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Abstract 

The purpose of this paper is to introduce and establish some properties of analytic 
functions of square complex matrices such as Cauchy-Riemann equations. Besides, 
we discuss matrix real integration, complex integration, and Cauchy integral 
formula for these functions and for functions of several square commutative 
complex matrices. 
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1. Introduction 

Matrix theory is a fundamental area of mathematics with applications 
not only to many branches of mathematics but also to science and 
engineering. It is a connection to many different branches of mathematics 
(c.f., e.g., [1, 6, 7, 9, 10]). In this paper, we study some properties for 
analytic functions of square complex matrices. We derive a necessary and 
sufficient condition for the matrix function to be analytic. Besides, we 
discuss matrix real integration, complex integration of matrix functions, 
and Cauchy’s integral formula for functions of single complex matrix and 
for functions of several square commutative complex matrices. 

We shall now introduce certain symbols which will be useful in our 
work. Throughout this paper, consider the complex space NN×C  of 
complex matrices of common order N. The symbol a  will denote a 
matrix, all elements of which are equal to the number a. The symbol X  
will denote a matrix whose elements are equal to the moduli of the 
elements ( ) Njizxij ,,2,1,, …=  of the matrix X, i.e., 

{ } { } .ijij XX =  

If a certain matrix Y has positive elements which are greater than 
the elements of the matrix ,X  we shall write this down in the form of an 
inequality 

.YX <  

In the other words, this inequality is equivalent to the following system 
of 2N  inequalities: 

{ } { } .,,2,1,, NjiYX ijij …=<  

The symbol for the quotient of two matrices B
A  does not have a definite 

meaning. We interpret it as in [5] two ways; as the product 1−AB  or 
;1AB−  these products are in general distinct, it is only in an exact 

significance and this can be obtained when BBAAB ;=  is non-singular. 
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Definition 1.1. Let the matrix function ( ) [ ( )] ,1,;; == jizxXXf ij  

,,,3,2 N…  be a square complex matrix whose its elements are functions 

of the complex variable z. The limit of this function is defined as follows: 

( ) [ ( )].limlim
00

zfXf ijzzzz →→
=  (1.1) 

If, 

( ) ( ) .lim;lim
00

BXGAXf
zzzz

==
→→

 

Then, 

( ) ( ) ( ) ( ) ,.lim;.lim
00

ABXfXGBAXGXf
XXXX

==
→→

 

and 

( ) ( ){ } .,;lim
0

C∈+=+
→

babBaAXbGXaf
XX

 

If, [ ( )] [ ( )]zyYzxX ijij == ,  are two commutative matrices in region  

( ),; NN×⊂ CDD  

.lim;lim
00

ijijzzijijzz
byax ==

→→
 

Then 

[ ] [ ].limlimlim
000 11

sjiszz

N

s
sjiszz

N

s
zz

xyyxXYAB
→

=
→

=
→ ∑∑ ===  

Definition 1.2. Let ( )Xf  be matrix function of the square complex 

matrix { ( )},zxX ij=  we say that ( )Xf  is continuous in a region ,D  if 

( ) ( ) ,0lim
0

=−+
→

XfhIXf
h

  (1.2) 

where I is the unit matrix associated with the square complex matrix X. 
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Suppose that [ ( )]zxX ij=  is a square complex matrix of finite order 

N, whose elements are functions of the complex variable z. The derivative 

fdX
d  of the matrix function ( )Xf  will be defined as follows (c.f. [5]): 

( ) ( ) .,;;lim 21210
ℜ∈+=−+=

→
hhihhhh

XfhIXffdX
d

h
 (1.3) 

Theorem 1.1. If ( )Xf  is differentiable with respect to X in ,D  then 

( )Xf  is continuous in ,D  but the converse is not true. 

Proof.  

( ) ( )[ ] ( ) ( ) ,0limlimlim
000

=×



 −+=−+

→→→
hh

XfhIXfXfhIXf
hhh

 

therefore, the matrix function ( )Xf  is continuous.  

To show that the converse is not true consider the following example: 

Example 1.1. ( ) XXf =  is continuous but no where differentiable, 

X  denotes to the conjugate of X. 

Proof.  

( ) ( ) ( ) ( ) ( ) ,h
hI

h
XhIX

h
XfhIXf =−+=−+  

where ( )
h
hI

h 0lim →  does not exist. Therefore ( ) XXf =  is not differen- 

tiable.  

Theorem 1.2. Let ( )Xf  be a matrix function differentiable with 

respect to X in D and invertible. Then ( )Xf 1−  is also differentiable, and 

( ) ( ) ( ( )) ( ).111 XfXfdX
dXfXfdX

d −−− −=  
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Proof. The following identity can be easily verified: 

( ) ( ) ( ) ( ) ( )[ ] ,1111 −−−− +−+=−+ fhIXfXfhIXfXfhIXf   (1.4) 

where 

( ) ( ) ( ) .lim
0 h

XfhIXfXfdX
d

h
−+=

→
 

Dividing both sides of (1.4) by h and taking the limit as ,0→h  we get 

( ) ( ) ( ) ( ) ( )[ ] ( ) ,limlim
11

0

11

0 






 +−+
=

−+ −−

→

−−

→ h
XfhIXfXfhIXf

h
XfhIXf

hh
 

and 

( ) ( ) ( ( )) ( ).111 XfXfdX
dXfXfdX

d −−− −=  

 

2. Cauchy-Riemann Matrix Equations 

Theorem 2.1. The necessary condition for the matrix function ( )Xf  

to differentiable in the region D  is that 

,
α∂
∂−=

β∂
∂

β∂
∂=

α∂
∂ vuandvu  (2.1) 

where ( ) ( ) ( ) [ ( )] [ ( ) ( )] ,,,,,, β+α=β+α==βα+βα= iyxiyxzxXivuXf ijijij  

α  and β  are commutative matrices for all .D∈z  

Proof. Suppose that the matrix function ( )Xf  is differentiable in the 

region ,D  then according to (1.3), we get 

( ) ( ) ( ) ,,;;lim 21210
ℜ∈+=−+=′

→
hhihhhh

XfhIXfXf
h

 (2.2) 
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and 

( ) ( ) ( )
21

21
0

,,lim
21 ihh

uIhIhuXf
ihh +

βα−+β+α
=′

→+
 

( ) ( ) .,,lim
21

21
021 ihh

vIhIhvi
ihh +

βα−+β+α
+

→+
 

Since the limit is assumed to exist, h can approach zero from any 
convenient direction. In particular, if we choose to let ,0→h  through 

real part direct of the complex matrix X so that 02 =h  and ,1hh =  then 

( ) ( ) ( )
1

1
01

lim h
XfIhXfXf

h
−+

=′
→

 

( ) ( )
1

1
0

,,lim 1 h
uIhu

h
βα−β+α

= →  

( ) ( ) ,,,lim
1

1
01 h

vIhvi h
βα−β+α

+ →  

( ) .
α∂
∂+

α∂
∂=′ viuXf  (2.3) 

Now, let 0→h  through imaginary part direct of the complex matrix X 
so that 01 =h  and ,2hh =  and ( )Xf ′  can be written in the form: 

( ) ( ) ( )
2

2
02

lim ih
XfIhXfXf

hi
−+

=′
→

 

( ) ( )
2

2
0

,,lim
2 ih

uIhu
h

βα−+βα
=

→
 

( ) ( )
2

2
0

,,lim
2 hi

vIhvi
h

βα−+βα
+

→
 

( ) ( )
,

,,
i

v
ii

u βα
+

βα
= ββ  
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thus, 

( ) .
β∂
∂+

β∂
∂−=′ vuiXf  (2.4) 

From (2.3) and (2.4), it follows that 

,
β∂
∂+

β∂
∂−=

α∂
∂+

α∂
∂ vuiviu  

i.e., 

.and
α∂
∂−=

β∂
∂

β∂
∂=

α∂
∂ vuvu  

 

To show that the matrix function ( )Xf  may not be differentiable at 

the matrix [ ( )] 000 ; zzzxX ij ==  although Cauchy-Riemann equations 

are satisfied at ,; 0zzX =  consider the following example: 

Example 2.1. Let 

( )






=

≠
β+α

αβ
=

××

×

,0if,0

,0if,

2222

2222

X

X
Xf  

where 

,,
2

2
,

3

3
β+α=














=β














=α iX

yy

yy

xx

xx
 

we see that 

( ) ( ) ( ) ( ) ( ) .0,00,,,00, =β=α=βα=β=α vvvuu  

Thus, 

( ) ( ) ( ) .00,00,lim0,0
0

=
−+α

=
→α h

uhIuu
h

 

Similarly, ( ) ( ) ,00,0,00,0 == αβ vu  and ( ) .00,0 =βv  



M. A. ABUL-DAHAB and Z. M. KISHKA 112

Thus, the Cauchy-Riemann equations are satisfied at [ ( )] ;00 == ijxX  

i.e., when .0=z  Now, it can be easily seen that the matrix function 
( )Xf  is not differentiable at the matrix [ ( )] 00 == ijxX  because 

( ) ( ( )) 22000
limlimlim

β+α

αβ==
→+→→ iyxijzX

zxfXf  














+











































=
→+

22

22

22

220

54

45

106

610
2

2
.

3

3

lim

yy

yy

xx

xx
yy

yy

xx

xx

iyx
 

,

54

45

106

610
2

2
.

13

31

22

22














+











































=

mm

mm
mm

mm

 

we have used the general path .mxy =  Thus, the matrix function ( )Xf  

given in Example 2.1 is not differentiable at the matrix 0=X  as 
required. 

In the following theorem, we prove that Cauchy-Riemann equations 
with the continuity of the first partial derivatives give a sufficient 
condition for differentiability of the complex matrix function 

( ) ( ) ( ).,, βα+βα= ivuXf  

Theorem 2.2. Let ( ) ( ) ( )βα+βα= ,, ivuXf  be a matrix function 

defined in a domain D  such that the first order partial derivatives 
,,, αβα vuu  and βv  are continuous in .D  If the first order partial 

derivatives of vu,  satisfy the Cauchy-Riemann equations at 0X  in ,D  

then f is differentiable at 0X  in .D  
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Proof. Since ( )βα,u  and its first order partial derivatives are 

continuous in D, we have 

( ) ( )βα−+β+α ,, 21 uIhIhu  

,222111  huhhuh +++= βα  (2.5) 

where 01 →  and 02 →  as 01 →h  and .02 →h  

Similarly, 

( ) ( )βα−+β+α ,, 21 vIhIhv  

,422311  hvhhvh +++= βα  (2.6) 

where 03 →  and 04 →  as 01 →h  and .02 →h  

Then 

( ) ( ) ( ) ( )[ βα−+β+α=−+ ,,1
21 uIhIhuhh

XfhIXf  

( ) ( )].,, 21 βα−+β+α+ vIhIhiv  

Using (2.5) and (2.6), we get 

( ) ( ) { ( ) ( )}[ 22211121 ,,1 hhhhuhuhhh
XfhIXf α+α++=−+

βα   

{ ( ) ( )}]24213121 ,, hhhhvhvhi α+α+++ βα   

( ) ( )[ ],1
2121 η+ζ++++= ββαα hhivuhivuhh  

where 31  i+=ζ  and 42  i+=η  

.0lim,0lim
0,00,0 2121

=η=ζ
→→→→ hhhh

 

Using Cauchy-Riemann equations, we get 

,and
α∂
∂−=

β∂
∂

β∂
∂=

α∂
∂ vuvu  
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( ) ( ) ( )[ ]η+ζ++=−+
αα 21

1 hhivuhhh
XfhIXf  

.21 η+ζ++= αα h
h

h
hivu  

Now, since 1,1 21 ≤≤ h
h

h
h  and 

{ .as0 0
0

21 1
2
→
→→η+ζ≤

η+ζ h
hh

hh  

Hence, 

( ) ( ) .lim
0 αα→

+=−+ ivuh
XfhIXf

h
 

Therefore ( )Xf  is differentiable.  

3. Matrix Real Integration 

Definition 3.1. Suppose that [ ( )]txX ij=  is a square matrix; ,bta ≤≤  

ℜ∈ba,  such that 

[ ],,;.. batXdt
dX

dt
dXX ∈=  

( ) ( ) ( ) [ ].,;lim
0

bath
XfhIXfXf

h
∈−+=′

→
 

Then 

( ) ( ) ( )dtXfdt
ddtdt

dXXfdXXf
b

a

b

a

b

a ∫∫∫ =′=′  

[ ( )] [ ( )] ( ( )) ( ( ))axfbxftfdttfdt
d

ijij
b

atijij
b

a
−=== =∫  

( ) ( ).AFBF −=  
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Thus, we can write 

( ) ( ) ( ) ( ),AFBFdXXfdXXf
B

A

b

a
−=′=′ ∫∫  

where [ ( )]axA ij=  and [ ( )].bxB ij=  

Example 3.1. Evaluate the following integration: 

.
cos1

1cos
.sin1

1sin

2

dt
t

t
e tt

tt

t 

























+

+

π

=∫ π
 

Solution. 

π

=















+

+















+

+

π

=

π

π





















=














∫
2

2

sin1

1sin

sin1

1sin

cos1

1cos
.

t

tt

tt

tt

tt

t
edt

t

t
e  

.
11

11

01

10

2

2

















+

+















+π

+π

π

π

−= ee  

If 

[ ].,;.. batXdt
dX

dt
dXX ∈=/  

Then 

( ) ( ) ( ) ( ).AFBFdXXfdXXf
B

A

b

a
−=/′=′ ∫∫  

According to the following example: 

Example 3.2. 

,
44

11
;

11

3344 












=














=

ttdt
dX

tt
X  

,.. Xdt
dX

dt
dXX =/  
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,
11

8484

44
2















++

++
=

tttt

tt
X  

{ } ,
22

11

00

11

22

22
1

0
2














=














−














==tX  

,
44

44
2

44

11
.

11
2.2

77

33

3344 












=




























=

tt

tt

ttttdt
dXX  

,
11

22

0

1
22

2.2
88

441

0

1

0 












=

=













== ∫∫

ttt

tt
XdXdtdt

dXX  

i.e., 

( ) ( ) ( ) ( ).AFBFdXXfdXXf
B

A

b

a
−=/′=′ ∫∫  

Now, we will derive some properties of definite integration of matrix 
functions. 

(i) Suppose that ( )txX ij=  is a square real matrix whose elements 

are odd functions, i.e., 

( ) ( ) .,,3,2,1,; Njitxtx ijij …=−=−  

Then 

( ) ( ) ( )dXXfdXXfdXXf
a

a

a

a ∫∫∫ +=
−− 0

0
 

( ) ( )dXXfdXXf
A

A ∫∫ +=
− 0

0
 

( )

( ) ( )






=
∫ .infunctionevenis;2

,infunctionoddis;0

0
XXfdXXf

XXf
A  
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Example 3.3. Evaluate the following integrations: 

(i) 

.

111

111

111

,;

35

53

53

221

1




















=





















== ∫∫ −−
A

ttt

ttt

ttt

XdXXdXX nA

A
n  

(ii) 

.

sinh3sin

sinh3sin

3sinsinh

;sin

5

5

5

21

1





















=∫−
ttt

ttt

ttt

XXdXX n  

Solution. (i) 

{ }Ax
nA

A
n

n
XdXXdXX 0

12
221

1 122
+

==
+

−− ∫∫  

.

111

111

111

12
3.2

111

111

111

12
2 2

12





















+
=





















+
=

+

nn
n

n

 

Solution. (ii) 

,0sin21

1
=∫− XdXX n  

where 0 is the zero matrix associated with the square complex matrix X. 

(ii)  ( ) ( ) ( ) .dXXfdXXfdXXf
A

B

B

A

b

a ∫∫∫ −==  

(iii)  ( ) ( ) ( ) ( ) ,dXXfdXXfdXXfdXXf
B

D

D

A

B

A

b

a ∫∫∫∫ +==  
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where [ ( )] [ ( )],, dxDaxA ijij ==  and [ ( )] .; bdabxB ij ≤≤=  

(iv)  ( ) ( ) ,
00

dXXAfdXXf
Aa

−= ∫∫  

where ,, XA  and dt
dX  are commutative matrices. 

4. Complex Integration of Matrix Functions 

Let [ ( )]zxX ij=  be a square complex matrix; Xiyxz ,+=  and dz
dX  

are commutative matrices on the curve Γ  in ,D  then 

( ) [ ];lim , ijnn
SdXXf

∞→Γ
=∫  

( ) [ ( ) ] ( ) .;
1

, dz
dXXfGZGS zijij

n

ijn =∆ζ= ∑
=

kk
k

 

Therefore, we obtain 

( ) { ( ) ( )} ( )β+αβα+βα= ∫∫ ΓΓ
iddivudXXf ,,  

{ } { },β+α+β−α= ∫∫ ΓΓ
vdduivddu  

where ,,,,, xyx ∂
β∂

∂
α∂

∂
α∂βα  and y∂

β∂  are commutative matrices on the 

curve .Γ  

Theorem 4.1. If the elements of matrix [ ( )]zxX ij=  are analytic 

functions on and inside a simple closed contour dz
dXX ,,Γ  are 

commutative matrices in ( )Xf,Γ  is differentiable in ,Γ  then 

( ) .0=Γ dXXfn  (4.1) 



ANALYTIC FUNCTIONS OF COMPLEX MATRICES 119

Proof. 

( ) ( ) { ( ) } .0=== ΓΓΓ dzzGdzdz
dXXfdXXf ijnnn  

 

Example 4.1. 

.

13sin

1sin3

3sin1

sin31

;0
1



























+

+

+

+

==
=

zezz

ezzz

zzze

zzez

XdXe

z

z

z

z

X
zn  

Example 4.2. Find the analytic matrix function in C whose real part 
is given by 

( ) ,;cos2, β+α=β+αβ=βα α iXeu  

where 

,

1cosh3coshsin

cosh1coshsin3

3coshsin1cos

coshsin3cos1



























+

+

+

+

=α

xyexyx

yexyxx

xyxxye

yxxyex

x

x

x

x

 

and 

.

sin3sinhcos

sinsinhcos3

3sinhcossin

sinhcos3sin



























=β

yyeyyx

yeyyxy

yyxyye

yxyyey

x

x

x

x
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Solution. 

( ) ( ) ;dXXfXf ′= ∫  

( ) .αα +=′ ivuXf  

According to Cauchy-Riemann equations, we have 

( ) [ ]β−α−β+β=−=′ αα
βα sin2cos2 eieiuuXf  

.2iXeX −=  

Thus 

( ) ( ) .2 2iXedXiXeXf XX −=−= ∫  

Remark 4.1. In the previous example, the matrices ,,, αdz
dXX  and 

β  are supposed to be commutative matrices. 

Lemma 4.1. 

( ) [ ( ){ } ] [ ] ,MLLMdXXfdXXf ijij =≤= ΓΓ nn  (4.2) 

where 

[ ] { ( ) [ ( )] },,;maxmax
,,

CM ∈==== zzxXXfMM ijijjiijji
 

and L is the length of .Γ  

Proof. By definition of M, we have 

( ){ } .,allfor C∈≤ zXMXf ij  

Now, 

( ) [ ( ){ } ]ijdXXfdXXf ΓΓ = nn  
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 { ( ) }ijdzdz
dXXf

Γ
≤ n  

 { ( )} { } dzdz
dXXf ijij

Γ
= n  

 { } .MLdzdz
dXM ijij =≤

Γn  

 

5. Cauchy Integral Formula for Complex  
Matrix Functions 

Theorem 5.1. Suppose that [ ( )] ,,,3,2,1,; NjizxX ij …==  and let 

( )Xf  be function analytic on and inside the closed contour Γ  that encloses 

,0z  then 

(i) [ ( )] ( ) NjizxzxX ijij ,,2,1,,; …==  are analytic functions of the 

complex variable z in .D  

(ii) ( ) ( )
h

XfhIXf
h

−+
→0lim  exists for all z in .D  

(iii) X and dz
dX  are commutative matrices in ,D  we have 

( ) ( ) .2
1

0
0 dzzz

Xf
iXf

−π
=

Γn  (5.1) 

 

In general, 

( )( ) ( )( ) ( )
( )

,2
!

1
0

0
0

dz
zz
Xf

i
nXf

dz
dXf n

zz
ijn

n
n

+
Γ= −π

=







= n  (5.2) 

where Γ  is a simple closed contour in the domain .D  
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Proof. Choose a circle 1Γ  with center 0z  and radius 0r  such that 1Γ  

lies in the interior of ,Γ  it follows that 

( ) ( ) dzzz
Xfdzzz

Xf
010 −

=
− ΓΓ nn  

( ) ( ) ( ) dzzz
XfXfXf

ij

















−
+−

=
Γ 0

00

1n  

( ) ( ) ( )
dzzz

Xf
dzzz

XfXf ij

ij 0

0

10
0

1
−

+
















−
−

=
ΓΓ nn  

( ) ( ) ( )
01

0
0

0

1 zz
dzXfdzzz

XfXf
ij

ij −
+

















−
−

=
ΓΓ nn  

( ) ( ) ( ) ( ).20
0

0

1
iXfdzzz

XfXf
ij

ij
π+

















−
−

=
Γn  

Thus, 

( ) ( ) ( ) ( ) ( ).20
0

0

10
iXfdzzz

XfXfdzzz
Xf

ij
ij

π+
















−
−

=
− ΓΓ nn  (5.3) 

Since ( )Xf  is function analytic in and on Γ , it is continuous at 

[ ( )].00 zxX ij=  

From [5] given ,0>ε  there exists 0>δ  such that 

[ { } ] [ ( ) ( ){ } ] .00 ε<−⇒δ<− ijij XfXfXX  

If we choose ,0 δ<r  then 

[ { } ] [ ( ) ( ){ } ] .000 ε<−⇒<− ijij XfXfrXX  

By Lemma 4.1, we have 

( ) ( ) ( ) ( ) .22 0
00

0

1
πε=πε<

















−
−

Γ
rrdzzz

XfXf
ijn  



ANALYTIC FUNCTIONS OF COMPLEX MATRICES 123

Since ε  is arbitrary, we have 

( ) ( ) .0
0

0

1
=

















−
−

Γ
dzzz

XfXf
ijn  

From (5.3), we get 

( ) ( ) ,2
1

0
0 dzzz

Xf
iXf

−π
=

Γn  

therefore 

( ) ( )
( ) ( )dzXfzzhzzhih

XfIhXf






−
−

+−π
=

−+

Γ 00
00 11

2
1

n  

( ) ( )( ) ( ) ( )dzXfzzhzz
h

ih 





−+−π
=

Γ 002
1

n  

( )
( )

( )( ) ( )
( )dzXf

zzhzz
zz

i 











−+−

−
π

=
Γ 2

00

0
2
1

n  

( )
( )
( )( ) ( )

( )dzXf
zzhzz

hhzz
i 












−+−

+−−
π

=
Γ 2

00

0
2
1

n  

( )
( ) ( )[ ]
( )( ) ( )

( )dzXf
zzhzz
hhzz

i 











−+−

+−−
π

=
Γ 2

00

0
2
1

n  

( )
( )

( ) ( )
( )

( )( ) ( )
.22

1
2

00
2

0
dz

zzhzz
Xf

i
hdz

zz
Xf

i −+−π
+

−π
=

ΓΓ nn  

Thus 

( ) ( )
( )

( )
( )

dz
zz
Xf

ih
XfhIXf

2
0

00
2
1

−π
−

−+

Γn  

( )
( )

( )( ) ( )
.2 2

00
dz

zzhzz
Xf

i
h

−+−Γπ
= n  (5.4) 
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Now, let M  denote the maximum value of ( )Xf  on .Γ  Let L be the 

length of Γ  and we choose h so small such that ,2
ε<h  we have 

.2200
ε=ε−ε>−−≥−− hzzhzz  

Hence 

( )
( )

( )( ) ( ) ( ) ( )
.

222 22
00

εεπ
≤

−+−π Γ

MLhdz
zzhzz

Xf
i

h
n  

From (5.4), we have 

( ) ( )
( )

( )
( ) ( )

,2
1

32
0

00
επ

≤
−π

−
−+

Γ

MLhdz
zz
Xf

ih
XfhIXf

n  

taking limit as ,0→h  we get 

( ) ( )
( )

( )
( )

,02
1lim 2

0

00
0

=












−π
−

−+

Γ→
dz

zz
Xf

ih
XfhIXf

h n  

( ) ( )
( )

( )
( )

dz
zz
Xf

ih
XfhIXf

h 2
0

00
0 2

1lim
−π

=
−+

Γ→ n ( ).0Xf ′=  

Similarly, it can be shown that ( )0Xf ′′  is analytic function of ,0X  we get 

( ) ( )
( )

( )
.2

!2
3

0
0 dz

zz
Xf

iXf
−π

=′′
Γn  

By using mathematical induction on n, we can prove that for any positive 
integer n, that 

( )( ) ( )( ) ( )
( )

.2
!

1
0

0
0

dz
zz
Xf

i
nXf

dz
dXf n

zz
ijn

n
n

+Γ= −π
=








= n  (5.5) 
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Lemma 5.1. The higher-order chain rule or Faa de Bruno formula 
established (c.f. [2, 8]). We will define the higher-order chain rule of 
complex matrix functions provided that the following conditions are 
satisfied: 

(i) [ ( )] ( ) NjizxzxX ijij ,,2,1,,; …==  are analytic functions of the 

complex variable z in .D  

(ii) ( ) ( )
h

XfhIXf
h

−+
→0lim  exists for all z in .D  

(iii) X and dz
dX  are commutative matrices in .D  

Thus, the complex matrix function ( )Xf  has the n-th derivative with 

respect to z in the general form 

( ) ( ) (( ) ) ( ) ( ( ) ) ( ( ) ( ) ) .;!!1!!!
! 1

21 dz
dDn

XDXDXfDnXfD nn
n

n == ∑ 


 k
k

k
kkk

…
…

 

(5.6) 

It can also be expressed in terms of Bell polynomial sn,B  as 

([ ( )]) ([ ( )])
( ),,,,,. 1

,
1

sn
sns

ijij
sn

s
n
ijij

n
XXXX

dX

zxfd

dz

zxfd −+

=

′′′′′′= ∑ …B  (5.7) 

where 

( ) ( ) ( ) ,,,3,2,1;!!2!1!
! 21 21

,
, nsn

XXXn nn

ns
sn …… == ∑

==

kkk

kk
k

B  (5.8) 

( ),,,, 21 nkkkk …=  

,21 nkkkk +++= …  

,2 21 nnkkkk +++= …  

!.!!! 21 nkkkk …=  
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Example 5.1. Evaluate the following integrals: 

(i) 

,
42 dz

z
eX

+Γn  

where Γ  is .
sin1

1sin
,2

2

2















+

+
==−

zz

zz
Xiz  

(ii) 

,3
52

dzz
IX

−
+

Γn  

where Γ  is I
ze

ez
Xz

z

z
,

cos

cos
,4

3

3

2

2
















==

+

+

 is the unit matrix 

associated with the square complex matrix X. 

(iii) 

( ) ( )
,

19 2 dz
zz

X
−−Γn  

where Γ  is .
cossin

sincos
,2

22

22















ππ

ππ
==

zz

zz
Xz  

Solution. (i) 

izizz 2
1

2
1

4
1

2 −+
=

+
 

( ).2
1

2
1

4
1

izizi +
−

−
=  

 

 



ANALYTIC FUNCTIONS OF COMPLEX MATRICES 127

Now, 2i lies inside ,Γ  then we get 

.22
2sin3

32sin















−

−

Γ
π=

−
i

i
X

iedziz
e

n  

Also, − 2i lies outside Γ  and hence 

,2 dziz
eX

+Γn  

is analytic inside and on ,Γ  then 

,02 =
+Γ

dziz
eX

n  

i.e., 

.2024
1

4
2sin3

32sin

2sin3

32sin

2














−

−















−

−

Γ

π=



















−π=
+

i

i

i

i
X

eieidz
z

e
n  

Solution. (ii) Since ( ) IXXf 52 +=  is analytic inside and on 4=z  
and 3=z  lies inside it, then 

( ) ( )

( ) ( )
.

3cos3cos2

3cos23cos
23

5
24212

122422















+

+
π=

−
+

Γ ee

ee
idzz

IX
n  

Solution. (iii) Let 

( ) .
9 2z

XXf
−

=  

Clearly ( )Xf  is analytic within and on ,Γ  then 

( ) ( )
( ) dzz
Xfdz

zz
X

119 2 −
=

−− ΓΓ nn  

.4 Iiπ−=  
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Example 5.2. Evaluate 

,3 dz
z
eX

Γn  

where Γ  is .
cosh

cosh
,2

1
3

3

2

2
















==

+

+

z

z

ez

ze
Xz  

Solution. We can identify, ,2,00 == nz  and ( ) .XeXf =  Clearly 

( )Xf  is analytic within and on .Γ  Then we get 

( ) ( ) ,
00

2

22
2

2

zz

XX

zz dz
Xdedz

dXe
dz

Xfd

==








+=








 

where ( )
( )

( )
,

sinh4sinh4

sinh4sinh4

23223

32322
2

22

22

















+

+
=

++

++

zezzze

zzezez
dz
dX

zz

zz
 

( )

( )
.

122cosh

cosh122

23

23

2

2

2

2

















+

+
=

+

+

zez

zze

dz
Xd

z

z
 

Then 

.
21

12
!2

2
3

3
1

1

3
3

3


































π=

Γ
















e

e
eidz

z
e e

e
X

n  

6. Cauchy’s Integral Formula for Functions of  
Several Complex Matrices 

In order to simplify notation, we introduce multi-indices: Let ,in  
k≤≤ i1  be non-negative integers and let kXXXX ,,,, 321 …  be 

commutative matrices in .NN×C  We define 
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( ) ,,,,, 2121 kk nnnnnn +++== …… nn  

( ) ( ).,,,and,,, 2121 kk zzzXXX …… == zX  

Theorem 6.1. Let ( )Xf  be a function; of the several square 
commutative complex matrices kXXX ,,, 21 …  which and their elements 
are analytic functions of the complex variables k,,2,1, …=ξ ii  in the 

domain ,NND ×⊂ C  which is the product of the domains kDDD ,,, 21 …  

and ,iX  
i
iX

ξ∂
∂  are commutative matrices in .,,2,1; k…=iDi  Then we 

have 

( ) ( )( )
( )

( )

( ) 1
1

2

1

12

!

+
=

ΓΓΓ

=

=ξ −ξπ
=













ξ∂

∂=

∏
∏

i
ii

n
iii

ii

z
ij

i

n

z

f
i

n
fAf

k
k

k

k

XXn

n

nnn …  

,21 kξξξ ddd …  

where iΓ  is a simple closed contour containing iz  and entirely in the 
domain ([ ( )] [ ( )] [ ( )]).,,,,,,2,1; ,2,21,1 kkk zXzXzXAiD ijijiji …… ==  

Proof. From Cauchy’s integral formula for functions of single 
complex matrix, we get 

( ) ( )
1

11

00
21 ,,,

2
1

1
ξ

−ξπ
=

Γ
dz

XXXf
iAf k…n  

( ) ,,,,,
2
11

2
1

12
22

00
221

2111
ξ













ξ
−ξπ−ξπ

=
ΓΓ

ddz
XXXXf

izi
k…nn  

and after k-steps, we get 

( ) ( ) ( )
( ) ( ) ( ) .,,,

2
1

21
2211

21

21
k

kk

k

k

k ξξξ
−ξ−ξ−ξπ

=
ΓΓΓ

dddzzz
XXXf

iAf …
…

……nnn  

Therefore, partial differentiation of the function of the several square 
commutative complex matrices kXXX ,,, 21 …  with respect to the 
complex variables ;iξ  as in the case of single complex matrix, lead to 
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( ) ( )( )
( )

( )

( ) 1
1

2

1

12

!

+
=

ΓΓΓ

=

=ξ −ξπ
=













ξ∂

∂=

∏
∏

i
ii

n
iii

ii

z
ij

i

n

z

f
i

n
fAf

k
k

k

k

XXn

n

nnn …  

,21 kξξξ ddd …  

k.,,2,1and,,2,1,0 …… == ini  
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