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Abstract

The article deals with generalizations of the inequalities for convex functions on
the line segment. The Jensen and the Hermite-Hadamard inequalities are
included in the study. Some improvements of the Hermite-Hadamard inequality
are obtained and applied to mathematical means.

1. Introduction

Let X Dbe a real linear space. A linear combination aa + b of points
a, b € X and coefficients o, p € R is affineif a +p =1. Aset S < X is

affine if it contains all binomial affine combinations of its points. A

function A : S - R is affine if the equality
h(aa + Bb) = ah(a) + Bh(d), (1)

holds for every binomial affine combination oaa + b of the affine set S.
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Convex combinations and sets are introduced by restricting to affine
combinations with nonnegative coefficients. A function h:S —»> R 1is

convex if the inequality
f(aa + Bbd) < of(a) + Bf(b), @)

holds for every binomial convex combination aa + b of the convex set

S.

Using mathematical induction, the above concept can be extended to

n-membered affine or convex combinations.

In this paper, we use the real line X = R. Besides convex and affine
combinations, we will use barycenters of the sets of real numbers. If p is
a positive measure on R, and if S < R is a measurable set such that

w(S) > 0, then the integral mean point

_ 1
¢ = e L r ®

is called the barycenter of the set S respecting the measure p, or just

the set barycenter. The barycenter ¢ belongs to the convex hull of the set

S, as the smallest convex set containing S. Given the measurable set S
of positive measure, every affine function A :R — R satisfies the

equality

h (ﬁs) J.Sxdpj _ ﬁ J ) 4)

For the purpose of the paper, the set S will be used as an interval or a

union of intervals.
2. The Jensen and the Hermite-Hadamard Inequalities

Through the paper, we will use a bounded interval of real numbers

with endpoints a < b. Each point ¢ € [a, b] can be presented by the

unique binomial convex combination
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c = oa + Bb, (5)
where
b-c c—a
“Tr-a B_b—a' ©

The next two lemmas present the properties of a convex function

f : [a, b] > R concerning its supporting and secant line.

The discrete version refers to interval points and interval endpoints

sharing the common center.

Lemma A. Let [a, b] be a closed interval of real numbers, and let
Z?ﬂ?‘ixi be a convex combination of points x; € [a, b]. Let aa + pb be
the unique endpoints convex combination such that

n
D nx; = aa+ Bb. (7
i=1

Then every convex function f : [a, b] — R satisfies the double inequality
n

flaa +Bb) < > 1if(x;) < af(a) + Bf(b). ®)
i=1

Proof. Taking ¢ = Z?Zlkixi, we have the following two cases.

If ¢ € {a, b}, then Equation (8) is reduced to f(c) < f(c) < f(c).

If ¢ € (a, b), then using a supporting line y = h;(x) of the convex
curve y = f(x) at the graph point C(c, f(c)), and the secant line
y = hg(x) passing through the graph points A(a, f(a)) and B(b, f(b)),

we get the inequality
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flaa +Bb) = hy(oa + Bb) = > Aihy(x;)
1=1

S Zn:}‘if(xi)
i1

< ) hiha(x;) = hy(aa + Bb) = af(a) + B(B), ©
=1
containing Equation (8). O

The discrete-integral version refers to the connection of the interval
barycenter with interval endpoints.

Lemma B. Let [a, b] be a closed interval of real numbers, and let p
be a positive measure on R such that p([a, b]) > 0. Let aa + Bb be the

unique endpoints convex combination such that
;J. xdu = aa + Bb (10)
w(a, b]) J[a,5] ’
Then every convex function f : [a, b] - R satisfies the double inequality
1
fona+b£—j f(x)du < of(a) + BF(D). 11)
(00 +5) < sy [, A < o)+ Br0)

Proof. The proof can be done utilizing Equation (9) so that the
integral means are used instead of the n-membered convex combinations.

0

We emphasize the basic content of Lemma A. Using the left-hand
side of the inequality in Equation (8) with the n-membered convex
combination instead of the binomial endpoints convex combination, we
obtain the discrete form of Jensen’s inequality

f{znlki%} < Zn:lif(xi)- (12)
i1 i-1

Using the Riemann integral in Lemma B, the condition in (10) gives the

midpoint
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1 (b 1 1
b_ajaxdx—§a+§b, (13)

and its use in Equation (11) implies the classic Hermite-Hadamard

inequality

f(a ; b) < ﬁjjf(x)dx < M. (14)

Moreover, the inequality in Equation (14) follows by integrating the

supporting-secant line inequality
hi(x) < f(x) < hy(x), (15)
over the interval [a, b].

We finish the section with a historic note on these two important
inequalities. In 1905, applying the inductive principle, Jensen (see [4])
extended the inequality in Equation (2) to n-membered convex
combinations. In 1906, working on transition to integrals, Jensen (see [5])
stated the another form. In 1883, studying convex functions, Hermite
(see [3]) attained the inequality in Equation (14). In 1893, not knowing
Hermite’s result, Hadamard (see [2]) got the left-hand side of Equation
(14). For information as regards the Jensen and the Hermite-Hadamard

inequalities, one may refer to papers [1], [6], [9], [10], [11], and [12].
3. Main Results

To refine the Hermite-Hadamard inequality in Equation (14), we will

use convex combinations of points of the closed interval [a, b]. In the

main Theorem 3.1, we improve Equation (14) by using convex

combinations of the midpoint (a +b)/2. The concluding Theorem 3.4

presents the integral refinement of Equation (14).

We take points ¢, d € [a, b] such that

= . (16)
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Applying the right-hand side of the inequality in Equation (8) to the
above assumption, and multiplying by 2, we obtain the simple inequality

fe) + f(d) < f(a) + f(b), (17)
that will be used in this section. The main theorem follows.

Theorem 3.1. Let [a, b] be a closed interval of real numbers, and let
[c, d] < (a, b) be a closed subinterval satisfying the common barycenter

condition in Equation (16).

Then every convex function f :[a, b] > R satisfies the series of

inequalities
a+b 1 (a+c 1, (c+d 1 ,(d+b
f( 2 ]SZf( 2 )*Ef( 2 )Tf( 2 )

c d b
lja f(x)dx +ljc f(x)dx +ljd f(x)dx
4 c-a 2 d-c 4 b-d

o f(@)+3f(c) + 3f(d) + f(b) _ f(a)+[(b)
< 3 < 5 . (18)

<

Proof. Applying the Hermite-Hadamard inequality to the convex

combination of points ¢ and d written as
t=Lcily (19)

we have

0 = {<52)

Idf(x)dx
e

. fQ)+ @)
S T (20)

<
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Applying the same procedure to the convex combination of midpoints
(a+c¢)/2 and (d +b)/ 2 given as

d+b
2 b

a+c
2

t = + (21)

Do
DO | =

we get

0= 51 %5)+ 31452

c b
1 Ja f(x)dx 1 Id f(x)dx
2 c-a 2 b-d

<

. fla)+ f(C)Z f(d) + f(b) (22)

Taking the arithmetic means of the inequalities in Equations (20)
and (22), using Equation (17) and rearranging, we obtain the inequality
in Equation (18). O

The inequality in Equation (18) can be expressed using the point
d = a + b — c¢. The observed Equation (18) can also be expressed with the

point ¢ = a + 28, where 0 <& < (b -a)/2. Using this choice, we have
d=b-25,(a+c)/2=a+5 and (d +b)/2 = b - 3. Finally, we can use

the convex combinations
c=aa+Bb,d=0-a)+(1-B)p>, (23)

provided that aa +Bb < (a +b)/2. Regardless of all these cases, the
midpoint (a + b)/ 2 is not covered on the right side of Equation (18).

The inequality in Equation (18) does not include the case ¢ = d =

(@ +b)/2. A method similar to that in Theorem 3.1 can be applied to
intervals [a, (a + b)/2] and [(a + b)/ 2, b] and so derive the inequality

(252302 252
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<3 1 J.jf(x)dx

- a

< %Ha;b% f(a);f(b)} < f(a);f(b)_ 24)

The above improvement of the Hermite-Hadamard inequality was noted
in [8].
A convex function f : [a, b] - R satisfies the inequality
fla+b-c) < fla)+ f(b) - f(c), (25)
for every point c¢ € [a, b] by Equation (17). The above simple inequality

can be generalized by using the convex combination Z?ﬂyici instead of

the point c. Applying Jensen's inequality to the convex combination

n n
t=a+b- ZYiCi = Zyi(a+b -¢), (26)
i=1 =1

and using Equation (25), Mercer (see [7]) obtained the inequality
n n
f[a‘*‘b—ZYiCi] < f(a)+f(b)_ZYif(ci)- 27
i=1 i=1

Corollary 3.2. Let [a, b] be a closed interval of real numbers, let
c € (a, b) be an open interval point, and let f :[a, b] > R be a convex

function.

If c < (a+0b)/2, then

ch(x)dx + Ic f(x)dx

fla+b=c)+ fle) < =* P < fl@)+ (). @28

If c > (a+b)/2, then

a+b—c b
J‘a f(x)dx + L f(x)dx
fla+b-c)+flc) < < fl@)+ (). (29

cC—a
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Proof. We prove the double inequality in Equation (28). Let y = h(x)
be the secant line of the convex curve y = f(x) passing through the
graph points C(c, f(c)) and D(a +b —¢, f(a + b —c)). Using the affinity
of the secant function A specified in Equations (1) and (4), and the
inequality A(x) < f(x) for x € [a, c]U[a + b - c, b], we get

1 1 1 1
Ef(c)+§f(a+b—c):Eh(c)+§h(a+b—c)

c b
I xdx+J. xdx

a+b a a+b—c
G IRl b v

rb

| : M)+ [ hx)ds j: fwax + | ab+ @i

b
- 2(c — a) < 2(c —a) - (30)

Continuing with Equation (30) by applying the Hermite-Hadamard
inequality and the inequality in Equation (25), it follows

< ) s [0+ fla =) [0) _ fla)s 1) -
It remains only to multiply by 2. O

Corollary 3.3. Let [a, b] be a closed interval of real numbers, and let
[c, d] = (a, b) be a closed subinterval satisfying the common barycenter

condition in Equation (16).

Then every convex function f : [a, b] — R satisfies the double integral

inequality

chf(x)dx J;f(x)dx I:f(x)dx J(:f(x)dx
d-c = b-a ° 20— a) + 5% —d)

(32)
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Proof. Midpoint equality in Equation (16) can be expressed in the
integral form by the barycenter equalities

d b c b
J. xdx j xdx j xdx j xdx
c a a d

d-c  b-a :2(c—a)+2(b—d)' (33)

We firstly prove that the left term of Equation (32) is less than or
equal to the right term. Let y = h(x) be the secant line of the convex curve

y = f(x) passing through the graph points C(c, f(c)) and D(d, f(d)).
Using inequalities f(x) < hA(x) for x e[c,d], and h(x) < f(x) for
x €la,c]U[a+b-c, d], and applying the affinity of function A to
Equation (33), we get

J.cdf(x)dx J'th(x)dx J.:h(x)dx J.jh(x)dx

d—c -~ d-¢ 2(c — a) " 2(b - d)

c b
J.a f(x)dx -[d f(x)dx
2c—a) | 20-d)

(34)

Now, the inequality in Equation (32) can be confirmed by the

combination

J.jf(x)dx I:f(x)dx n jcdf(x)dx + J.;f(x)dx

b-a b-a

chf(x)dx ~[:f(x)dx ij(x)dx

=g "M 2t e | (35)
which is convex because the coefficients
~d-c , 2c-a) 2(d-0b)
_b—a’B_ b-a  b-a (36)

are nonnegative and their sum is equal to 1. O
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Combining the inequalities in Equations (14), (32), (28), and (29), we
get the following integral refinement of the Hermite-Hadamard
inequality.

Theorem 3.4. Let [a, b] be a closed interval of real numbers, and let
[c, d] < (a, b) be a closed subinterval satisfying the common barycenter
condition in Equation (16). Then every convex function f :[a, b] > R

satisfies the series of inequalities

. chf(x)dx ij(x)dx
f( ; bj < d-c < b-a

c b

j f(x)dx I f(x)dx

. O @) )

We—a) T 2= - 2z 87

4. Application to Means

Thorough this section we use positive numbers a and b, and a strictly

monotone continuous function ¢ : [a, b] - R.

The discrete quasi-arithmetic mean of the numbers a and b

respecting the function ¢ can be defined by the number

My(a. ) = 475 ola) + 5 olb)). (39

Using the identity function ¢(x)=x, we get the generalized

arithmetic mean

1

Ala, b) = %a + 2, (39)

using the hyperbolic function ¢(x)=1/x, we have the generalized

harmonic mean

-1
H(a, b) = @ al+ lbflj , (40)
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and using the logarithmic function ¢(x) = In x, we obtain the generalized

geometric mean

1
2

G(a, b) = a?b2. (41)

o~

The above means satisfy the generalized harmonic-geometric-arithmetic

mean inequality
H(a, b) < G(a, b) < A(a, b). (42)

The integral quasi-arithmetic mean of the numbers a and b

respecting the function ¢ can be defined by the number

b
_ o1 L
My(a, b) = ¢ (b — ja (p(x)dxj. (43)
Using the hyperbolic function, we have the logarithmic mean

-1
L(a, b):(L bldxj _b-a (44)

b-algx “Tnb-Ina’

and using the logarithmic function, we obtain the identric mean

1
1 (? 1( P Yo-e
I(a, b) = exp (m J‘a In xdxj =3 [a—aj . (45)
The well-known mean inequality asserts that
H(a, b) < G(a, b) < L(a, b) < I(a, b) < A(a, b). (46)

Applying Equation (18) to the convex function f(x)=-Inx using
substitutions a —~1/a, b+ 1/b,c—~1/c, and d — 1/d, and then

acting on the rearranged inequality with the exponential function, we can

derive the series of inequalities
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H(a, ¢)H(c, d)H(d, b)

H(a, b) < 35

I'Y(a, e Hr e, aHri@!t ot
32

IA

(acd®p)® < G(a, b), 47)

refining the harmonic-geometric mean inequality.

Applying Equation (37) to the exponential function f(x) = e* using

substitutions ¢ = Ina, b = Inb, c = Inc, and d — Ind, we obtain the

series of inequalities

G(a, b) < L(c, d) < L(a, d)

< %L(a, ¢) + % L(d, b) < A(a, b), (48)

refining the geometric-logarithmic-arithmetic mean inequality.
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