SOME WEAKER FORMS OF CONTINUITY IN BITOPOLOGICAL ORDERED SPACES

A. F. SAYED
Department of Mathematics
Al-Lith University College
Umm Al-Qura University
P. O. Box 112, Al-Lith 21961
Makkah Al Mukarramah
Kingdom of Saudi Arabia
e-mail: dr.afsayed@hotmail.com

Abstract

The main purpose of the present paper is to introduce and study some weaker forms of continuity in bitopological ordered spaces. Such as pairwise I-continuous maps, pairwise D-continuous maps, pairwise B-continuous maps, pairwise I-open maps, pairwise D-open maps, pairwise B-open maps, pairwise I-closed maps, pairwise D-closed maps, and pairwise B-closed maps.

1. Introduction

Singal and Singal [4] initiated the study of bitopological ordered spaces. Raghavan ([2], [3]) and other authors have contributed to development and construct some properties of such spaces. In 2002, Veera Kumar [5] introduced I-continuous maps, D-continuous maps,

2010 Mathematics Subject Classification: 54F05, 54E55.
Keywords and phrases: ordered topological space, increasing sets, decreasing sets, continuous maps, maps, pairwise continuous maps, pairwise open maps, pairwise closed maps.
Received June 9, 2014; Revised July 10, 2014
B-continuous maps, I-open maps, D-open maps, B-open maps, I-closed maps, D-closed maps, and B-closed maps for topological ordered spaces together with their characterizations. Nachbin [1] initiated the study of topological ordered spaces in 1965. A topological ordered space is a triple (X, τ, \leq), where τ is a topology on X and \leq is a partial order on X. In this paper, we introduce pairwise I-continuous maps, pairwise D-continuous maps, pairwise B-continuous maps, pairwise I-open maps, pairwise D-open maps, pairwise B-open maps, pairwise I-closed maps, pairwise D-closed maps, and pairwise B-closed maps for bitopological ordered spaces together with their characterizations as a generalization of that were studied for topological ordered spaces by Veera Kumar [5].

2. Preliminaries

Let (X, \leq) be a partially ordered set (i.e., a set X together with a reflexive, antisymmetric, and transitive relation). For a subset $A \subseteq X$, we write

$$
\begin{aligned}
& L(A)=\{y \in X: y \leq x \text { for some } x \in A\}, \\
& M(A)=\{y \in X: x \leq y \text { for some } x \in A\} .
\end{aligned}
$$

In particular, if A is a singleton set, say $\{x\}$, then we write $L(x)$ and $M(x)$, respectively. A subset A of X is said to be decreasing (resp., increasing) if $A=L(A)$ (resp., $A=M(A)$). The complement of a decreasing (resp., an increasing) set is an increasing (resp., a decreasing) set. A mapping $f:(X, \leq) \rightarrow\left(X^{*}, \leq^{*}\right)$ from a partially ordered set (X, \leq) to a partially ordered set (X^{*}, \leq^{*}) is increasing (resp., a decreasing) if $x \leq y$ in X implies $f(x) \leq^{*} f(y)$ (resp., $f(y) \leq^{*} f(x)$), where f is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [4] is a quadruple consisting of a bitopological space (X, τ_{1}, τ_{2}), and a partial order \leq on X; it is denoted as ($X, \tau_{1}, \tau_{2}, \leq$). The partial order \leq said to be closed (resp., weakly closed) [2] if its graph $G(\leq)=\{(x, y): x \leq y\}$ is closed in the product topology $\tau_{i} \times \tau_{j}$ (resp., $\tau_{1} \times \tau_{2}$), where $i, j=1,2 ; i \neq j$, or equivalently, if $L(x)$ and $M(x)$ are τ_{1}-closed, where $i=1,2$ (resp., $L(x)$ is τ_{1}-closed and $M(x)$ is τ_{2}-closed), for each $x \in X$.

For a subset A of a bitopological ordered space ($X, \tau_{1}, \tau_{2}, \leq$),

$$
H_{i}^{l}(A)=\bigcap\left\{F \mid F \text { is } \tau_{i} \text {-decreasing closed subset of } X \text { containing } A\right\},
$$

$$
H_{i}^{m}(A)=\bigcap\left\{F \mid F \text { is } \tau_{i} \text {-increasing closed subset of } X \text { containing } A\right\},
$$

$$
H_{i}^{b}(A)=\bigcap\{F \mid F \quad \text { is a closed subset of } X \text { containing } A \text { with }
$$

$$
F=L(F)=M(F)\},
$$

$$
O_{i}^{l}(A)=\bigcup\left\{G \mid G \text { is } \tau_{i} \text {-decreasing open subset of } X \text { contained in } A\right\},
$$

$$
O_{i}^{m}(A)=\bigcup\left\{G \mid G \text { is } \tau_{i} \text {-increasing open subset of } X \text { contained in } A\right\},
$$

$$
O_{i}^{b}(A)=\bigcup\left\{G \mid G \text { is both } \tau_{i} \text {-increasing and } \tau_{i}\right. \text {-decreasing open }
$$ subset of X contained in $A\}$.

Clearly, $H_{i}^{m}(A)\left(\right.$ resp., $\left.H_{i}^{l}(A), H_{i}^{b}(A)\right)$ is the smallest τ_{i}-increasing (resp., τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) closed set containing A. Moreover $\bar{A}_{i} \subseteq H_{i}^{m}(A) \subseteq H_{i}^{b}(A)$, where \bar{A}_{i} stands for the τ_{i}-closure of A in $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$. Further A is τ_{i}-decreasing (resp., τ_{i}-increasing) closed if and only if $A=H_{i}^{m}(A)=H_{i}^{l}(A)$.

Clearly, $O_{i}^{m}(A)\left(\right.$ resp., $\left.O_{i}^{l}(A), O_{i}^{b}(A)\right)$ is the largest τ_{i}-increasing (resp., τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) open set contained in A. Moreover $O_{i}^{b}(A) \subseteq O_{i}^{m}(A) \subseteq A_{i}^{o}$ and $O_{i}^{b}(A) \subseteq O_{i}^{l}(A)$, where A_{i}^{o} denotes the τ_{i}-interior of A in $\left(X, \tau_{1}, \tau_{2}, \leq\right), i \neq j$. If A and B are two τ_{1} subsets of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right)$, $i \neq j$ such that $A \subseteq B$, then $O_{i}^{m}(A) \subseteq O_{i}^{m}(B) \subseteq B_{i}^{o} . \Omega\left(O_{i}^{m}(X)\right.$) (resp., $\left.\Omega\left(O_{i}^{l}(X)\right), \Omega\left(O_{i}^{b}(X)\right)\right)$ denotes the collection of all τ_{i}-increasing (resp., τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) open subset of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right)$.

3. Pairwise I-continuous, Pairwise D-continuous and Pairwise B-continuous Maps

Definition 3.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$ is called a pairwise I-continuous (resp., a pairwise D-continuous, a pairwise B-continuous) map if $f^{-1}(G) \in \Omega\left(O_{i}^{m}(X)\right)$ (resp., $f^{-1}(G) \in \Omega\left(O_{i}^{l}(X)\right)$, $\left.f^{-1}(G) \in \Omega\left(O_{i}^{b}(X)\right)\right)$, whenever G is an i-open subset of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, $i=1,2$.

It is evident that every pairwise x-continuous map is pairwise continuous for $x=I, D, B$ and that every pairwise B-continuous map is both pairwise I-continuous and pairwise D-continuous.

Example 3.2. Let $X=\{a, b, c\}, \tau_{1}=\{0, X,\{a\},\{b\},\{a, b\}\}$, $\tau_{2}=\{\emptyset, X,\{c\}\}$ and $\leq=\{(a, a),(b, b),(c, c),(a, b),(b, c),(a, c)\}$. Clearly, $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ is a bitopological ordered space. Let f be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ onto itself. $\{b\}$ is τ_{1}-open and $\{c\}$ is τ_{2}-open, but $f^{-1}(\{b\})=\{b\}$ is neither a τ_{1}-increasing nor a τ_{1}-decreasing open set and also $f^{-1}(\{c\})=\{c\}$ is neither a τ_{2}-increasing nor a τ_{2}-decreasing open set. Thus f is not pairwise x-continuous for $x=I, D, B$. However f is continuous.

The following example supports that a pairwise D-continuous map need not be a pairwise B-continuous map.

Example 3.3. Let $X=\{a, b, c\}=X^{*}, \tau_{1}=\{\emptyset, X,\{a\},\{b\},\{a, b\}\}=\tau_{1}^{*}$, $\tau_{2}=\{0, X,\{c\}\}=\tau_{2}^{*}, \leq=\{(a, a),(b, b),(c, c),(a, c)\}$ and $\leq^{*}=\{(a, a),(b, b)$, $(c, c),(a, b),(a, c),(b, c)\}$. Let g be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ onto ($X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$), g is not pairwise B-continuous. However g is a pairwise D-continuous map.

The following example supports that a pairwise I-continuous map need not be a pairwise B-continuous map.

Example 3.4. Let $X=\{a, b, c\}=X^{*}, \tau_{1}=\{0, X,\{a\},\{b\},\{a, b\}\}, \tau_{1}^{*}=\left\{0, X^{*}\right.$, $\{a\}\}, \tau_{2}=\{0, X,\{c\}\}, \tau_{2}^{*}=\{0, X,\{b\},\{c\},\{b, c\}\}$ and $\leq=\{(a, a),(b, b)$, $(c, c),(a, b),(a, c),(c, b)\}=\leq^{*}$. Define $h:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$ by $h(a)=b, h(b)=a$, and $h(c)=c$, where h is pairwise I-continuous but not a pairwise B-continuous map.

Thus we have the following diagram:

f is pairwise B-continuous

Figure 1.

For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, where $P \rightarrow Q$ (resp., $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

The following theorem characterizes pairwise I-continuous maps.
Theorem 3.5. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) fis pairwise I-continuous.
(2) $f\left(H_{i}^{l}(A)\right) \subseteq \overline{(f(A))}_{i}$ for any $A \subseteq X, \quad i=1,2$.
(3) $H_{i}^{l}\left(f^{-1}(B)\right) \subseteq f^{-1}(\bar{B})_{i}$ for any $B \subseteq X^{*}, \quad i=1,2$.
(4) For every τ_{i}^{*}-closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is a τ_{i}-decreasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Proof. (1) \Rightarrow (2): Since $X^{*} \backslash \overline{(f(A))_{i}}$ is τ_{i}-open in X^{*} and f is pairwise I-continuous, then $f^{-1}\left(X \backslash \overline{(f(A))_{i}}\right)$ is a τ_{i}-increasing open set in X. Then $X \backslash f^{-1}\left(X \backslash \overline{(f(A))_{i}}\right)$ is a τ_{i}-decreasing closed subset of X. Since $\quad X \backslash f^{-1}\left(X \backslash \overline{(f(A))_{i}}\right)=f^{-1}\left(\overline{(f(A))_{i}}\right)$, then $f^{-1}\left(\overline{(f(A))_{i}}\right)$ is a τ_{i}-decreasing closed subset of X. Since $A \subseteq f^{-1}\left(\overline{(f(A))_{i}}\right)$ and is the smallest τ_{i}-decreasing closed set containing A, then $H_{i}^{l}(A) \subseteq f^{-1}$ $\left(\overline{(f(A))_{i}}\right) . f\left(f^{-1}\left(\overline{(f(A))_{i}}\right) \subseteq \overline{(f(A))_{i}}\right.$. Thus $H_{i}^{l}(A) \subseteq \overline{(f(A))_{i}}$.
(2) \Rightarrow (3): Let $A=f^{-1}(B)$. Then $f(A)=f\left(f^{-1}(B)\right) \subseteq B$. This implies $(\overline{f(A)})_{i} \bar{B}_{i} . \quad$ Now $\quad H_{i}^{l}\left(f^{-1}(B)\right) \subseteq H_{i}^{l}(A) \subseteq f^{-1}\left(f\left(H_{i}^{l}(A)\right)\right) \subseteq f^{-1}(\overline{f(A)})_{i}$ [by (2) in this Theorem 3.5]. But $f^{-1}(\overline{f(A)})_{i} \subseteq f^{-1}\left(\bar{B}_{i}\right)$. Thus $H_{i}^{l}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(\bar{B}_{i}\right)$.
(3) \Rightarrow (4): $\quad H_{i}^{l}\left(f^{-1}(K)\right) \subseteq f^{-1}\left(\bar{K}_{i}\right)$ for any τ_{i}^{*}-closed set K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. Thus $f^{-1}(K)$ is a τ_{i}-decreasing closed in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$, whenever K is a τ_{i}^{*}-closed set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$.
(4) $\Rightarrow(1)$: Let G be a τ_{i}^{*}-open set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. Then $f^{-1}(X \backslash(G))$ is a τ_{i}-decreasing closed set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$, since $X^{*} \backslash(G)$ is a closed set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. But $X \backslash\left(f^{-1}(G)\right)=f^{-1}(X \backslash G)$. Thus $X \backslash\left(f^{-1}(G)\right)$ is a τ_{i}-decreasing closed set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. So $f^{-1}(G)$ is a τ_{i}-increasing open set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. Thus f is pairwise I-continuous.

The following two theorems characterize pairwise D-continuous maps and pairwise B-continuous maps, whose proofs are similar to as that of the above Theorem 3.5.

Theorem 3.6. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise D-continuous.
(2) $f\left(H_{i}^{m}(A)\right) \subseteq \overline{(f(A))}_{i}$ for any $A \subseteq X, \quad i=1,2$.
(3) $H_{i}^{m}\left(f^{-1}(B)\right) \subseteq f^{-1}(\bar{B})_{i}$ for any $B \subseteq X^{*}, \quad i=1,2$.
(4) For every τ_{i}^{*}-closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is a τ_{i}-increasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Theorem 3.7. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise B-continuous.
(2) $f\left(H_{i}^{b}(A)\right) \subseteq \overline{(f(A))}_{i}$ for any $A \subseteq X, \quad i=1,2$.
(3) $H_{i}^{b}\left(f^{-1}(B)\right) \subseteq f^{-1}(\bar{B})_{i}$ for any $B \subseteq X^{*}, \quad i=1,2$.
(4) For every τ_{i}^{*}-closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is both τ_{i}-increasing and τ_{i}-decreasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Theorem 3.8. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, \nu_{1}, \nu_{2}, \leq_{2}\right)$ and $g:\left(y, \nu_{1}\right.$, $\left.\nu_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous and g is pairwise continuous for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous and g is pairwise y-continuous for $x, y \in\{I, D, B\}$.

4. Pairwise I-open, Pairwise D-open and Pairwise B-open Maps

Definition 4.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ is called a pairwise I-open (resp., a pairwise D-open, a pairwise B-open) map if $f(G) \in \Omega\left(O_{i}^{m}\left(X^{*}\right)\right)$ (resp., $f(G) \in \Omega\left(O_{i}^{l}\left(X^{*}\right)\right), f(G) \in \Omega\left(O_{i}^{b}\left(X^{*}\right)\right)$, whenever G is a τ_{i}-open subset of $\left(X, \tau_{1}, \tau_{2}\right), i=1,2$.

It is evident that every pairwise x-open map is a pairwise open map for $x=I, D, B$ and that every pairwise B-open map is both pairwise I-open and pairwise D-open.

The following example shows that a pairwise open map need not be pairwise x-open for $x=I, D, B$.

Example 4.2. Let $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ and f be as in the Example 3.2, f is a pairwise open map but f is not pairwise x-open for $x=I, D, B$.

The following example shows that a pairwise D-open map need not be a pairwise B-open map.

Example 4.3. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*} \leq$ and \leq^{*} be as in the Example 3.3. Let θ be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ onto $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right), \theta$ is pairwise D-open but not a pairwise B-open map.

The following example shows that a pairwise I-open map need not be a pairwise B-open map.

Example 4.4. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$ and \leq^{*} be as in the Example 3.4. Define $\varphi:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ by $\varphi(a)=b$, $\varphi(b)=a$, and $\varphi(c)=c, \varphi$ is a pairwise I-open map but not a pairwise B-open map.

Thus we have the following diagram:

Figure 2.

For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$, where $P \rightarrow Q$ (resp., $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

Before characterizing pairwise I-open (resp., pairwise D-open, pairwise B-open) maps, we establish the following useful lemma:

Lemma 4.5. Let A be any subset of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. Then
(1) $X \backslash H_{i}^{l}(A)=O_{i}^{m}(X \backslash A), \quad i=1,2$.
(2) $X \backslash H_{i}^{m}(A)=O_{i}^{l}(X \backslash A), \quad i=1,2$.
(3) $X \backslash H_{i}^{b}(A)=O_{i}^{b}(X \backslash A), \quad i=1,2$.

Proof. (1) $X \backslash H_{i}^{l}(A)=X \backslash \bigcap\left\{F \mid F\right.$ is a τ_{i}-decreasing closed subset of X containing $A\}=\bigcup\left\{X \backslash F \mid F\right.$ is a τ_{i}-decreasing closed subset of X containing $A\}=\bigcup\left\{G \mid G\right.$ is a τ_{i}-increasing open subset of X contained in $X \backslash A\}=O_{i}^{m}(X \backslash A)$.

The proofs for (2) and (3) are analogous to that of (1) and so omitted.

The following theorem characterizes pairwise I-open functions.

Theorem 4.6. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is a pairwise I-open map.
(2) $f\left(A_{i}^{o}\right) \subseteq O_{i}^{m}(f(A))$ for any $A \subseteq X, i=1,2$.
(3) $\left(f^{-1}(B)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(B)\right)$ for any $B \subseteq X^{*}, i=1,2$.
(4) $f^{-1}\left(H_{i}^{l}(B)\right) \subseteq H_{i}^{l}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, i=1,2$.

Proof. (1) \Rightarrow (3): Since $\left(f^{-1}(B)\right)_{i}^{o}$ is τ_{i}-open in X and f is pairwise I-open, then $f\left(\left(f^{-1}(B)\right)_{i}^{o}\right)$ is a τ_{i}-increasing open set in X^{*}. Also $f\left(f^{-1}(B)\right)_{i}^{o} \subseteq f\left(f^{-1}(B)\right) \subseteq B$. Then $f\left(f^{-1}(B)\right)_{i}^{o} \subseteq O_{i}^{m}(B)$ since $O_{i}^{m}(B)$ is the largest τ_{i}-increasing open set contained in B. Therefore $\left(f^{-1}(B)\right)_{i}^{o}$ $\subseteq f^{-1}\left(O_{i}^{m}(B)\right)$.
$(3) \Rightarrow$ (4): Replacing B by $X \backslash B$ in (3), we get $\left(f^{-1}(X \backslash B)\right)_{i}^{o} \subseteq$ $f^{-1}\left(O_{i}^{m}(X \backslash B)\right)$. Since $f^{-1}(X \backslash B)=X \backslash\left(f^{-1}(B)\right)$, then $\left(X \backslash\left(f^{-1}(B)\right)\right)_{i}^{o}$ $\subseteq f^{-1}\left(O_{i}^{m}(X \backslash B)\right)$. Now $X \backslash\left(H_{i}^{l}\left(f^{-1}(B)\right)\right)=O_{i}^{m}\left(X \backslash\left(f^{-1}(B)\right)\right) \subseteq(X \backslash$ $\left.\left(f^{-1}(B)\right)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(X \backslash(B))\right)=f^{-1}\left(X \backslash\left(H_{i}^{l}(B)\right)\right)=X \backslash\left(f^{-1}\left(H_{i}^{l}(B)\right)\right)$ using the above Lemma 4.5. Therefore $f^{-1}\left(H_{i}^{l}(B)\right) \subseteq H_{i}^{l}\left(f^{-1}(B)\right)$.
$(4) \Rightarrow(3)$: All the steps in $(3) \Rightarrow(4)$ are reversible.
(3) $\Rightarrow(2)$: Replacing B by $f(A)$ in (3), we get $\left(f^{-1}(f(A))\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}\right.$ $(f(A)))$. Since $A_{i}^{o} \subseteq\left(f^{-1}(f(A))\right)_{i}^{o}$, then we have $A_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(f(A))\right)$. This implies that $f\left(A_{i}^{o}\right) \subseteq f\left(f^{-1}\left(O_{i}^{m}(f(A))\right)\right) \subseteq O_{i}^{m}(f(A))$. Hence $f\left(A_{i}^{o}\right)$ $\subseteq O_{i}^{m}(f(A))$.
$(2) \Rightarrow(1)$: Let G be any τ_{i}-open subset of X. Then $f(G)=f\left(G_{i}^{o}\right) \subseteq$ $O_{i}^{m}(f(G))$. So $f(G)$ is a τ_{i}^{*}-increasing open set in X^{*}. Therefore f is a pairwise I-open map.

The following two theorems give characterizations for D-open maps and B-open maps, whose proofs are similar to as that of the above Theorem 4.6.

Theorem 4.7. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) fis a pairwise D-open map.
(2) $f\left(A_{i}^{o}\right) \subseteq O_{i}^{l}(f(A))$ for any $A \subseteq X, \quad i=1,2$.
(3) $\left(f^{-1}(B)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{l}(B)\right)$ for any $B \subseteq X^{*}, \quad i=1,2$.
(4) $f^{-1}\left(H_{i}^{m}(B)\right) \subseteq H_{i}^{m}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, \quad i=1,2$.

Theorem 4.8. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is a pairwise B-open map.
(2) $f\left(A_{i}^{o}\right) \subseteq O_{i}^{b}(f(A))$ for any $A \subseteq X, \quad i=1,2$.
(3) $\left(f^{-1}(B)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{b}(B)\right)$ for any $B \subseteq X^{*}, \quad i=1,2$.
(4) $f^{-1}\left(H_{i}^{b}(B)\right) \subseteq H_{i}^{b}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, \quad i=1,2$.

Theorem 4.9. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, \nu_{1}, \nu_{2}, \leq_{2}\right)$ and $g:\left(y, \nu_{1}\right.$, $\left.\nu_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if f is pairwise open and g is pairwise x-open for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if both f and g are pairwise x-open for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if f is pairwise y-open and g is pairwise x-open for $x, y \in\{I, D, B\}$.

Proof. Omitted.

5. Pairwise I-closed, Pairwise D-closed and Pairwise B-closed Maps

Definition 5.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ is called a pairwise I-closed (resp., a pairwise D-closed, a pairwise B-closed) map if $f(G) \in \Omega\left(H_{i}^{m}\left(X^{*}\right)\right)\left(\right.$ resp., $f(G) \in \Omega\left(H_{i}^{l}\left(X^{*}\right)\right), f(G) \in \Omega\left(H_{i}^{b}\left(X^{*}\right)\right)$), whenever G is a τ_{i}-open subset of $\left(X, \tau_{1}, \tau_{2}\right)$, where $\Omega\left(H_{i}^{m}\left(X^{*}\right)\right)$ (resp., COmega $\left(H_{i}^{l}\left(X^{*}\right)\right), \Omega\left(H_{i}^{b}\left(X^{*}\right)\right)$ is the collection of all τ_{i}-increasing (resp., τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) closed subsets of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right), i=1,2$.

Clearly, every pairwise x-closed map is a pairwise closed map for $x=I, D, B$ and every pairwise B-closed map is both pairwise I-closed and pairwise D-closed. The following example shows that a pairwise closed map need not be pairwise x-closed for $x=I, D, B$.

Example 5.2. Let $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ and f be as in the Example 3.2, f is a pairwise closed map but f is not pairwise x-closed for $x=I, D, B$.

The following example shows that a pairwise I-closed map need not be a pairwise B-closed map.

Example 5.3. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}$, \leq and \leq^{*} be as in the Example 4.3, θ is pairwise I-closed but not a pairwise B-closed map.

The following example shows that a pairwise I-closed map need not be a pairwise B-closed map.

Example 5.4. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq, \leq^{*}$ and φ be as in the Example 4.4, φ is a pairwise D-closed map but not a pairwise B-closed map.

Thus we have the following diagram:

Figure 3.

For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$, where $P \rightarrow Q$ (resp., $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp., P and Q are independent of each other).

The following theorem characterizes I-closed maps.
Theorem 5.5. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise I-closed if and only if $H_{i}^{m}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Necessity: Since f is pairwise I-closed, then $f\left(\bar{A}_{i}\right)$ is a τ_{i}-increasing closed subset of X and $f(A) \subseteq f\left(\bar{A}_{i}\right)$. Therefore $H_{i}^{m}(f(A))$ $\subseteq f\left(\bar{A}_{i}\right)$ since $H_{i}^{m}(f(A))$ is the smallest τ_{i}-increasing closed set in X^{*} containing $f(A)$.

Sufficiency: Let F be any τ_{i}-closed subset of X. Then $f(F) \subseteq$ $H_{i}^{m}(f(F)) \subseteq f\left(\bar{F}_{i}\right)=f(F)$. Thus $f(F)=H_{i}^{m}(f(F))$. So $f(F)$ is a τ_{i}-increasing closed subset of X^{*}. Therefore f is a pairwise I-closed map.

The following two theorems characterize pairwise D-closed maps and pairwise B-closed maps.

Theorem 5.6. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise D-closed if and only if $H_{i}^{l}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Omitted.
Theorem 5.7. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise B-closed if and only if $H_{i}^{b}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Omitted.

Theorem 5.8. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then
(1) f is pairwise I-open if and only if f is pairwise D-closed.
(2) f is pairwise I-closed if and only if f is pairwise D-open.
(3) f is pairwise B-open if and only if f is pairwise B-closed.

Proof. (1) Necessity: Let F be any τ_{i}-closed subset of X. Then $f(X \backslash F)$ is a τ_{i}^{*}-increasing open subset of X^{*} since f is a pairwise I-open map and $(X \backslash F)$ is a τ_{i}-open subset of X. Since f is a pairwise
bijection, then we have $f(X \backslash F)=X \backslash(f(F))$. So $f(F)$ is a τ_{i}^{*}-decreasing closed subset of X^{*}. Therefore f is a pairwise D-closed.

Sufficiency: Let G be any τ_{i}-open subset of X. Then $f(X \backslash G)$ is a τ_{i}-decreasing closed subset of X^{*} since f is a pairwise D-closed map and $(X \backslash G)$ is a τ_{i}-closed subset of X. Since f is a pairwise bijection, then we have that $f(X \backslash G)=X \backslash f(G)$. So $f(G)$ is a τ_{i}-increasing open subset of X^{*}. Therefore f is a pairwise I-open map.

The proofs for (2) and (3) are similar to that of (1).
Theorem 5.9. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, \nu_{1}, \nu_{2}, \leq_{2}\right)$ and $g:\left(y, \nu_{1}\right.$, $\left.\nu_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if f is pairwise closed and g is pairwise x-closed for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if both f and g are pairwise x-closed for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if f is pairwise y-closed and g is pairwise x-closed for $x, y \in\{I, D, B\}$.

Theorem 5.10. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) fis a pairwise I-open map.
(2) fis a pairwise D-closed map.
(3) f^{-1} is a pairwise I-continuous.

Theorem 5.11. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) fis a pairwise D-open map.
(2) fis a pairwise I-closed map.
(3) f^{-1} is a pairwise D-continuous.

Theorem 5.12. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) fis a pairwise B-open map.
(2) f is a pairwise B-closed map.
(3) f^{-1} is a pairwise B-continuous.

Theorem 5.13. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise I-closed map and $B, C \subseteq X^{*}$. Then
(1) If U is a τ_{i}-open neighbourhood of $f^{-1}(B)$, then there exists a τ_{i}-decreasing open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, $i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-decreasing open neighbourhoods, $i=1,2$.

Proof. (1) Let U be a τ_{i}-open neighbourhood of $f^{-1}(B)$. Take $X^{*} \backslash V=f(X \backslash U)$. Since f is a pairwise I-closed map and $(X \backslash U)$ is a τ_{i}-closed set, then $X^{*} \backslash V=f(X \backslash U)$ is a τ_{i}-increasing closed subset of X^{*}. Thus V is an τ_{i}-decreasing open subset of X^{*}. Since $f^{-1}(B) U$,
then $X^{*} \backslash V=f(X \backslash U) \subseteq f\left(f^{-1}\left(X^{*} \backslash B\right)\right) \subseteq X^{*} \backslash B$. So $B \subseteq V$. Thus V is a τ_{i}^{*}-decreasing open neighbourhood of B. Further $X \backslash U \subseteq f^{-1}$ $(f(X \backslash U))=f^{-1}\left(X^{*} \backslash V\right)=X^{*} \backslash\left(f^{-1}(V)\right)$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Theorem 5.14. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise D-closed map and $B, C \subseteq X^{*}$. Then
(1) If U is a τ_{i}-open neighbourhood of $f^{-1}(B)$, then there exists a τ_{i}-decreasing open neighbourhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, $i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-increasing open neighbourhoods, $i=1,2$.

Theorem 5.15. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise B-closed map and $B, C \subseteq X^{*}$. Then
(1) If U is $a \tau_{i}$-open neighbourhood of $f^{-1}(B)$, then there exists a τ_{i}-open neighbourhood V of B, which are both τ_{i}-increasing and τ_{i}-decreasing, such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U, i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-neighbourhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-open neighbourhoods, which are both τ_{i}-increasing and τ_{i}-decreasing, $i=1,2$.

References

[1] L. Nachbin, Topology and Order, D. Van Nostrand Inc., Princeton, New Jersey, 1965.
[2] T. G. Raghavan, Quasi-ordered bitopological spaces, The Mathematics Student XLI (1973), 276-284.
[3] T. G. Raghavan, Quasi-ordered bitopological spaces II, Kyungpook Math. J. 20 (1980), 145-158.
[4] M. K. Singal and A. R. Singal, Bitopological ordered spaces, The Mathematics Student XXXIX (1971), 440-447.
[5] M. K. R. S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica XXVIII $\{\mathrm{M}(1)\}$ (2002), 67-76.

