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Abstract

Let n be a positive integer and [n] == {1, 2, ..., n}. Let S,, be the symmetric group
on [n]. This article describes the orbits of [n]’ under S,,, computes the number of

the orbits and the length of each orbit, where [n]* := [n]x [n] x --- x [n].
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t

1. Introduction

Let G be a group and X be a set, if there is a function G x X — X
(usually denoted by (g, x) > gx) such that for all x € X and

81,82 €G:
ex = x, (g182)x = g1(g2x),

then we say that the group G acts on the set X, where e is the identity
element of the group G.
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Let G be a group that acts on a set X, the relation on X is defined by
x ~y < gx =y for some g € G.

It 1s well-known that the relation is an equivalence relation. The
equivalence classes of the above equivalence relation are called the orbits
of X under G. For x € X, the orbit of x is the set

O, = {gx|lg € G}.
For x € X, the subset
H, ={g < Glgx = x},
is a subgroup of G. H, is called the isotropy group of x.

An action of the group G on the set X is said to be transitive, if there

is ¢ € G such that y = gx, forall x, y € X.

Let n be a positive integer and [n]:= {1, 2, ..., n}. Let S, be the
symmetric group on [n]. There is an action of the symmetric group S,, on

[n] defined as follows
[p]xS, - [n]
(¢, 0) = o).

It is well-known that S,, is transitive on [n].

Let ¢ be a positive integer and [n]" := [n]x [n]x --- x [n]. Then we can

t

get the following natural action of S,, on [n]’,
[ xS, - [n]’
(1 P95 -.er i), 6) > (o(iy), o(in), ..., o(iy)).

If ¢ > 2, then S, is not transitive on [n]° in general. This article

describes the orbits of [n]t under S,,, computes the number of the orbits

n»

and the length of each orbit.
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Guo et al. [1-7] studied the orbits of subspaces under classical groups,
which are subgroups of symmetric groups.

2. Main Results

In this section, we begin with a useful lemma.
Lemma 2.1 ([8]). Let S be a multiset with objects of k different types
with finite repetition numbers ny, nq, ..., n;,, respectively. Let the size of S

be A =ny + ng + -+ ny. Then the number of permutations of S equals

Al
mlng!-In.!’
Let (iy, iy, ..., i;) € [n]’. If there are exactly s different elements in
i, ig, ..., i, then (i, iy, ..., §;) is called a t-repetitive permutation of

size s. The set of all ¢-repetitive permutations of size s is denoted by [n]i
with 1<s<t For (i, iy, ... 0) € [n]}, let iy, iy, ..., 5 be the s
different elements in i, ig, ..., ;. Assume that i; appears m, times in
(&, ig, .-+, i), where 1 < r < s. If there are exactly g different elements in
my, mg, ..., mg, and they appear 1, ly, ..., [ timesin (my, mg, ..., my),
respectively, then we define ©(my, mg, ..., mg) = §!1l;!...1,!. By Lemma
2.1, we can obtain the following result.
Lemma 2.2. Let s and t be positive integers with 1 < s < t. Then

t, t!
ln]s| = 2 iyl gl

my +mg +---+mg =t
mp>211<r<s)

Theorem 2.3. Let s and t be positive integers with 1 < s < t. Then the

number of the orbits of [n], under S, is

2 :
[ ! ! ’
mi!mol---m.O®O(my, mo, ..., m
my+mg+etmg=t 1 2 s ( 1, 11625 ’ s)
mp >mg 2--2mg 21

and the length of each orbit is n(n —1)---(n - s).



64 FENYAN LIU and JUNLI LIU

Proof. Let ikl’ ik2, . iks be s different elements in i, iy, ..., i;, and
i, appears m, times in (i, i, ..., %) with 1<r<s For any
(irs igs s i), (1> J2» -r» 4y) € [n]%, they are in the same orbit under S,

if and only if there exists ¢ € S,, such that

(G(il), G(i2)7 ceey G(I’l)) = (j17 jZ, ey ]l)
By the transitivity of S,, on [r] and the definition of ®(m;, mg, ..., m),

the number of the orbits of 2]’ under S, is

>
! ! ! .
my!lmg!l---m®(my, my, ..., m
my+mg -+ +mg=t 172 5! O(my, mg, ..., mg)
mp >mg 2--2mg 21

It is easy to see that the length of each orbit is n(n —1)---(n — s).

Corollary 2.4. Let n > t. Then the number of the orbits of [n]t under
S, is

> ¥ G
my!mg!---mg! ©(my, mg, ..., mg)’

s=1 my+mg+---+mg=t
mpzmg =--2mg 21

Corollary 2.5. Let n < t. Then the number of the orbits of [n]" under

S, is

n
2 X G
my!mg!---mg! ©(my, mg, ..., mg)’

s=1 my+mo+---+mg=t
mp 2mg 2--2mg 21

3. Examples

In this section, we give the orbits of [n]* under S, for ¢ = 2, 3, 4 in

detail.
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Example 3.1. If n > 2, the orbits of [2]* under S, are
Ry = {(c(1), o(1))| for all 6 € S}, R; = {(c(1), o(2))| for all c € S, },
and the lengths of the orbits are
|Ro| = n, | By = n® —n.
Example 3.2. If n > 3, the orbits of [2]> under S,, are
Ry = {(c(1), o(1), o(1))| for all c € S,},
R; = {(c(1), 6(1), o(2))| for all c € S,},
Ry = {(c(1), o(2), o(1))] for all c € S,},
Ry = {(c(2), o(1), o(1))| for all c € S, },
Ry = {(c(1), o(2), o(3))| for all c € S, },
and the lengths of the orbits are
|Ro| = n, |Ry| = [Rg| = [Rs| = n(n -1), |Ry[ = n(n -1)(n - 2).
If n = 2, the orbits of [2]> under Sy are
Ry = {(c(1), o(1), o(1))| for all c € Sy},
R; = {(c(1), 6(1), o(2))| for all o € Sy},
Ry = {(c(1), o(2), o(1))| for all c € S,},
R3 = {(c(2), o(1), o(1))| for all c € Sy }.
Example 3.3. If n > 4, the orbits of [n]* under S, are
Ry = {(o(1), o(1), o(1), o(1))| for all o € S,,},
R; = {(c(1), o(1), o(2), o(2))| for all c € S, },
Ry = {(c(1), o(2), o(1), o(2))| for all c € S, },

R3 = {(c(1), o(2), o(2), o(1))| for all c € S, },
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Ry = {(c(1), (1), o(2), 5(3))] for all 5 € S, },
Rs = {(o(1), 5(2), o(1), 5(3))| for all c € S, },
Rg = {(c(1), o(2), 5(3), o(1))| for all S, },
R; = {(c(2), o(1), o(3), o(1))] for all 5 € S,, },
Ry = {(c(2), 6(3), o(1), o(1))| for all S, },
Rgy = {(o(2), o(1), (1), (3))| for all € S, },
Ry = {(o(1), (1), (1), 5(2))] for all € S, },
Ry; = {(c(1), 5(1), 5(2), o(1))] for all & € S, },
Ry = {(o(1), 6(2), o(1), o(1))| for all & S, },
Ry = {(5(2), 6(1), 5(1), 5(1))] for all 6 € S, },
Ry, = {(c(1), o(2), 5(3), o(4))| for all S, },
and the lengths of the orbits are
[Ro| = n, |By| = |Ro| = |Rs| = [Rig| = [Ri1| = [Riz| = [Ryg] = n(n - 1),
|Ry| = |R5| = |Rg| = |R7| = |Rg| = |Rg| = n(n 1) (n - 2),
|Ris| = n(n —1)(n - 2) (n - 3).

If n = 3, the orbits of [3]* under Sy are Ry, Ry, Ry, ..., Ry3.

If n =2, the orbits of [2]* under S, are Ry, Ry, Ry, R3, R0, Ry1,
Ry3, Ry3.
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