ORBITS OF FINITE SETS UNDER SYMMETRIC GROUPS

FENYAN LIU and JUNLI LIU

College of Mathematics and Information Science
Langfang Teachers University
Langfang 065000
P. R. China
e-mail: lfsylfy@163.com

Abstract

Let n be a positive integer and $[n]:=\{1,2, \ldots, n\}$. Let S_{n} be the symmetric group on $[n]$. This article describes the orbits of $[n]^{t}$ under S_{n}, computes the number of the orbits and the length of each orbit, where $[n]^{t}:=\underbrace{[n] \times[n] \times \cdots \times[n]}_{t}$.

1. Introduction

Let G be a group and X be a set, if there is a function $G \times X \rightarrow X$ (usually denoted by $(g, x) \rightarrow g x)$ such that for all $x \in X$ and $g_{1}, g_{2} \in G:$

$$
e x=x,\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right)
$$

then we say that the group G acts on the set X, where e is the identity element of the group G.
$\overline{2010 \text { Mathematics Subject Classification: 20G20, 05E15. }}$
Keywords and phrases: symmetric group, orbit, length of orbit.
Communicated by Bao-Xuan Zhu.
Received April 24, 2015

Let G be a group that acts on a set X, the relation on X is defined by

$$
x \sim y \Leftrightarrow g x=y \text { for some } g \in G .
$$

It is well-known that the relation is an equivalence relation. The equivalence classes of the above equivalence relation are called the orbits of X under G. For $x \in X$, the orbit of x is the set

$$
O_{x}=\{g x \mid g \in G\} .
$$

For $x \in X$, the subset

$$
H_{x}=\{g \in G \mid g x=x\},
$$

is a subgroup of $G . H_{x}$ is called the isotropy group of x.
An action of the group G on the set X is said to be transitive, if there is $g \in G$ such that $y=g x$, for all $x, y \in X$.

Let n be a positive integer and $[n]:=\{1,2, \ldots, n\}$. Let S_{n} be the symmetric group on [n]. There is an action of the symmetric group S_{n} on [n] defined as follows

$$
\begin{array}{rlr}
{[n] \times S_{n}} & \rightarrow & {[n]} \\
(i, \sigma) & \mapsto \sigma(i) .
\end{array}
$$

It is well-known that S_{n} is transitive on $[n]$.
Let t be a positive integer and $[n]^{t}:=\underbrace{[n] \times[n] \times \cdots \times[n]}_{t}$. Then we can get the following natural action of S_{n} on $[n]^{t}$,

$$
\begin{array}{rlcc}
{[n]^{t} \times S_{n}} & \rightarrow & {[n]^{t}} \\
\left(\left(i_{1}, i_{2}, \ldots, i_{t}\right), \sigma\right) & \mapsto & \left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \ldots, \sigma\left(i_{t}\right)\right) .
\end{array}
$$

If $t \geq 2$, then S_{n} is not transitive on $[n]^{t}$ in general. This article describes the orbits of $[n]^{t}$ under S_{n}, computes the number of the orbits and the length of each orbit.

Guo et al. [1-7] studied the orbits of subspaces under classical groups, which are subgroups of symmetric groups.

2. Main Results

In this section, we begin with a useful lemma.
Lemma 2.1 ([8]). Let S be a multiset with objects of k different types with finite repetition numbers $n_{1}, n_{2}, \ldots, n_{k}$, respectively. Let the size of S be $A=n_{1}+n_{2}+\cdots+n_{k}$. Then the number of permutations of S equals

$$
\frac{A!}{n_{1}!n_{2}!\cdots!n_{k}!}
$$

Let $\left(i_{1}, i_{2}, \ldots, i_{t}\right) \in[n]^{t}$. If there are exactly s different elements in $i_{1}, i_{2}, \ldots, i_{t}$, then $\left(i_{1}, i_{2}, \ldots, i_{t}\right)$ is called a t-repetitive permutation of size s. The set of all t-repetitive permutations of size s is denoted by $[n]_{s}^{t}$ with $1 \leq s \leq t$. For $\left(i_{1}, i_{2}, \ldots, i_{t}\right) \in[n]_{s}^{t}$, let $i_{k_{1}}, i_{k_{2}}, \ldots, i_{k_{s}}$ be the s different elements in $i_{1}, i_{2}, \ldots, i_{t}$. Assume that $i_{k_{r}}$ appears m_{r} times in $\left(i_{1}, i_{2}, \ldots, i_{t}\right)$, where $1 \leq r \leq s$. If there are exactly q different elements in $m_{1}, m_{2}, \ldots, m_{s}$, and they appear $l_{1}, l_{2}, \ldots, l_{q}$ times in $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$, respectively, then we define $\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right):=l_{1}!l_{2}!\ldots l_{q}!$. By Lemma 2.1, we can obtain the following result.

Lemma 2.2. Let s and t be positive integers with $1 \leq s \leq t$. Then

$$
\left|[n]_{s}^{t}\right|=\sum_{\substack{m_{1}+m_{2}+\cdots+m_{s}=t \\ m_{r} \geq 1(1 \leq r \leq s)}} \frac{t!}{m_{1}!m_{2}!\cdots!m_{s}!}
$$

Theorem 2.3. Let s and t be positive integers with $1 \leq s \leq t$. Then the number of the orbits of $[n]_{s}^{t}$ under S_{n} is

$$
\sum_{\substack{m_{1}+m_{2}+\cdots+m_{s}=t \\ m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 1}} \frac{t!}{m_{1}!m_{2}!\cdots m_{s}!\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right)}
$$

and the length of each orbit is $n(n-1) \cdots(n-s)$.

Proof. Let $i_{k_{1}}, i_{k_{2}}, \ldots, i_{k_{s}}$ be s different elements in $i_{1}, i_{2}, \ldots, i_{t}$, and $i_{k_{r}}$ appears m_{r} times in $\left(i_{1}, i_{2}, \ldots, i_{t}\right)$ with $1 \leq r \leq s$. For any $\left(i_{1}, i_{2}, \ldots, i_{t}\right),\left(j_{1}, j_{2}, \ldots, j_{t}\right) \in[n]_{s}^{t}$, they are in the same orbit under S_{n} if and only if there exists $\sigma \in S_{n}$ such that

$$
\left(\sigma\left(i_{1}\right), \sigma\left(i_{2}\right), \ldots, \sigma\left(i_{t}\right)\right)=\left(j_{1}, j_{2}, \ldots, j_{t}\right) .
$$

By the transitivity of S_{n} on $[n]$ and the definition of $\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right)$, the number of the orbits of $[n]_{s}^{t}$ under S_{n} is

$$
\sum_{\substack{m_{1}+m_{2}+\cdots+m_{s}=t \\ m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 1}} \frac{t!}{m_{1}!m_{2}!\cdots m_{s}!\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right)} .
$$

It is easy to see that the length of each orbit is $n(n-1) \cdots(n-s)$.
Corollary 2.4. Let $n \geq t$. Then the number of the orbits of $[n]^{t}$ under S_{n} is

$$
\sum_{s=1}^{t} \sum_{\substack{m_{1}+m_{2}+\cdots+m_{s}=t \\ m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 1}} \frac{t!}{m_{1}!m_{2}!\cdots m_{s}!\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right)} .
$$

Corollary 2.5. Let $n<t$. Then the number of the orbits of $[n]^{t}$ under S_{n} is

$$
\sum_{s=1}^{n} \sum_{\substack{m_{1}+m_{2}+\cdots+m_{s}=t \\ m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 1}} \frac{t!}{m_{1}!m_{2}!\cdots m_{s}!\Theta\left(m_{1}, m_{2}, \ldots, m_{s}\right)} .
$$

3. Examples

In this section, we give the orbits of $[n]^{t}$ under S_{n} for $t=2,3,4$ in detail.

Example 3.1. If $n \geq 2$, the orbits of $[n]^{2}$ under S_{n} are $R_{0}=\left\{(\sigma(1), \sigma(1)) \mid\right.$ for all $\left.\sigma \in S_{n}\right\}, R_{1}=\left\{(\sigma(1), \sigma(2)) \mid\right.$ for all $\left.\sigma \in S_{n}\right\}$, and the lengths of the orbits are

$$
\left|R_{0}\right|=n,\left|R_{1}\right|=n^{2}-n
$$

Example 3.2. If $n \geq 3$, the orbits of $[n]^{3}$ under S_{n} are

$$
\begin{aligned}
& R_{0}=\left\{(\sigma(1), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\} \\
& R_{1}=\left\{(\sigma(1), \sigma(1), \sigma(2)) \mid \text { for all } \sigma \in S_{n}\right\} \\
& R_{2}=\left\{(\sigma(1), \sigma(2), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\} \\
& R_{3}=\left\{(\sigma(2), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\} \\
& R_{4}=\left\{(\sigma(1), \sigma(2), \sigma(3)) \mid \text { for all } \sigma \in S_{n}\right\},
\end{aligned}
$$

and the lengths of the orbits are

$$
\left|R_{0}\right|=n,\left|R_{1}\right|=\left|R_{2}\right|=\left|R_{3}\right|=n(n-1),\left|R_{4}\right|=n(n-1)(n-2)
$$

If $n=2$, the orbits of $[2]^{3}$ under S_{2} are

$$
\begin{aligned}
& R_{0}=\left\{(\sigma(1), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{2}\right\}, \\
& R_{1}=\left\{(\sigma(1), \sigma(1), \sigma(2)) \mid \text { for all } \sigma \in S_{2}\right\}, \\
& R_{2}=\left\{(\sigma(1), \sigma(2), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{3}=\left\{(\sigma(2), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{2}\right\} .
\end{aligned}
$$

Example 3.3. If $n \geq 4$, the orbits of $[n]^{4}$ under S_{n} are

$$
\begin{aligned}
& R_{0}=\left\{(\sigma(1), \sigma(1), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{1}=\left\{(\sigma(1), \sigma(1), \sigma(2), \sigma(2)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{2}=\left\{(\sigma(1), \sigma(2), \sigma(1), \sigma(2)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{3}=\left\{(\sigma(1), \sigma(2), \sigma(2), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=\left\{(\sigma(1), \sigma(1), \sigma(2), \sigma(3)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{5}=\left\{(\sigma(1), \sigma(2), \sigma(1), \sigma(3)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{6}=\left\{(\sigma(1), \sigma(2), \sigma(3), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{7}=\left\{(\sigma(2), \sigma(1), \sigma(3), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{8}=\left\{(\sigma(2), \sigma(3), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{9}=\left\{(\sigma(2), \sigma(1), \sigma(1), \sigma(3)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{10}=\left\{(\sigma(1), \sigma(1), \sigma(1), \sigma(2)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{11}=\left\{(\sigma(1), \sigma(1), \sigma(2), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{12}=\left\{(\sigma(1), \sigma(2), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{13}=\left\{(\sigma(2), \sigma(1), \sigma(1), \sigma(1)) \mid \text { for all } \sigma \in S_{n}\right\}, \\
& R_{14}=\left\{(\sigma(1), \sigma(2), \sigma(3), \sigma(4)) \mid \text { for all } \sigma \in S_{n}\right\},
\end{aligned}
$$

and the lengths of the orbits are

$$
\begin{array}{r}
\left|R_{0}\right|=n,\left|R_{1}\right|=\left|R_{2}\right|=\left|R_{3}\right|=\left|R_{10}\right|=\left|R_{11}\right|=\left|R_{12}\right|=\left|R_{13}\right|=n(n-1), \\
\left|R_{4}\right|=\left|R_{5}\right|=\left|R_{6}\right|=\left|R_{7}\right|=\left|R_{8}\right|=\left|R_{9}\right|=n(n-1)(n-2), \\
\left|R_{14}\right|=n(n-1)(n-2)(n-3) .
\end{array}
$$

If $n=3$, the orbits of $[3]^{4}$ under S_{3} are $R_{0}, R_{1}, R_{2}, \ldots, R_{13}$.
If $n=2$, the orbits of [2] ${ }^{4}$ under S_{2} are $R_{0}, R_{1}, R_{2}, R_{3}, R_{10}, R_{11}$, R_{12}, R_{13}.

Acknowledgement

This research is supported by the Foundation of Langfang Teachers University (LSZQ201003) and Natural Science Foundation of Hebei Education Department (YQ2014018).

References

[1] K. Wang, J. Guo and F. Li, Suborbits of subspaces of type (m, k) under finite singular general linear groups, Linear Algebra and its Applications 431 (2009), 1360-1366.
[2] J. Guo and K. Wang, Suborbits of m-dimensional totally isotropic subspaces under finite singular classical groups, Linear Algebra and its Applications 430 (2009), 2063-2069.
[3] J. Guo, Suborbits of (m, k)-isotropic subspaces under finite singular classical groups, Finite Fields and their Applications 16 (2010), 126-136.
[4] K. Wang, F. Li, J. Gu and J. Ma, Association schemes coming from minimal flats in classical polar spaces, Linear Algebra and its Applications 435 (2011), 163-174.
[5] F. Li, K. Wang, J. Guo and J. Ma, Suborbits of a point stabilizer in the orthogonal group on the last subconstituent of orthogonal dual polar graphs, Linear Algebra and its Applications 436 (2012), 1297-1311.
[6] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular pseudo-symplectic spaces, Linear Algebra and its Applications 431 (2009), 1898-1909.
[7] J. Guo, K. Wang and F. Li, Association schemes based on maximal isotropic subspaces in singular classical spaces, Linear Algebra and its Applications 430 (2009), 747-755.
[8] W. H. Thomas, Algebra, Springer-Verlag, New York, (1974), 46-51; 88-91.
[9] A. B. Richard, Introductory Combinatorics, China Machine Press, Beijing, (2009), 32-43.

