of real-world systems         
[43, 45, 46]. 

In the language of the El Farol Problem, we define the action ( )11 −+  

to be attend (stay away) with [ ]tL  representing the bar capacity. If 

[ ] [ ],1 tLtn <+  the bar will be under crowded and hence can be assigned 

the global outcome 0. Hence the winning action is 1+  (i.e., attend). 
Likewise if [ ] [ ],1 tLtn >+  the bar will be overcrowded and can be assigned 

the global outcome 1. The winning action is then 1−  (i.e., stay away). 
However more generally, the global outcome and hence winning action 
may be any function of present or past system data. Furthermore, the 
resource level [ ]tL  may be endogenously produced (e.g., a specific 

function of past values of [ ] [ ]tntn 11 , +− ) or exogenously produced         

(e.g. determined by external environmental concerns). In the basic game 
setup, we consider the agents to play their highest scoring strategy      
[35, 43, 47]. 
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Figure 2 shows in more detail the 2=m  example strategy space 
from Figure 1. A strategy is a set of instructions to describe what an 
agent should do in any given situation, i.e., given any particular history 

,µ  the strategy then decides what action the agent should take. The 
strategy space is the set of strategies from which agents are allocated 
their strategies. If this strategy allocation is fixed randomly at the outset, 
then this acts as a source of quenched disorder. The strategy space shown 
is known as the Full Strategy Space (FSS), and contains all possible 
permutations of the actions 1−  and 1+  for each history. As such there 

are 
m22  strategies in this space. The m2  dimensional hypercube shows 

all 
m22  strategies from the FSS at its vertices. 

 

Figure 2. Strategy space for ,2=m  together with some example 
strategies (left). The strategy space shown is known as the Full Strategy 
Space (FSS), and contains all possible permutations of the actions 1−  

and 1+  for each history. There are 
m22  strategies in the FSS. The m2  

dimensional hypercube (right) shows all 
m22  strategies from the FSS at 

its vertices. The shaded strategies form a Reduced Strategy Space (RSS). 

There are 122.2 += mm  strategies in the RSS. The red shaded line 
connects two strategies with a Hamming distance separation of 4. 
Adapted from [43]. 
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One can choose a subset of strategies [14] such that any pair within 
this subset has one of the following characteristics: 

● anti-correlated, e.g., 1111 −−−−  and ,1111 ++++  or 111 +−−  

1+  and .1111 −−++  For example, any two agents using the ( )2=m  

strategies 1111 ++−−  and ,1111 −−++  respectively, would take the 

opposite action irrespective of the sequence of previous outcomes and 
hence the history. Hence one agent will always do the opposite of the 
other agent. For example, if one agent chooses 1+  at a given timestep, 
the other agent will choose .1−  Their net effect on the demand [ ]tD  
therefore cancels out at each timestep, regardless of the history. Hence 
they will not contribute to fluctuations in [ ].tD  

● uncorrelated, e.g., 1111 −−−−  and .1111 ++−−  For example, 
any two agents using the strategies 1111 −−−−  and ,1111 ++−−  
respectively, would take the opposite action for two of the four histories, 
while they would take the same action for the remaining two histories. If 
the 2=m  histories occur equally often, the actions of the two agents will 
be uncorrelated on average. 

A convenient measure of the distance (i.e., closeness) of any two 
strategies is the Hamming distance which is defined as the number of 
bits that need to be changed in going from one strategy to another. For 
example, the Hamming distance between 1111 −−−−  and 1111 ++++  

is 4, while the Hamming distance between 1111 −−−−  and 11 −−  

11 ++  is just 2. Although there are 1622
22 ≡≡

=mP  strategies in the 

2=m  strategy space, it can be seen that one can choose subsets such 
that any strategy-pair within this subset is either anticorrelated or 
uncorrelated. Consider, for example, the two groups 

{ },1111,1111,1111,11112 −++−−+−+−−++−−−−≡=mU  (2) 

and 

{ }.1111,1111,1111,11112 +−−++−+−++−−++++≡=mU  (3) 
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Any two strategies within 2=mU  are uncorrelated since they have a 

Hamming distance of 2. Likewise any two strategies within 2=mU  are 

uncorrelated since they have a relative Hamming distance of 2. However, 

each strategy in 2=mU  has an anticorrelated strategy in :2=mU  for 

example, 1111 −−−−  is anticorrelated to 1,1111 +++++  111 −−+  

is anti-correlated to 1111 ++−−  etc. This subset of strategies 

comprising 2=mU  and ,2=mU  forms a Reduced Strategy Space (RSS) [14]. 

Since it contains the essential correlations of the Full Strategy Space 
(FSS), running a given game simulation within the RSS is likely to 
reproduce the main features obtained using the FSS [14]. The RSS has a 

smaller number of strategies 1222.2 +≡= mm P  than the FSS which has 

.22 2mP =  For ,2=m  there are 8 strategies in the RSS compared to 16 

in the FSS, whilst for ,8=m  there are 771016.1 ×  strategies in the FSS 

but only 512 strategies in the RSS. We note that the choice of the RSS is 
not unique, i.e., within a given FSS there are many possible choices for a 

RSS. In particular, it is possible to create 12 22 +mm
 distinct reduced 

strategy spaces from the FSS. In short, the RSS provides a minimal set of 
strategies which ‘span’ the FSS and are hence representative of its full 
structure. 

The history µ  of recent outcomes changes in time, i.e., it is a 

dynamical variable. The history dynamics can be represented on a 
directed graph (a so-called digraph). The particular form of directed 
graph is called a de Bruijn graph. Figure 3 shows some examples of the 
de Bruijn graph for ,2,1=m  and 3. The probability that the outcome at 

time 1+t  will be a 1 (or 0) depends on the state at time t. Hence it will 
depend on the previous m outcomes, i.e., it depends on the particular 
state of the history bit-string (see also [32, 33]). 
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Figure 3. History Space. Examples of the de Bruijn graph for ,2,1=m  

and 3. Red transitions between states correspond to the most recent 
global outcome 0. Blue transitions between states correspond to the most 
recent global outcome 1. Adapted from [43]. 

The initial strategy allocation among agents can be described in 
terms of a tensor Ω  [34]. This tensor Ω  describes the distribution of 
strategies among the N individual agents. If this strategy allocation is 
fixed from the beginning of the game, then it acts as a quenched disorder 
in the system. The rank of the tensor Ω  is given by the number of 
strategies S that each agent holds. For example, for ,3=S  the element 

k,, jiΩ  gives the number of agents assigned strategy i, then strategy j, 

and then strategy ,k  in that order. Hence 

,,,,
,,,

Nji

X

ji
=Ω∑ …

…
k

k
  (4) 

where the value of X represents the number of distinct strategies that exist 

within the strategy space chosen: 
m

X 22=  in the FSS, and mX 2.2=  in 
the RSS. Figure 4 shows an example distribution Ω  for N = 101 agents 
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in the case of 2=m  and ,2=S  in the reduced strategy space RSS. We 

note that a single Ω  ‘macrostate’ corresponds to many possible 
‘microstates’ describing the specific partitions of strategies among the 
agents. For example, consider an 2=N  agent system with :1=S  the 
microstate ( )RR ′,  in which agent 1 has strategy R while agent 2 has 

strategy ,R′  belongs to the same macrostate Ω  as ( )RR ,′  in which 

agent 1 has strategy R′  while agent 2 has strategy R. Hence the present 
Crowd-Anticrowd theory retained at the level of a given ,Ω  describes the 

set of all games which belong to that same Ω  macrostate. We also note 
that although Ω  is not symmetric, it can be made so since the agents will 
typically not distinguish between the order in which the two strategies 
are picked. Given this, we will henceforth focus on 2=S  and consider 
the symmetrized version of the strategy allocation matrix given by 

( ).2
1 TΩ+Ω=Ψ  

 

Figure 4. Example distribution for the tensor Ω  describing the strategy 
allocation for 101=N  agents in the case of 2=m  and ,2=S  for the 

reduced strategy space RSS. Adapted from [43]. 
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4. Crowd-Anticrowd Formalism 

In addition to the excess demand [ ]tD  in such B-A-R systems, one is 

typically also interested in higher order-moments of this quantity – for 
example, the standard deviation of [ ]tD  (or ‘volatility’ in a financial 

context). This gives a measure of the fluctuations in the system, and 
hence can be used as a measure of ‘risk’ in the system. Consider an 
arbitrary timestep t during a run of the game, at which the particular 
realization of the strategy allocation matrix is given by .Ψ  There is a 
current score-vector [ ]tS  and a current history [ ]tµ  which define the 

state of the game. The excess demand [ ] [ [ ] [ ]]ttSDtD µ= ,  is given by 

Equation (1). The standard deviation of [ ]tD  for this given run, 

corresponds to a time-average for a given realization of Ψ  and a given 
set of initial conditions. Equation (1) can be rewritten by summing over 
the RSS as follows: 

[ [ ] [ ]] [ ] [ ] [ ] [ ],,
2

1
11

tS
R

t
R

P

R
natntnttSD µ

=
−+ ∑≡−=µ  (5) 

where .2mP =  The quantity [ ] 1±=µ t
Ra  is the response of strategy R to 

the history bit-string µ  at time t. The quantity [ ]tS
Rn  is the number of 

agents using strategy R at time t. The superscript [ ]tS  is a reminder that 

this number of agents will depend on the strategy score at time t. We use 
the notation [ ] ttX  to denote a time-average over the variable [ ]tX  for a 

given .Ψ  Hence 

[ [ ] [ ]] [ ] [ ]
t

tS
R

t
R

P

R
t nattSD µ

=
∑=µ
2

1
,   

[ ] [ ] ,
2

1
t

tS
Rt

t
R

P

R
naµ

=
∑=                          (6) 
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where we have used the property that [ ]t
Raµ  and [ ]tS

Rn  are uncorrelated. 

We now consider the special case in which all histories are visited equally 
on average: this may arise as the result of a periodic cycling through the 
history space (e.g., a Eulerian trail around the de Bruijn graph) or if the 
histories are visited randomly. Under the property of equal histories, we 
can write 

[ [ ] [ ]] [ ] [ ]
t

tS
R

t
R

PP

R
t naPttSD 













=µ µ

−

=µ=
∑∑

1

0

2

1

1,  

[ ] [ ] [ ]
t

tS
R

t
R

t
R

PP

R
naaP 













+= µµ

−

=µ=
∑∑

1

01

1  

[ ]
t

tS
R

P

R
n.0

1
∑
=

=  

,0=  (7) 

where we have used the exact result that [ ] [ ]t
R

t
R aa µµ −=  for all [ ],tµ  and 

the approximation [ ] [ ] .
t

tS
Rt

tS
R nn =  Then the average  number playing 

each strategy is approximately equal and hence [ ] [ ] .
t

tS
Rt

tS
R nn =  

The variance of [ ],tD  which is the square of the standard deviation, is 

given by 

[ [ ] [ ]] [ [ ] [ ]] .,, 222
tt

ttSDttSD µ−µ=σΨ  (8) 

For simplicity, we will assume the game output is unbiased and hence we 
can set [ [ ] [ ]] .0, =µ tttSD  Hence 

[ [ ] [ ]]
t

ttSD 22 , µ=σΨ  
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[ ] [ ] [ ] [ ] .
2

1,
t

tS
R

t
R

tS
R

t
R

P

RR
nana ′

µ
′

µ

=′
∑=  (9) 

In the case that the system visits all possible histories equally, the 
double sum can usefully be broken down into three parts, based on the 
correlations between the strategies: Paa RR =′.  (fully correlated), 

Paa RR −=′.  (fully anti-correlated), and 0. =′RR aa  (fully uncorrelated) 

where Ra  is a vector of dimension P with R-th component [ ].t
Raµ  This 

decomposition is exact in the RSS in which we are working. The equal-
histories case yields 

[ ]( ) [ ]( ) [ ] [ ] [ ] [ ]
t

tS
R

tS
R

t
R

t
R

P

Rt

tS
R

t
R

P

R
nnaana µµ

=

µ

=
Ψ ∑∑ +=σ

2

1

222

1

2  

[ ] [ ] [ ] [ ]
t

tS
R

tS
R

t
R

t
R

P

RRR
nnaa ′

µ
′

µ

≠′≠
∑+
2

 

[ ]( ) [ ] [ ] [ ] [ ] [ ] [ ]
t

tS
R

tS
Rt

t
R

t
R

P

RRRt

tS
R

tS
R

tS
R

P

R
nnaannn ′

µ
′

µ

≠′≠=
∑∑ +−=
222

1
 

[ ]( ) [ ] [ ]

t

tS
R

tS
R

tS
R

P

R
nnn −= ∑

=

22

1
 

[ ] [ ] [ ] [ ]
t

tS
R

tS
R

t
R

t
R

PP

RRR
nnaaP ′

µ
′

µ
−

=µ≠′≠













+ ∑∑

1

0

2 1  

[ ]( ) [ ] [ ] .
22

1 t

tS
R

tS
R

tS
R

P

R
nnn −= ∑

=

 (10) 

This sum over 2P terms can be written equivalently as a sum over P 
terms, 
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[ ]( ) [ ] [ ]

t

tS
R

tS
R

tS
R

P

R
nnn −=σ ∑

=
Ψ

22

1

2  

[ ]( ) [ ] [ ] [ ]( ) [ ] [ ]

t

tS
R

tS
R

tS
R

tS
R

tS
R

tS
R

P

R
nnnnnn −+−= ∑

=

22

1
 

[ ]( ) [ ] [ ] [ ]( )
t

tS
R

tS
R

tS
R

tS
R

P

R
nnnn

22

1
2 +−= ∑

=

 

[ ] [ ]( )
t

tS
R

tS
R

P

R
nn

2

1
−= ∑

=

 

[ ] [ ]( ) .
2

1 t

tS
R

tS
R

P

R
nn −≡ ∑

=

 (11) 

The values of [ ]tS
Rn  and [ ]tS

Rn  for each R will depend on the precise form 

of .Ψ  The ensemble-average is denoted as ,Ψ…  and for simplicity the 

notation 22 σ=σ ΨΨ  is defined. This ensemble-average is performed on 

either side of Equation (11), 

[ ] [ ]( ) ,
2

1

2

Ψ=

−=σ ∑
t

tS
R

tS
R

P

R
nn  (12) 

yielding the variance in the excess demand [ ].tD  

To evaluate Equation (12) analytically, we first relabel the strategies. 
Specifically, the sum in Equation (12) is rewritten to be over a virtual-
point ranking K and not the decimal form R. Consider the variation in 
points for a given strategy, as a function of time for a given realization of 

.Ψ  The ranking (i.e., label) of a given strategy in terms of virtual-points 
score will typically change in time since the individual strategies have a 
variation in virtual-points which also varies in time. This implies that 



D. D. Johnson Restrepo and Neil F. Johnson 16

the specific identity of the ‘K-th highest-scoring strategy’ changes 

frequently in time. It also implies that [ ]tS
Rn  varies considerably in time. 

Therefore in order to proceed, we shift the focus onto the time-evolution 
of the highest-scoring strategy, second highest-scoring strategy etc. This 
should have a much smoother time-evolution than the time-evolution for 
a given strategy. In short, the focus is shifted from the time-evolution of the 
virtual points of a given strategy (i.e., from [ ]tSR ) to the time-evolution 

of the virtual points of the K-th highest scoring strategy (i.e., to [ ]tSK ). 

Figure 5 shows a schematic representation of how the scores of the 
two top scoring strategies might vary, using the new virtual-point 
ranking scheme. Also shown are the lowest-scoring two strategies, which 
at every timestep are obviously just the anticorrelated partners of the 
instantaneously highest-scoring two strategies. In the case that the 
strategies all start off with zero points, these anticorrelated strategies 
appear as the mirror-image, i.e., [ ] [ ].tStS KK −=  The label K is used to 

denote the rank in terms of strategy score, i.e., 1=K  is the highest 
scoring strategy position, 2=K  is the second highest-scoring strategy 
position etc. with 

…>>>> ==== 4321 KKKK SSSS   (13) 

assuming no strategy-ties. (Whenever strategy ties occur, this ranking 
gains a ‘degeneracy’ in that 1+= KK SS  for a given K). A given strategy, 

e.g., ,1111 −−−−  may at a given timestep have label ,1=K  while a few 

timesteps later have label .5=K  Given that RR SS −=  (i.e., all 

strategy scores start off at zero), then we know that .KK SS −=  

Equation (12) can hence be rewritten exactly as 

[ ] [ ]( ) .
2

1

2

Ψ=

−=σ ∑
t

tS
K

tS
K

P

K
nn  (14) 
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Figure 5. Schematic diagram of a fairly typical variation in strategy 
scores, as a function of time, for a competitive game. This behaviour is 
particularly relevant for the low m regime where there are many more 
agents than strategies, and hence strategy rankings change in time due 
to being overplayed. The strategies at any given timestep can be ranked 
in terms of virtual-point ranking K, with 1=K  as the highest-scoring 

and 1=K  as the lowest-scoring. The actual identity of the strategy in 
rank K changes as time progresses, as can be seen. Ignoring accidental 
ties in score, there is a well defined ranking of strategies at each timestep 
in terms of their K values. Adapted from [43]. 

In the systems of interest the agents are typically playing their 
highest-scoring strategies, hence the relevant quantity in determining 
how many agents will instantaneously play a given strategy, is a 
knowledge of its relative ranking – not the actual value of its virtual 

points score. This suggests that the quantities [ ]tS
Kn  and [ ]tS

Kn  will 

fluctuate relatively little in time, and that we should now develop the 
problem in terms of time-averaged values. 

We can determine the actual number of agents [ ]tS
Kn  playing the K-th 

ranked strategy at timestep t, from knowledge of the strategy allocation 
matrix Ψ  and the strategy scores [ ],tS  i.e., we calculate how many 
agents hold the K-th ranked strategy but do not hold another strategy 
with higher-ranking. The heterogeneity in the population represented by 

,Ψ  combined with the strategy scores [ ],tS  determines [ ]tS
Kn  for each K 



D. D. Johnson Restrepo and Neil F. Johnson 18

and hence the standard deviation in [ ].tD  We rewrite the number of 
agents playing the strategy in position K at any timestep t, in terms of 
some constant value Kn  plus a fluctuating term : 

[ ] [ ].tnn KK
tS

K ε+=   (15) 

Consider a given timestep t in the game’s evolution. Suppose that an 
agent holds two strategies R and ,R′  and at timestep t they occupy ranks 
K and ,1+K  respectively. Let the number of agents playing strategy R, 
the K-th ranked strategy, be Kn  at timestep t. Similarly the number of 

agents playing strategy ,R′  the ( )1+K -th ranked strategy, is 1+Kn  at 
timestep t. Hence [ ] 0=ε tK  and [ ] 01 =ε + tK  for this timestep, and indeed 
for all subsequent t until the next strategy-tie. This ignore the stochatsic 
coin-toss for resolving strategies that are equal scoring, hence in this way 
we tend to overestimate the number of people playing strategies which 
are higher-ranking (i.e., small K) and underestimate the number playing 
strategies which are lower-ranking (i.e., large K). This means that we will 
overestimate the size of Crowds, and underestimate the size of 
Anticrowds. Hence we overestimate the value of the standard deviation of 

demand, and as a result the analytic expression fdeltaσ  that we will 
derive, slightly overestimates the actual value, and hence can be 
regarded as an approximate upper-bound as shown later in Figure 7. 
Accounting for the correct fraction of degenerate vs. non-degenerate 
timesteps, will yield a more accurate calculation of the time-average t…  

in Equation (14). 

For the moment, we assume that we can choose a suitable constant 
Kn  such that the fluctuation [ ]tKε  represents a small noise term. Hence, 

[ [ ] [ ]]
Ψ=

ε−−ε+=σ ∑ tKKKK

P

K
tntn 2

1

2  

[( ) ( [ ] [ ])]
Ψ=

ε−ε+−= ∑ tKKKK

P

K
ttnn 2

1
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[ ] [ ] ,2

1

2

1 Ψ=Ψ=

−=−≈ ∑∑ KK

P

K
tKK

P

K
nnnn  (16) 

since the latter two terms involving noise will average out to be small. 
The resulting expression in Equation (16) involves no time dependence. 
The averaging over Ψ  can then be taken inside the sum. The individual 

terms in the sum, i.e., [ ] ,2
Ψ

− KK nn  are just an expectation value of a 

function of two variables Kn  and .Kn  Each term can therefore be 

rewritten exactly using the joint probability distribution for Kn  and ,Kn  

which we shall call ( )., KK nnP  Hence 

[ ]
Ψ

=

−=σ ∑ 2

1

2
KK

P

K
nn  

[ ] ( ),,2

001
KKKK

N

n

N

n

P

K
nnPnn

KK

−= ∑∑∑
===

 (17) 

where the standard probability result involving functions of two variables 
has been used. 

The question then arises of how to evaluate Equation (17). In general, 
its value will depend on the detailed form of the joint probability function 
( )KK nnP ,  which in turn will depend on the ensemble of quenched 

disorders { }Ψ  which are being averaged over. We start off by looking at 

Equation (17) in the limiting case where the averaging over the quenched 
disorder matrix is dominated by matrices Ψ  which are nearly at. This 
will be a good approximation in the ‘crowded’ limit of small m in which 
there are many more agents than available strategies, since the standard 
deviation of an element in Ψ (i.e., the standard deviation in bin-size) is 
then much smaller than the mean bin-size. [N.B. If Ω  is approximately 
at, then so is Ψ ]. In this limiting case, there are several nice features: 
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● Given the ranking in terms of virtual-points, i.e., >> == 21 KK SS  

…>> == 43 KK SS  which holds by definition of the labels { }K  if we 

neglect tie-breaks, we will also have 

.4321 …>>>> ==== KKKK nnnn   (18) 

Hence the rankings in terms of highest virtual-points and popularity are 
identical. By contrast, the ordering in terms of the labels { }R  would not 

be sequential, i.e., it is not true that .4321 …>>>> ==== RRRR nnnn  

● The strategy ,K  which is anticorrelated to strategy K, occupies 

position KPK −+= 12  in this popularity-ranked list. 

● The probability distribution ( )KK nnP ,  will be sharply peaked 

around the Kn  and Kn  values given by the mean values for a flat 

quenched-disorder matrix .Ψ  We will label these mean values as Kn  

and .Kn  

The last point implies that ( )
KKKK nnnnKK nnP ,,, δδ=  and so 

[ ] .2

1

2
KK

P

K

nn −=σ ∑
=

 (19) 

We note that there is a very simple interpretation of Equation (19). It 
represents the sum of the variances for each Crowd-Anticrowd pair. For a 

given strategy K there is an anticorrelated strategy .K  The Kn  agents 

using strategy K are doing the opposite of the Kn  agents using strategy 

K  irrespective of the history bit-string. Hence the effective group-size for 

each Crowd-Anticrowd pair is :KKeff
K

nnn −=  this represents the net 

step-size d of the Crowd-Anticrowd pair in a random-walk contribution to 
the total variance. Hence, the net contribution by this Crowd-Anticrowd 
pair to the variance is given by 
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[ ] [ ] [ ] ,2
1.2

1.44 2222
KKeff

KKK nnnpqd −===σ  (20) 

where 21== qp  for a random walk. Since all the strong correlations 

have been removed (i.e., anti-correlations) it can therefore be assumed 
that the separate Crowd-Anticrowd pairs execute random walks which 
are uncorrelated with respect to each other. Hence the total variance is 
given by the sum of the individual variances, 

[ ] [ ] ,2

1

2

1

2
KK

P

K
KK

P

K

nn −=σ=σ ∑∑
==

 (21) 

which corresponds exactly to Equation (19). If strategy-ties occur 

frequently, then one has to be more careful about evaluating Kn  since its 

value may be affected by the tie-breaking rule. 

Each element of Ψ  has a mean of ( )SPN 2  agents per ‘bin’. In the 

case of small m and hence densely-filled ,Ψ  the fluctuations in the 

number of agents per bin will be small compared to this mean value. For 
the case ,2=S  the mean number of agents whose highest scoring 

strategy is the strategy occupying position K at timestep t, will therefore 
be given by summing the appropriate rows and columns of this quenched 
disorder matrix .Ψ  Figure 6 provides a schematic representation of Ψ  
with ,2,2 == sm  in the RSS. If the matrix Ψ  is flat, then any re-

ordering due to changes in the strategy ranking has no effect on the form 
of the matrix. Therefore, the number of agents playing the K-th highest-
scoring strategy, will always be proportional to the number of shaded 
bins at that K (see Figure 6 for 3=K ). The shaded elements in Figure 6 
therefore represent those agents who hold a strategy that is ranked third 
highest in score, i.e., .3=K  In games where the agents use their highest 

scoring strategy, any agent using the strategy in position 3=K  cannot 
have any strategy with a higher position. Hence the agents using the 



D. D. Johnson Restrepo and Neil F. Johnson 22

strategy in position 3=K  must lie in one of the shaded bins. Since it is 
assumed that the coverage of the bins is uniform, the mean number of 
agents using the strategy in position 3=K  is given by 

( )
( )binsshaded

P
NnK ∑== 23

2
1.  

( ) ( )[ ]13838.64
1. +−+−= N  

.64
11 N=  (22) 

 

Figure 6. Schematic representation of the strategy allocation matrix Ψ  
with 2=m  and ,2=s  in the RSS. The strategies are ranked according 
to strategy score, and are labelled by the rank K. In the limit that Ψ  is 
essentially flat, then the number of agents playing the K-th highest-
scoring strategy, is just proportional to the number of shaded bins at that 
K. Adapted from [43]. 

For more general m and s values this becomes 

( )
[ ( ) 1

2 2
2

−−= SK KPS
P
Nn  

( ) ( ) ]122
1 2 ++−−+ − …SKPSS  
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( ) ( ) [ ]r
S

r
S KPrrS

S
P
N −

−
= ∑

−

=

2!!
!

2

1

0
 

( )
([ ] [ ] )SS

S KPKP
P
N −−+−= 212

2
 

( ) ,212
11. 














 −−



 −

−=
SS

P
K

P
KN  (23) 

with .2mP ≡  In the case where each agent holds two strategies, ,2=S  

Kn  can be simplified to 

( )














 −−



 −−=

22

212
11. P

K
P

KNnK  

( )
( ) .

2
122

12

2
NK

m

m

+

+ +−
=  (24) 

Similarly for ,Kn  the simplification is as follows: 

( )
( )

( )
( ) ,

2
12

2
122

1212

2
NKNKn

mm

m
K ++

+ −=
+−

=  (25) 

where the relation 1212 1 +−≡+−= + KKPK m  has been used. It is 
emphasized that these results depend on the assumption that the 
averages are dominated by the effects of at distributions of the quenched 
disorder matrix ,Ψ  and hence will only be quantitatively valid for low m. 

Using Equations (24) and (25) in Equation (19) gives 

( )
( )

( )
( )

2

1212

2

1

2
2

12
2

122







 −−
+−

=σ
++

+

=
∑ NKNK

mm

mP

K
 

( ) [ ]21

1
122

2
122

2
+−= +

=
+ ∑ KN m

P

K
m  
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( ( ) ),21
2.3

12
2

+−−= m
m

N  (26) 

and hence 

( ( ) ) ,21
2.3

2
112

2
delta +−−=σ m

m
f N  (27) 

which is valid for small m. (The rationale behind the choice of superscript 
‘delta f ’  will become apparent shortly.) This derivation has assumed that 
there are no strategy ties – more precisely, we have assumed that the 
game rules governing strategy ties do not upset the identical forms of the 
rankings in terms of highest virtual points and popularity. As discussed 
earlier, this tends to overestimate the size of the Crowds using high-
ranking strategies, and underestimate the size of the Anticrowds using 
low-ranking strategies. Hence the Crowd-Anticrowd cancellation is 

underestimated, and consequently fdeltaσ  will overestimate the actual 

σ  value. As we will see later in Figure 7, fdeltaσ  does indeed act as an 
approximate upper bound. 
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Figure 7. Crowd-Anticrowd theory vs. numerical simulation results for 
Minority Game as a function of memory size m, for 101=N  agents, at 

,4,2=S  and 8. At each S value, analytic forms of standard deviation in 

excess demand [ ],tD  are shown corresponding to fdeltaσ  (upper solid 

line), fflatσ  (lower dashed line) and mf high,flatσ  (monotonically-
increasing solid line which is independent of S). The numerical values 
were obtained from different simulation runs (triangles, crosses and 
circles). The corresponding result for a null, coin-toss (i.e., random) model 
is N  for all m (i.e., 101  in this figure, which is approximately 10). 
Hence the emergent property of large changes at small m is much larger, 
scaling instead as N not .N  Adapted from [43]. 
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A similar calculation can be performed for a non-flat quenched 
disorder matrix ,Ψ  at small m, and also the non-flat quenched disorder 

matrix Ψ  at large m. For full details, we refer to [43]. The standard 
deviation σ  of the excess demand [ ]tD  is shown in Figure 7, for the basic 

Minority Game. The spread in numerical values from individual runs, for 
a given m, indicates the extent to which the choice of Ψ alters the 
dynamics of the MG. The upper line for each S value at low m, is 

Equation (27) showing .delta fσ  The analytic expressions capture the 
strong correlations and hence the fluctuations in the system [43]. 

5. Application: Alloy Minority Game 

Consider a population containing some agents with memory ,1m  and 

some agents with memory ,2m  where .21 mm <  For a pure population of 

agents with the same memory ,1m  there is information left in the history 

time-series [23]. In the small 1m  limit, however, this information is 

hidden in bit-strings of length greater than 1m  and hence is not 

accessible to these agents. However, it would in principle be accessible to 
agents with a larger memory .2m  In the mixed population or ‘alloy’, 

there are two sub-populations comprising 1mN  agents with memory 1m  

and 1S  strategies per agent, and 12 mm NNN −=  agents with memory 

2m  and 2S  strategies per agent. Let us focus on the variance 2σ  of 

demand [ ].tD  If each population were pure, it would form Crowd-

Anticrowd groups as discussed earlier in this paper, and hence provide a 
variance given by the sum of the variances of these uncorrelated groups. 
In the mixed population, we can assume as a first approximation that the 
individual groups for different m are also uncorrelated. In short, the 
agents looking at patterns of length ,1m  and the agents looking at 

patterns of length ,2m  act in an uncorrelated way with respect to each 

other. Hence the variance in the total [ ]tD  from both sub-populations, 



TOWARD A MATHEMATICAL THEORY OF … 27

can be obtained by adding separately the contributions to the variance 

from the 1m  agents and the 2m  agents. Hence ,2
2

2
1

2 σ+σ=σ  where 

( )21 σσ  is the variance due to the ( )21 mm  agents. Defining the 

concentration of 1m  agents as ,1 NNx m=  gives ( ) 22
11

22
1 , NxSmC=σ  

and ( ) ( ) ,1, 22
22

22
2 NxSmC −=σ  where the expressions for ( )11

2 , SmC  

and ( )22
2 , SmC  follow from Equations (19) and (23): 
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Hence 

[ ( ) ( ) ( ) ] .1,, 212
22

22
11

2 xSmCxSmCN −+=σ   (29) 

It can be seen that Equation (29) will generally exhibit a minimum in σ  
at finite x, hence the mixed population uses the limited global resource 
more efficiently than a pure population of either ( )11, Sm  or ( )22, Sm  

agents. This analytic result has been confirmed in numerical simulations 
of a mixed population [28, 35]. 

6. Conclusion 

The mathematical Crowd-Anticrowd theory that we present, helps 
understand the emergence of large changes (i.e., large fluctuations) in 
competitive multi-agent systems, in particular those based on an 
underlying binary structure, and should have applicability for more 
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general multi-agent systems. It also raises the intriguing possibility that 
conventional many-body physics might be open to re-interpretation in 
terms of an appropriate multi-particle ‘game’. We leave this for future 
work. 
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