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Abstract 

Let n be a positive integer and [ ] { }.,,2,1: nn …=  Let nS  be the symmetric group 

on [ ].n  This article describes the orbits of [ ]tn  under ,nS  computes the number of 

the orbits and the length of each orbit, where [ ] [ ] [ ] [ ]
t

t nnnn .: ×××=  

1. Introduction 

Let G be a group and X be a set, if there is a function XXG →×  
(usually denoted by ( ) gxxg →, ) such that for all Xx ∈  and 

:, 21 Ggg ∈  

( ) ( ),, 2121 xggxggxex ==  

then we say that the group G acts on the set X, where e is the identity 
element of the group G. 
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Let G be a group that acts on a set X, the relation on X is defined by 

.somefor~ Ggygxyx ∈=⇔  

It is well-known that the relation is an equivalence relation. The 
equivalence classes of the above equivalence relation are called the orbits 
of X under G. For ,Xx ∈  the orbit of x is the set 

{ }.GggxOx ∈=  

For ,Xx ∈  the subset 

{ },xgxGgHx =∈=  

is a subgroup of G. xH  is called the isotropy group of x. 

An action of the group G on the set X is said to be transitive, if there 
is Gg ∈  such that ,gxy =  for all ., Xyx ∈  

Let n be a positive integer and [ ] { }.,,2,1: nn …=  Let nS  be the 

symmetric group on [ ].n  There is an action of the symmetric group nS  on 
[ ]n  defined as follows 

[ ] [ ]nSn n →×  

( ) ( )., ii σσ  

It is well-known that nS  is transitive on [ ].n  

Let t be a positive integer and [ ] [ ] [ ] [ ]
t

t nnnn .: ×××=  Then we can 

get the following natural action of nS  on [ ] ,tn  

[ ] [ ]tn
t nSn →×  

( )( ) ( ( ) ( ) ( )).,,,,,,, 2121 tt iiiiii σσσσ ……  

If ,2≥t  then nS  is not transitive on [ ]tn  in general. This article 

describes the orbits of [ ]tn  under ,nS  computes the number of the orbits 

and the length of each orbit. 
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Guo et al. [1-7] studied the orbits of subspaces under classical groups, 
which are subgroups of symmetric groups. 

2. Main Results 

In this section, we begin with a useful lemma. 

Lemma 2.1 ([8]). Let S be a multiset with objects of k  different types 
with finite repetition numbers ,,,, 21 knnn …  respectively. Let the size of S 
be .21 knnnA +++=  Then the number of permutations of S equals 

.!!!!
!

21 knnn
A  

Let ( ) [ ] .,,, 21
t

t niii ∈…  If there are exactly s different elements in 
,,,, 21 tiii …  then ( )tiii ,,, 21 …  is called a t-repetitive permutation of 

size s. The set of all t-repetitive permutations of size s is denoted by [ ]tsn  

with .1 ts ≤≤  For ( ) [ ] ,,,, 21
t
st niii ∈…  let siii kkk ,,, 21 …  be the s 

different elements in .,,, 21 tiii …  Assume that rik  appears rm  times in 

( ),,,, 21 tiii …  where .1 sr ≤≤  If there are exactly q different elements in 
,,,, 21 smmm …  and they appear qlll ,,, 21 …  times in ( ),,,, 21 smmm …  

respectively, then we define ( ) !.!!:,,, 2121 qs lllmmm …… =Θ  By Lemma 
2.1, we can obtain the following result. 

Lemma 2.2. Let s and t be positive integers with .1 ts ≤≤  Then 

[ ]

( )

.!!!!
!

21
11

21
stmmm

t
s mmm

tn

srrm
s

∑
≤≤≥

=+++

=  

Theorem 2.3. Let s and t be positive integers with .1 ts ≤≤  Then the 

number of the orbits of [ ]tsn  under nS  is 

( ) ,,,,!!!
!

2121
121

21
sstmmm

mmmmmm
t

smmm
s

…Θ∑
≥≥≥≥
=+++

 

and the length of each orbit is ( ) ( ).1 snnn −−  
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Proof. Let siii kkk ,,, 21 …  be s different elements in ,,,, 21 tiii …  and 

rik  appears rm  times in ( )tiii ,,, 21 …  with .1 sr ≤≤  For any 

( ) ( ) [ ] ,,,,,,,, 2121
t
stt njjjiii ∈……  they are in the same orbit under nS  

if and only if there exists nS∈σ  such that 

( ( ) ( ) ( )) ( ).,,,,,, 2121 tt jjjiii …… =σσσ  

By the transitivity of nS  on [ ]n  and the definition of ( ),,,, 21 smmm …Θ  

the number of the orbits of [ ]tsn  under nS  is 

( ) .,,,!!!
!

2121
121

21
sstmmm

mmmmmm
t

smmm
s

…Θ∑
≥≥≥≥
=+++

 

It is easy to see that the length of each orbit is ( ) ( ).1 snnn −−  

Corollary 2.4. Let .tn ≥  Then the number of the orbits of [ ]tn  under 

nS  is 

( ) .,,,!!!
!

21211
121

21
sstmmm

t

s
mmmmmm

t

smmm
s

…Θ∑∑
≥≥≥≥
=+++=

 

Corollary 2.5. Let .tn <  Then the number of the orbits of [ ]tn  under 

nS  is 

( ) .,,,!!!
!

21211
121

21
sstmmm

n

s
mmmmmm

t

smmm
s

…Θ∑∑
≥≥≥≥
=+++=

 

3. Examples 

In this section, we give the orbits of [ ]tn  under nS  for 4,3,2=t  in 

detail. 
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Example 3.1. If ,2≥n  the orbits of [ ]2n  under nS  are 

{ ( ) ( )( ) } { ( ) ( )( ) },allfor2,1,allfor1,1 10 nn SRSR ∈σσσ=∈σσσ=  

and the lengths of the orbits are 

., 2
10 nnRnR −==  

Example 3.2. If ,3≥n  the orbits of [ ]3n  under nS  are 

{ ( ) ( ) ( )( ) },allfor1,1,10 nSR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor2,1,11 nSR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor1,2,12 nSR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor1,1,23 nSR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor3,2,14 nSR ∈σσσσ=  

and the lengths of the orbits are 

( ) ( ) ( ).21,1, 43210 −−=−==== nnnRnnRRRnR  

If ,2=n  the orbits of [ ]32  under 2S  are 

{ ( ) ( ) ( )( ) },allfor1,1,1 20 SR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor2,1,1 21 SR ∈σσσσ=  

{ ( ) ( ) ( )( ) },allfor1,2,12 nSR ∈σσσσ=  

{ ( ) ( ) ( )( ) }.allfor1,1,2 23 SR ∈σσσσ=  

Example 3.3. If ,4≥n  the orbits of [ ]4n  under nS  are 

{( ( ) ( ) ( ) ( )) },allfor1,1,1,10 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor2,2,1,11 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor2,1,2,12 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,2,2,13 nSR ∈σσσσσ=  
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{( ( ) ( ) ( ) ( )) },allfor3,2,1,14 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor3,1,2,15 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,3,2,16 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,3,1,27 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,1,3,28 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor3,1,1,29 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor2,1,1,110 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,2,1,111 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,1,2,112 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor1,1,1,213 nSR ∈σσσσσ=  

{( ( ) ( ) ( ) ( )) },allfor4,3,2,114 nSR ∈σσσσσ=  

and the lengths of the orbits are 

( ),1, 131211103210 −======== nnRRRRRRRnR  

( ) ( ),21987654 −−====== nnnRRRRRR  

 ( ) ( ) ( ).32114 −−−= nnnnR  

If ,3=n  the orbits of [ ]43  under 3S  are .,,,, 13210 RRRR …  

If ,2=n  the orbits of [ ]42  under 2S  are ,,,,,, 11103210 RRRRRR  

., 1312 RR   
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