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Abstract 

We investigate in this paper the Demyanov metric for classes of unbounded 

closed, convex sets in ,dR  the Cesari’s property (Q) for multifunctions is 
discussed. 

1. Introduction and Preliminaries 

The concept Cesari’s property was first introduced by Cesari in [2] as 
a useful variant of Kuratowski notion of upper semicontinuity of set-
valued maps (multifunctions) and since then it has found important 
applications in calculus of variations and optimal control. We compare 
the Cesari’s property with the D-continuous set-valued maps. We 

introduce the following family subsets of :dR  
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{ } { }.compactis:;closedconvex,,0: AAAA dd CKC ∈=/≠∈= R  

Let ., dd uA RR ∈∈  

The support function of a set A we define as 

( ) ,,sup ><=
∈

uaup
Aa

A  

where >< .  is the scalar product. 

By ( ) ( ){ },,: upuaAauA A>=<∈=  we denote the face of a set A. 

Let dBA K∈,  and by ,1−dS  we denote the unit sphere in the space 

.dR  The Hausdorff metric define as 

( ) ( ) ( ) ,sup,
1

vpvpBA BA
Sv

H
d

−=ρ
−∈

 

and the Demyanov metric is defined as 

( ) ( ) ( )( ).,sup,
1

vBvABA H
Sv

D
d

ρ=ρ
−∈

 

We refer to [3] for detailed discussion. 

By { },:0 0 AtuauA tAa
d ∈+∀∀∈= ≥∈

+ R  we denote the recession 

cone of a set C∈A  and the polar set to A we define as 

{ }.0,:0 >≤<∀∈= ∈ vavA Aa
dR  

2. The Space KC  

We introduce the following equivalence relation on :C  

.00 BABA ++ =⇔≡  

For the nonempty, closed, convex cone K, we denote by KC  the 

equivalence class of all sets in C  having a recession cone K. In particular, 
the class 0C  having the recession cone { }0  is the class of sets convex and 

compact ( ).0
dKC =  
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Now we introduce the following metrics for :, KBA C∈  

( ) ( ) ( ) ,sup,
10

1 vpvpBA BA
SriKv d

−=ρ
−∈ ∩

 

and 

( ) ( ) ( )( ),,sup,
10

2 vBvABA H
SriKv d

ρ=ρ
−∈ ∩

 

where ri denote the relative interior. 

We remark that if { }0=K  then ( ) ( )BABA H ,,1 ρ=ρ  and ( )BA,2ρ  

( )., BADρ=  

The following example showed that if { },0≠K  then KC  contains 

elements for which ( ) ( ) .,, 21 ∞=ρ=ρ KAKA  

Example 2.1. Let {( ) }2
12121 ,:, xxxxxK ≥∈= R  and {( )2,0 xK =  

}.0: 2 ≥x  Then ( ) ∞=ρ KA,1  so also ( ) .,2 ∞=ρ KA  

Now we introduce a subclass KC  consisting of all a sets KA C∈  

such that 

( ) .,2 ∞<ρ KA  

Observe that .00
dKCC ==  

The metric 2ρ  has the following properties: 

Lemma 2.1. Let 0,,,, ≥α∈ KDCBA C  and [ ].1,0∈β  Then 

(1) ( ) ( ).,, 22 BACBCA ρ=++ρ  

(2) ( ) ( ).,, 22 BABA αρ=ααρ  

(3) ( ) ( )( ) ( ) ( ) ( ).,1,1,1 222 DCBADBCA ρβ−+βρ≤β−+ββ−+βρ  

This lemma is easy to prove using definition of a metric and the 
properties of a support function. 
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From lemma, we can prove the following theorem: 

Theorem 2.1. Let ( ) ( )nn BA ,  be a sequence sets contains in KC  

converges, respectively, in 2ρ  metric to A and B and a sequence nα  

converges to α  for all .0, ≥ααn  Then 

(1) ( ) .0,lim 2 =++ρ∞→ BABA nnn  

(2) ( ) .0,lim 2 =ααρ∞→ AAnnn  

Proof. Using lemma, we have that 

( ) ( ) ( )BABABABABABA nnnnnn ++ρ+++ρ≤++ρ ,,, 222  

 ( ) ( ).,, 22 BBAA nn ρ+ρ=  

For scalar multiplication, we get (assume that nα≥α ): 

( ) ( ) ( )AAAAAA nnnnnn ααρ+ααρ≤ααρ ,,, 222  

 ( ) ( ).,, 22 AAAA nnn ααρ+ρα=  

From lemma and assumption, we obtain that 

( ) ( ( ) ) ( ( ) )AKAAKAAA nnnnn α−αρ=α−α+α+αρ=ααρ ,,, 222  

(( ) ( ) ) ( ) ( ).,, 22 KAAK nnn ρα−α=α−αα−αρ=  

For ,nα ≤α  the proof similar. 

The following example showing that the space KC  is not separable. 

Example 2.2. Let {( ) }.0:,0 22 ≥= xxK  

We consider the family sets 

{( ) [ ]},1,0,,10:, 12121 ∈αα≥≤≤=α xxxxxA  

where ( ) { }( ) .1,max1, 2
2 ≥βα+=ρ βα AA  
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Theorem 2.2. The space ( )2, ρKC  is complete. 

Proof. Let { }nA  be a Cauchy sequence in .KC  Due to definition ,2ρ  

the sequence ( ){ }vAn  is a Cauchy sequence in { )H
dK ρ,  which is known 

to be complete. So for any ( ( ) ( )) .0,,1 →ρ∈ − vAvASriKv nH
do ∩  Hence 

( ) .0,2 →ρ AAn  We proof that .KA C∈  Using the triangle inequality, 

we obtain 

( ) ( ) ( ).,,, 222 KAAAKA nn ρ+ρ≤ρ  

So ( ) .,2 ∞<ρ KA  

3. On D-Continuity of Multifunction  
and Cesari’s Property 

Consider the multifunction .: K
dF C→R  We say that multifunction 

F is D-continuous at dx R∈0  if ( ) ( )( ) .0,lim 02
0

=ρ
→

xFxF
xx

 

Now recall the Cesari’s property. We say that a multifunction 

K
dF C→R:  satisfies the Cesari’s property at 0x  if 

( )
( )

( ),
,0

0
0

xFclcoxF
xBx
∪∩

δ∈>δ

=  

where ( ) { }.:, 00 δ<−∈=δ xxxxB dR  

Lohne in [5] give definition upper C-limits multifunction F by 

( ) ( ) ( ).suplimsuplim
00

k
nkn

n
nxxxx

xFclcoxFxF
n

∪∩∪
≥∈∞→→→

==
N

 

Now we give the following result: 
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Theorem 3.1. Let ( )00: xF
dF +→ CR  be a D-continuous at .0

dx R∈  

Then for all ( ( )) 1
00 −+∈ do SxFriv ∩  

( )( ) ( )
( )

( )( ) ( ).
,0

0
0

vxFclcovxF
xBx
∪∩

δ∈>δ

=  

Proof. Let dx R∈0  and assume that F is D-continuous at .0x  Then 

for all ( ( )) 1
00 −+∈ do SxFriv ∩  

( ( )( ) ( ) ( )( ) ( )) .0,lim 0
0

=ρ
→

vxFvxFHxx
 

Using definition Hausdorff metric, we have that for any 1−∈ dSw  

( )( ) ( )( ) ( ( ) ) ( )( ).lim 00
wpwp vxFvxFxx

=
→

 

With the aid of ([5], Proposition 2.1), we obtain 

( ( ) ) ( ) ( ) ( )( ) ( ) ( ) ( ( ) ) ( ) ( )wpwpwp vxF
n

vxF
xx

vxF n∞→→
≥≥ suplimsuplim

0
0  

( ( ) ) ( )( ).suplim wp vxF n
n ∞→

≥  

Hence ( ( )) ( ) ( ( )) ( )vxFvxF n
n

0suplim ⊂
∞→

 for the some sequence .0xxn →  

So 

( ( )) ( ) ( ( )) ( ),suplim 0
0

vxFvxF
xx

⊂
→

 

for all ( ( ) .0 1
0

−+∈ do SxFriv ∩  The following equality ([5], Proposition 3.1) 

( )
( ) ( ),suplim

00,0
xFxFclco

xxxBx →δ∈>δ

=∪∩  

implies the Cesari’s property. 

The next example shows the Cesari’s property not implies                      
D-continuous. 
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Example 3.1. Let 2R⊂K  where {( ) }.0:,0 22 ≥= xxK  

( )
{( ) }

{( ) }





=≥

≠≥≤≤
=

.0for,0:,0

,0for,,10:,

22

1
1

2121

txx

txxxxx
tF t  

Observe that ( ) ( )0suplim
0

FtF
t

⊂
→

 but ( ) ( )( ) 10,lim 10
=ρ

→
FtF

t
 and 

( ) ( )( ) .0,lim 20
∞=ρ

→
FtF

t
 

We will close this section with stability result which tells us that set-
valued D-converges is preserved by set-valued integration. 

Let [ ]baT ,=  be an interval in R  and let .: dTF K→  Then we 

define 

( ) { ( ) ( ) ( ) }.in.a.e,: 1 TtFtfLfdttfdttF
TT

∈∈= ∫∫  

This is called the Aumann integral. 

First proof the following lemma. 

Lemma 3.1. Let dTF K→:  be a measurable and 

{ ( ) ( )} ( ) ,,:sup 1LttFtff ∈ϕϕ≤∈  then for dv R∈  

( ) ( ) ( )( ) .dtvpvp tF
TdttF

T ∫=∫  

Proof. Remark that for all dv R∈  

( ) ( )
( ) ( )

( )
( ) ( )

( ) dttfvdttfvvp
tFtfTTtFtfdttF

T
><>=<=

∈∈ ∫∫∫ ,sup,sup  

( )( ) .dtvp tF
T∫=  
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Theorem 3.2. Suppose d
n TF K→:  for …1,0=n  are measurable, 

{ ( ) ( )} ( )ttFtff n ϕ≤∈:sup  for each n, where ( )TL1∈ϕ  and 

( ( ) ( )) 0,lim 0 =ρ
∞→

tFtFnDn
 for each .Tt ∈  

Then ( ( ) ( ) ) .0,lim 0 =ρ ∫∫∞→
dttFdttF

T
n

T
Dn

 

Proof. Using lemma and the definition Demyanov metric, we get 

( ( ) ( ) ) (( ( ) ) ( ) ( ( ) ) ( ))vdttFvdttFdttFdttF
T

n
T

H
SvT

n
T

D
d

00 ,sup,
1 ∫∫∫∫ ρ=ρ

−∈
 

( ( ) ( ) ( ) ( ) ) ( ) ( ) ( )updtvtFdtvtF dtvtF
SuSvT

n
T

H
Sv nTddd ∫−−− ∈∈∈

=ρ= ∫∫ 111
supsup,sup 0  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )upupup vtFvtF
TSuSv

dtvtF nddT 0110
supsup −≤− ∫−− ∈∈∫  

( ( ) ( )) ., 0 dttFtFnD
T

ρ= ∫  

It remains to use the assumption of theorem. 
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