WEYL-TYPE INEQUALITY FOR OPERATORS IN BANACH SPACES

MAOZHU ZHANG

College of Mathematics and Statistics
Taishan University
Taian, 271021
P. R. China
e-mail: zhangmaozhu2000@163.com

Abstract

Let $\left(x_{n}\right)$ be a Weyl number sequence. We show that for any $0<\delta \leq 1$, there is a positive number $C=C(\delta)$ such that for arbitrary Riesz operator $T \in L(E)$ and any $n=1,2, \cdots$, the inequality $$
\left(\prod_{i=1}^{n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{n}} \leq\left(\prod_{i=1}^{m}\left(\frac{2\left[\frac{n}{2}\right]}{[\delta i]}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}}\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}} \leq C\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}}
$$ holds, where $C \leq\left(4 e\left(1+\frac{1}{\delta}\right)\right)^{\frac{1}{2}}$ is a constant and $m=\left[\frac{2\left[\frac{n}{2}\right]}{[1+\delta]}\right]$. The proof relies mainly on the relationship between absolutely 2 -summing norm and multiplicity and injectivity of Weyl number.

1. Introduction

Since Weyl developed the classical Weyl inequality between eigenvalue of compact operators T acting on a Hilbert space and s-number of operator ([1]), i.e., if H is a Hilbert space and $T \in K(H)$, then

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\lambda_{j}(T)\right| \leq \prod_{j=1}^{n} a_{j}(T) \tag{1.1}
\end{equation*}
$$

there have been an extensive literature dealing with inequality between eigenvalue and s-numbers of bounded linear operators acting on general Banach space ([2, 3, 4, 5, 6, 7]). Applying s-numbers of operators to estimate the eigenvalue distribution of operators is a very useful tool ([8, 9, 10]).

Following the basic results on eigenvalues distribution and s-numbers of operators ($[1,2,3]$), more attention has been paid to the various inequality by related authors in the recent years, espacially, for example, Bernd Carl and Aicke Hinrichs ([4, 5, 6, 7]). In [4, 5], the optimal Weyl inequalities in Banach spaces related to arbitrary s-numbers are given, i.e.,

$$
\begin{equation*}
\prod_{j=1}^{n}\left|\lambda_{j}(T)\right| \leq n^{\frac{n}{2}} \prod_{j=1}^{n} a_{j}(T) \tag{1.2}
\end{equation*}
$$

where $a_{j}(T)$ denotes any s-number of operator T. Subsequently in [6], he has given the inequality between geometric means of eigenvalue and an injective and surjective s-numbers sequence in the sense of Pietsch ([13]). At the almost same time, Weyl type inequality related to injective or surjective s-numbers sequence and Banach space of weak type 2 have been given ([7]). In the recent paper [5], the authors proved that Weyl numbers form a minimal multiplicative s-numbers in the sense of Bernd Carl and Aicke Hinrichs. However, a well-known inequality between
geometric means of eigenvalues and Weyl numbers is concerned with double Weyl number sequence, which is different from general Weyl inequalities (cf. [2], Lemma 13), i.e.,

$$
\begin{equation*}
\left(\prod_{i=1}^{n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{n}} \leq e\left(\prod_{i=1}^{n} x_{i}^{*}(T)\right)^{\frac{1}{n}}, \quad n=1,2, \cdots \tag{1.3}
\end{equation*}
$$

where the double sequence $x_{i}^{*}(T)$ is defined by $x_{2 i}^{*}(T)=x_{i}(T)$ and $x_{2 i-1}^{*}(T)=x_{i}(T)$. In [11], the constant e is displaced by $\sqrt{2 e}$. In the present paper, we will give a Weyl inequality between geometric means of eigenvalues and single Weyl number sequence (cf. Theorem 2.2) instead of double Weyl number sequence. In the sense of minimal multiplicity (cf. [4]), this inequality can be improved. Its type is similar to the results of $[6,7]$, where all the constants c depend on a given positive number δ. Compared our result with the previous results, We can easily observe that $m=\left[\frac{n+1}{2}\right]$ in [2,11] and $m=n$ in [4], while in this paper, $\left[\frac{n}{2}\right] \leq m<n$. Speaking in a certain sense, our result can be seen as a supplement and generalization of the previous results [2, 4, 11]. And they are very good quantities for estimating the asymptotic behaviour of eigenvalues.

First, we introduce s-number sequence in the sense of Pietsch [13]. A non-negative sequence $\left(s_{n}\right)_{n=1}^{\infty}$ is called an s-number sequence if for all operators $T \in L(E, F)$-- the class of all bounded linear operators between Banach spaces, the sequence satisfies the following:
(1) $\|T\|=s_{1}(T) \geq s_{2}(T) \geq \cdots \geq 0$, for $T \in L(E, F)$;
(2) $s_{n}(T+s) \leq s_{n}(T)+\|s\|$, for $T, S \in L(E, F)$;
(3) $s_{n}(R T S) \leq\|R\| s_{n}(T)\|s\|$, for $S \in L\left(E_{0}, E\right), T \in L(E, F), R \in L\left(F, F_{0}\right)$;
(4) If $\operatorname{dim}(T)<n$, then $s_{n}(T)=0$;
(5) $s_{n}\left(I_{n}\right)=1$, where $I_{n}: l_{2}^{n} \rightarrow l_{2}^{n}$ is an identity map from l_{2}^{n} to itself.

Now we describe some important examples. For $T \in L(E, F)$ and $n=1,2, \cdots$, we define the n-th approximation number

$$
a_{n}(T)=\inf \{\|T-S\| ; S \in L(E, F), \operatorname{rank} S<n\}
$$

the n-th Gelfand number

$$
c_{n}(T)=\inf \left\{\left\|T J_{M}^{E}\right\| ; M \subset E, \operatorname{codim} M<n\right\},
$$

where J_{M}^{E} denotes the canonial embedding from M to E, the n-th Kolmogorov number

$$
d_{n}(T)=\inf \left\{\left\|Q_{N}^{F} T\right\| ; N \subset F, \operatorname{dim} N<n\right\},
$$

where Q_{N}^{F} is the canonical map of F onto the quotient space F / N and the n-th Weyl number:

$$
x_{n}(T)=\sup \left\{a_{n}(T A) ; A \in L\left(l_{2}, E\right),\|A\| \leq 1\right\} .
$$

An s-number function s is called injective if the following property is satisfied: Let M be a subspace of F, then $s_{n}\left(J_{M}^{F} T\right)=s_{n}(T)$ for all $T \in L(E, M)$. An s-number function s is called surjective if the following property is satisfied : Let E / N be a subspace of E, then $s_{n}\left(T Q_{N}^{E}\right)=s_{n}(T)$ for all $T \in L(E / N, F)$. An s-function is called multiplicative if $s_{m+n-1}(S T) \leq s_{m}(S) s_{n}(T)$, for $T \in L(E, F), S \in L(F, G)$ and $m, n=1,2, \cdots$. The following properties hold:
(1) the approximation numbers $a_{n}(T)$ are the largest s-number;
(2) the Gelfand numbers $c_{n}(T)$ are the largest injective s-number and the Weyl numbers $x_{n}(T)$ are injective s-number;
(3) the Kolmogorov number $d_{n}(T)$ are the largest surjective s-number;
(4) the approximation number $a_{n}(T)$, the Gelfand number $c_{n}(T)$, and the Weyl number $x_{n}(T)$ are multiplicative;
(5) the Weyl number are a minimal multiplicative s-number sequence in the sense of Carl and Hinrichs, i.e., let $s_{n}(T)$ be a multiplicative s number sequence with the property that $s_{n}(T) \leq x_{n}(T)$ for all $T \in L$ and $n=1,2, \cdots$, then

$$
\begin{equation*}
x_{2 n-1} \leq\left(\prod_{k=1}^{n} s_{k}(T)\right)^{\frac{1}{n}} \tag{1.4}
\end{equation*}
$$

2. Our Main Results

We assume that a Riesz operator $T \in L(E)$ acting on a complex Banach space, we assign an eigenvalue sequence $\lambda_{n}(T)$ as follows: The eigenvalues of T are arranged in an order of non-increasing absolute values and each eigenvalue is counted according to its algebraic multiplicity

$$
\left|\lambda_{1}(T)\right| \geq\left|\lambda_{2}(T)\right| \geq \cdots \geq 0
$$

If T possesses less than n eigenvalues λ with $\lambda \neq 0$, we let $\lambda_{n}(T)=\lambda_{n+1}(T)=\cdots=0$. In the following, we give the main theorem about geometric means of eigenvalues and Weyl numbers of Riesz operators. For this, we first list a useful lemma.

Lemma 2.1 ([12], p. 234). Assuming $E_{2 n}$ a 2n-dimension Banach space, then there is an isomorphism $u \in L\left(E_{2 n}, l_{2}^{2 n}\right)$ such that

$$
\begin{equation*}
\pi_{2}(u)=(2 n)^{\frac{1}{2}},\left\|u^{-1}\right\|=1 \tag{2.1}
\end{equation*}
$$

where $\pi_{2}(u)$ denotes absolutely 2 -summing norm of u (cf. [2], Section 5).

In the sequel, $[x]$ is the integer part of x for $1<x<\infty$ and $[x]=1$ if $0<x \leq 1$.

Theorem 2.2. If T and $\left|\lambda_{n}(T)\right|$ are the above, then for any $0<\delta \leq 1$, there is a positive number $C=C(\delta)$ such that for arbitrary Riesz operator $T \in L(E)$ and any $n=1,2, \cdots$, the inequality

$$
\begin{equation*}
\left(\prod_{i=1}^{n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{n}} \leq\left(\prod_{i=1}^{m}\left(\frac{2\left[\frac{n}{2}\right]}{[\delta i]}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}}\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}} \leq C\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}} \tag{2.2}
\end{equation*}
$$

holds, where $x_{i}(T)$ denotes the Weyl number of T and $m=\left[\frac{2\left[\frac{n}{2}\right]}{[1+\delta]}\right]$. For the constant C, we get $C \leq\left(4 e\left(1+\frac{1}{\delta}\right)\right)^{\frac{1}{2}}$.

Remark 2.3. Using the formula (1.3), we can obtain Weyl inequality between eigenvalue and minimal multiplicity s-number in the sense of Carl and Hinrichs (cf. [4]).

Proof. If $\left|\lambda_{n}(T)\right|=0$, then there is nothing to prove. So we assume that $\left|\lambda_{n}(T)\right| \neq 0$. When $n=1$, the result is obvious. If we have proved when $n=2 p(p \in N)$, the result is true, then the inequality still holds when $n=2 p+1$, which follows from the inequality:

$$
\left(\prod_{i=1}^{2 p+1}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{2 p+1}} \leq\left(\prod_{i=1}^{2 p}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{2 p}} .
$$

Therefore, it is sufficient to prove that the result holds for all even natural numbers.

Without loss of generation, we replace n by $2 n$. In the following, we prove

$$
\left(\prod_{i=1}^{2 n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{2 n}} \leq C\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}}
$$

where $m=\left[\frac{2 n}{1+\delta}\right]$. From Riesz operator $T \in L(E)$, we can find a $2 n$-dimensional subspace $E_{2 n}$ of E invariant under T such that the restriction of T to $E_{2 n}$ has precisely $\lambda_{1}(T), \lambda_{2}(T), \cdots, \lambda_{2 n}(T)$ as its eigenvalues (cf. [8], 3.2.23; [12]). Following the above lemma, we can obtain that there is an isomorphism map $u \in L\left(E_{2 n}, l_{2}^{2 n}\right)$ such that $\pi_{2}(u)=(2 n)^{\frac{1}{2}},\left\|u^{-1}\right\|=1$. With the principle of related operators (cf. [8], 3.3.4; [4]), we draw a conclusion

$$
\begin{equation*}
\left(\prod_{i=1}^{2 n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{2 n}}=\left(\prod_{i=1}^{2 n}\left|\lambda_{i}\left(u T_{2 n} u^{-1}\right)\right|\right)^{\frac{1}{2 n}} . \tag{2.3}
\end{equation*}
$$

On finite dimensional Hilbert spaces, all s-numbers of bounded operators coincide, which is just the singular value of operator. Applying classical Weyl inequality to the operator $u T_{2 n} u^{-1}$ (cf. [1]), we can get

$$
\begin{equation*}
\left(\prod_{i=1}^{2 n}\left|\lambda_{i}\left(u T_{2 n} u^{-1}\right)\right|\right)^{\frac{1}{2 n}} \leq\left(\prod_{i=1}^{2 n} x_{i}\left(u T_{2 n} u^{-1}\right)\right)^{\frac{1}{2 n}} . \tag{2.4}
\end{equation*}
$$

Let $m=\left[\frac{2 n}{1+\delta}\right]$, for $0<\delta \leq 1$, we may arrive at

$$
\begin{equation*}
\left(\prod_{i=1}^{2 n} x_{i}\left(u T_{2 n} u^{-1}\right)\right)^{\frac{1}{2 n}} \leq\left(\prod_{i=1}^{m} x_{[\delta i]+i-1}\left(u T_{2 n} u^{-1}\right)\right)^{\frac{1}{m}} . \tag{2.5}
\end{equation*}
$$

For the right hand of the above inequality (2.5), with the multiplicity of Weyl number and Lemma 2.1, we have

$$
x_{[\delta i]+i-1}\left(u T_{2 n} u^{-1}\right) \leq x_{[\delta i]}(u) x_{i}\left(T_{2 n}\right)\left\|u^{-1}\right\|=x_{[\delta i]}(u) x_{i}\left(T_{2 n}\right) .
$$

By absolutely 2 -summing norm and [2] Lemma 8 , with $[\delta i] \leq n$, we have

$$
([\delta i])^{\frac{1}{2}} x_{[\delta i]}(u) \leq \pi_{2}(u)=(2 n)^{\frac{1}{2}} .
$$

Let $I_{2 n}$ be canonical injection from $E_{2 n}$ into E. Obviously $I_{2 n} T_{2 n}=T I_{2 n}$. According to injectivity and the definition of Weyl number, we can obtain

$$
x_{i}\left(T_{2 n}\right)=x_{i}\left(I_{2 n} T_{2 n}\right)=x_{i}\left(T I_{2 n}\right) \leq x_{i}(T)\left\|I_{2 n}\right\|=x_{i}(T) .
$$

Therefore,

$$
\begin{equation*}
\left(\prod_{i=1}^{m} x_{[\delta i]+i-1}\left(u T_{2 n} u^{-1}\right)\right)^{\frac{1}{m}} \leq\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}}\left(\prod_{i=1}^{m}\left(\frac{2 n}{[\delta i]}\right]^{\frac{1}{2}}\right)^{\frac{1}{m}} . \tag{2.6}
\end{equation*}
$$

We observe that $[\delta i] \geq \frac{\delta i}{2}, m=\left[\frac{2 n}{1+\delta}\right] \geq \frac{n}{1+\delta}$. Following again from Taylor expanding theorem with $\frac{m^{m}}{m!} \leq e^{m}$, we have

$$
\begin{equation*}
\left(\prod_{i=1}^{m}\left(\frac{2 n}{[\delta i]}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}} \leq\left(4 e\left(1+\frac{1}{\delta}\right)\right)^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

Combined with the above (2.3)-(2.7), the proof is complete.
Remark 2.4. In a special case, if $\delta=1$, we can obtain a better inequality

$$
\left(\prod_{i=1}^{n}\left|\lambda_{i}(T)\right|\right)^{\frac{1}{n}} \leq\left(\prod_{i=1}^{m}\left(\frac{2\left[\frac{n}{2}\right]}{i}\right)^{\frac{1}{2}}\right)^{\frac{1}{m}}\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}} \leq \sqrt{2 e}\left(\prod_{i=1}^{m} x_{i}(T)\right)^{\frac{1}{m}}
$$

hold, where $m=2\left[\frac{n}{2}\right]$. Indeed $\prod_{i=1}^{m} \frac{2\left[\frac{n}{2}\right]}{i} \leq(2 e)^{m}$ according to the above proof. It follows that $C \leq \sqrt{2 e}$.

Acknowledgement

This work is supported by NSF of Shandong Province (ZR2013AQ001) and the Project of Shandong Province Higher Educational Science and Technology Program (J12LI57).

References

[1] H. Weyl, Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 408-411.
[2] A. Pietsch, Weyl numbers and eigenvalues of operators in Banach spaces, Math. Ann. 247 (1980), 149-168.
[3] M. F. Teixeira, Weyl's inequality in Banach spaces, Bull. London Math. Soc. 16(1) (1984), 1-7.
[4] A. Hinrichs, Optimal Weyl inequality in Banach spaces, Proc. Amer. Math. Soc. 134(3) (2005), 731-735.
[5] B. Carl and A. Hinrichs, Optimal Weyl-type inequalities for operators in Banach spaces, Positivity 11(1) (2007), 41-55.
[6] B. Carl, On a Weyl inequality of operators in Banach spaces, Proc. Amer. Math. Soc. 137(1) (2009), 155-159.
[7] B. Carl and A. Hinrichs, On s-numbers and Weyl inequalities of operators in Banach spaces, Bull. Lond. Math. Soc. 41(2) (2009), 332-340.
[8] A. Pietsch, Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics 13, Cambridge University Press, 1987.
[9] H. König, Eigenvulue Distribution of Compact Operators, Operator Theory: Advances and Applications. Birkhäuser, Basel, 1986.
[10] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Oxford, 1987.
[11] H. König, Some Inequalities for the Eigenvalues of Compact Operators, In Proc. Oberwolfach Conference General Inequalities 1983, Birkhäuser, Basel, 1984, 213C219
[12] A. Pietsch, s-numbers of operators in Banach spaces, Studia Math. 51 (1974), 201-223.
[13] A. Pietsch, Operator Ideals, Verlag der Wissenschaften, Berlin, 1978.

